Chapter 6

Mathematical Foundations

6.1 Introduction

In this chapter we present a mathematical interlude to provide a more formal
language which will allow us to set the mathematical foundations of quantum
mechanics. Sections 6.2 and 6.3 contain a discussion of Hilbert space and should
be read by all those not familiar with this concept. The remaining sections are
somewhat more mathematical in nature and are provided for those who desire
more rigour.

In section 6.4 we discuss linear operators in Hilbert space and introduce the
concept of self-adjointness. The Cayley transform is introduced in section 6.5
and used to classify all self-adjoint extensions of a symmetric operator. Section
6.6 is devoted to some examples illustrating the results of section 6.5. More
examples are also provided in section 6.7.

6.2 Geometry of Hilbert Space

The language we have used so far is one of wave-functions or state vectors and
operators on these wave-functions. There is a ready-made mathematical lan-
guage for this. This is the language of Hilbert space and quantum mechanics is
naturally formulated in Hilbert space. Actually, for practical purposes Hilbert
space Is too small and the appropriate géneralization is to a so-called rigged
Hilbert space. We shall ignore this for the time being and discuss it briefly in
Chapter 8, where we shall also give references for those who are interested in
more of the details. What is Hilbert space? First of all it is a vector space
analogous to the usual Euclidean spaces &3 or &£,, however unlike £ which is 3-
dimensional and &, which is n-dimensional, Hilbert space is co-dimensional. As
a conceptual model of Hilbert space H one can think of taking some represen-
tation of a vector in &,, say (ay,...,a,) and writing it (a1, ...,a5,0,0....,0).
Then, letting n increase without limit we arrive at the notion of #. However,
unlike all ordered n-tuples which automatically can be considered in &,, not all
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infinite ordered sequences can be considered to belong to H. The reason for
this is that not all of them have finite “length” and we wish to include in #
only elements of finite length. This is tantamount to saying in the language of
wavefunctions that we want the wavefunction to be square integrable. We start
by listing those properties of £, which remain true in the transition to . The
elements of the space are vectors f on which certain operations are defined.

1) Scalar multiplication : If f € H and X is a complex number then A\f € .

2) Addition: If f; and f, € H then f; + fo» € # . Thus, combining 1) and 2)
we see that all finite linear combinations of elements in H belong to H.

3) Inner Product: In # there is defined an inner product (f, g) for all f,g € H.
This inner product maps elements of # into complex numbers and satisfies
the following conditions.

a)
(f,9) =19, (6.2.1)

where the star means “complex conjugation”.

b
(A1f, A29) = A a(f, 9) (6.2.2)

where A; and A, are complex numbers. We sometimes also use a bar over
a number to indicate complex conjugation.

c)

(fi+f29) = (fr,9)+(f2,9)

(fiom+g2) = (f)+(f92) - (6.2.3)
d)

I(f,9)* < (f, f)g,9) - (6.24)

This last inequality is the Schwarz inequality. We shall later derive this.
In terms of the inner product we define the “length” or norm of a vector in
the usual way by

£ 1= (f,5) - (6.2.5)

It is also possible to define orthogonality using the inner product. Thus, f is
orthogonal to g if and only if (abbreviated iff)

(f,9)=0. (6.2.6)

A set of vectors {f;} is orthonormal that is orthogonal and normal iff

(fis fi) =dij . (6.2.7)
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We now come to some of the differences. For this we need two definitions.

Definition: A set {f;} of vectors is complete iff any vector in H can be writ-
ten as a linear combination of vectors from the set {f;}. A complete set of
orthonormal vectors forms a basts.

Example:
Consider the Euclidean space £3 and choose three orthonormal vectors (é;, é3, €3).
Thus, (é;,é;) = d;;. Then any vector f € £3 can be written

3
F=) Nés (6.2.8)
i=1
and in fact
Xi=(&,f). (6.2.9)

The é; are obviously complete and form a|basis in £. On the other hand, if we
choose just two of these vectors, say é; and é;, they do not form a complete set
since for example any vector with a component along é3 cannot be expressed in
terms of just the first two.

The ); are usually called the components of the vector. If we then agree to
keep the basis fixed, we can suppress the basis vectors and write f = (A1, A2, A2).
In this manner we establish a one-one correspondence between vectors in £3 and
ordered triplets. The norm of f is given by

3
Y AN ()

ig=1

3
Y NNidij

i,j=1

3
ST (6.2.10)
i=1

£

This formalism above is all exceedingly trivial and you may wonder why bother.
The reason is to establish a precise formalism so that when the situation becomes
complicated we can rely on the formalism and not just our intuition.

Another use for the word complete is|in the description of a vector space.
This concept again is trivial for £, but is non-trivial for #. Consider a sequence

of vectors fy, fo, f3,.... Furthermore, suppose that for every € > 0 we can find
an n such that for any finite m
| fagm = fall<e. (6.2.11)

This is just a statement of the Cauchy criterion for convergence using the norm
| - || rather than the absolute value as is the usual case for numerical sequences.
We call such a sequence a Cauchy sequence. Now if H in this case is finite
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dimensional say &, then it is trivial to show that the limit of the sequence exists
and is a vector in &,. This property that all Cauchy sequences have a limit in
£y is stated by saying that &, is complete. In fact all finite dimensional vector
spaces are complete. This is also true for co-dimensional Hilbert spaces. There
is a deep theorem of analysis known as the Riesz-Fischer Theorem which states
that the space used by us (called £, by mathematicians) is complete and thus
a Hilbert space.

6.3 Ly: A Model Hilbert Space

The elements of £, are square-integrable complex-valued functions f(z) of a
real variable z. More generally z is a vector in some real finite vector space
so that f is a function of n real variables. This generalization has no effect

whatever on the ensuing statements and so we ignore it. The norm || - || in £,
is defined by
1£1P=(1.0) = [ F @) (63.12)

The range of integration in (6.3.12) is over the full range of the variable z. Thus,
if z is unrestricted, the integral runs from —oo to co. It is trivial to check our
first two conditions for elements in £, . Thus,

f€Ly = A€l (6.3.13)
and
fii2€le = fitfr€ls . (6.3.14)

Furthermore, as defined by (6.3.12) the inner product obviously satisfies condi-
tions a), b) and c).

a)

o= f*gdz:( [ dx) =0, f) (6.3.15)
b)

(A1f, Aeg) = / (ALf)"(A2g) dz = A1), / Fradz =X (f, 9) (6.3.16)
B

i+ forg) = / (i 4 f2)*gda = / fgde + / fods

= (f1,9)+(f2,9) (6.3.17)

and

(oo +9) = ] F (91 + 92) de = / Foudet / farde
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The only condition left to verify on the inner product is the Schwarz inequality.
To do this consider the vector

h=f+Mg, flg (6.3.19)
where f,g € L5 and ) is a real number. Then,

(h,h) =l A P> 0 . (6.3.20)
Therefore,
0 < (F+ Mg, N, f+Xg, M)

(£, ) +2N(£,9)1° + 3*|(£,9)*(9.9) - (6.3.21)

This means that the quadratic polynomial in A cannot have two real distinct
zeros and hence that the discriminant is negative, giving

(£, 9I* = 1(£,9)*(f, /)9,9) <O . (6.3.22)

The equality sign obviously applies when (f,g) = 0 or f = pg. Thus, even if
(f,9) =0, we get

(9P < (.0)(a.9) (6:323)
as required.
Orthogonality is still given by: f is orthogonal to g iff
(f,9)=0. (6.3.24)
An example of two orthogonal vectors in £ 1s:
1 —z2/2 2z —z2/2
f:F/—‘;E .’L‘/ g:me z/ (6325)

where the range of intergration is (—oo, 00). The functions displayed are the
first two hermite functions. As we see later, it is a general fact that eigenfunc-
tions corresponding to different eigenvalues are orthogonal. In fact for physical
Hamiltonians, the eigenfunctions properly normalized can be taken as a basis.
This is an important fact since it implies|that these eigenvectors form a com-
plete set. Although we do not prove the Riesz-Fischer Theorem we restate it
here. Consider a sequence of functions f1, fs, . . . all of which belong to £5. Fur-
thermore, let this be a Cauchy sequence. This means that given any ¢ > 0 we
can find an n > 0 such that

1/2
[ / |frtm — ntde] <e. (6.3.26)

Then the Riesz-Fischer Theorem asserts that
a) limp, 00 fm (-’5) = f(z)
exists and, most important,
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b) f(z) € L, .
That is,

/ If(z)] de < oo . (6.3.27)

This guarantees that we can take limits of sequences in L. Clearly £, is
the model for the quantum mechanical Hilbert spaces. All Hilbert spaces are
complete by definition and so all limits of Cauchy sequences are again elements
of the space. We shall see that the inner product plays an exceedingly important
role in the physical interpretation of quantum mechanics. There is one more
technical point, namely that for any set of linearly independent vectors { fi}it
is possible to construct an orthonormal set of vectors {e;} which span the same
space. The orthogonalization process is called the Schmidt Orthogonalization
Procedure. The proof is by construction. Choose one of the f; say f1. Then,

h

e = —— . 6.3.28
YTAT (6.3.28)
Now form
92= fo— (e1, fo)er (6.3.29)
and
g2
ey = 7 . 6.3.30
= el (6:3.30)
Clearly, e; and e are orthonormal. Next form
93 = f3— (e1, fa)er — (e2, fa)ea (6.3.31)
and
93
e3 = —— . 6.3.32)
e (

The process is now obvious.
We next turn to another aspect of Hilbert space, namely operators.

6.4 Operators on Hilbert Space:
Mainly Definitions

An operator on Hilbert space is a mapping which maps certain elements of
into H. Thus, if A is an operator with domain D4 C H then for all f € D,

g= Af EN. (6433)

The domain D4 consists simply of all those vectors in # such that the result of
operating with A on a vector in D, is again a vector in . Thus, for example,
if 7 is the space £ and A is the operator z? (multiplication by z?) then

(Af)(z) = 2*f(2) . (6.4.34)
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Clearly even if f € £ not all functions z?f(z) are in L,. For example

f(z) = (z* +a®)™™ (6.4.35)
is in Ly for R(m) > 1/4. But, z2f(z) = 2%(z® + ¢®)™™ is not in L unless
R(m) > 5/4.

Again we shall only be interested in linear operators. Thus,

Aifi+ X2 fo) = MAfL + X Af (6.4.36)

For example, the operator z? defined above is linear and so are the operators
h df

pf = T (6.4.37)

and
o0
(k1)@ = [ K dy. (6:438)

On the other hand, log f and +/F are definitely not linear operators acting on
the function f . Linear operators are also familiar in finite dimensional vec-
tor spaces. They are usually represented by matrices in this case. There is
an analogous representation for operators in Hilbert space. Formulated in this
way quantum mechanics is called matrix mechanics to distinguish it from the
Schrodinger formulation or wave mechanics. Both formulations are just two
different mathematical ways of looking at |the same thing. We examine matrix
mechanics after we have developed all the necessary mathematical machinery.
To illustrate the matrix operator formalist we first derive the form of the most
general linear operator on a finite vector space say &,. Let A be such an oper-
ator. Call

g=Af , (6.4.39)
and consider taking for f different elements of a basis set {e;}. Thus, let
gi = Ae; . (6.4.40)

Then writing
F=Y Ne (6.4.41)
and

9= pies (6.4.42)

we get by linearity:

Zp,‘e; = E Aide; = Z/\gg,' . (6.4.43)
i i i
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Now using
(eisej) = dij (6.4.44)

and taking inner products in (6.4.43) we get:
1 =) diles, Aes) = ) Milej,g4) (6.4.45)

This means that the operator A is completely determined in this basis by the
matrix of numbers

Aj' = (ej,Ae,-) . (6446)

Conversely if we are given a matrix (n x n) then it can always be used to define
a linear operator according to (6.4.46). Thus, as stated previously, the most
general linear operator on &, can be considered to be an (n x n) matrix. With
only some attention to details the same argument will go through for an oco-
dimensional Hilbert space. Just as a matrix algebra is possible, so an algebra of
linear operators is generally possible. It is only necessary to pay due attention
to such things as domains of the operators. Let A be an operator on H with
domain Dy. Then AA is also an operator on # with domain D, and acts as
follows:

(AA)f = MASf) . (6.4.47)

This is almost too obvious. If A, B are operators with domains D4 and Dp
respectively, then A + B is an operator with domain D4 N Dg defined by

(A+B)f = Af + Bf . (6.4.48)

The range R4 of an operator A is defined as the set of all vectors obtained by
operating with A on elements in D4. Symbolically,

Ra=AD, . (6.4.49)

Then if A, B are operators with domains D4 and Dg and R4 C Dp we can
define the product operator BA according to

(BA)f = B(Af) . (6.4.50)

This is well defined since by assumption

feDy. (6.4.51)
Therefore

Af €RaC Dp (6.4.52)
and hence

Af€Dp. (6.4.53)
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Conversely if Rp C D4 we can define the product
(AB)f = A(BY) . (6.4.54)

This points out the interesting possibility that although BA may exist as an
operator AB might not, and conversely. Another property which many opera-
tors of physical interest possess is hermiticity. Actually the interesting property
is self-adjointness and we shall examine these two properties in some detail to
bring out the difference. First we need some definitions. Let A be an operator
on H and f € Dy4. Then consider the expression (g, Af). If for some g € H we
find that there is an h € # such that

(9,Af) = (h,]) (6.4.55)
for all f € D4 then we define the adjoint operator A! of A by
h=Alg (6.4.56)

with domain D4+ = the set of all g for which (6.4.55) holds. In that case we
can write

(9, A1) = (A, f) . (6.4.57)

Note that the element h in (6.4.55) is defined uniquely by g if the domain Dy
contains sufficiently many vectors. The precise statement of this is that Dy is
dense in H. For our purposes a set in A |is dense if any element in # can be
approximated arbitrarily closely by an element from this set. Thus, D4 is dense
if for any f € H there exists a g € D4 such that given

e>0 ||f-gl<e. (6.4.58)

In this case the proof that h is unique is trivial. For, assume there is another
such vector h’. Then,

(9,Af) = (V. ) (6.4.59)
as well. Combining this with (6.4.55) we get
(h=H,5)=0. (6.4.60)

Thus, h — k' is orthogonal to every vector in Ds. But Dy is dense in H so that
for any vector g € H

I(h =k, g)| <e. (6.4.61)

This is possible only if h = A’. The adjoint operator is also a linear operator as
is immediately obvious. Now again let A be an operator in # with domain D4
then A is hermitian if for all f,g € D4

(Af,9) = (f,Ag) . (6.4.62)
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An operator A is symmetric if it is hermitian and its domain of definition D4
is dense in #. From the definition of A' it then follows that for a symmetric
operator A

D4 C Dyt (6.4.63)
as we show for an example. If in addition

Dy = Dyt (6.4.64)
or as this implies

A=Al (6.4.65)

Then, A is self-adjoint. To make this less abstract consider the momentum
operator
_hd
T ide
defined on the Hilbert space £;(a, ) of functions square-integrable on the in-
terval [a,b]. As domain of this operator we choose

(6.4.66)

D, = {f € La(a,b) | 3—'2 is bounded on (a,d) , f(a) = f(b) = 0} . (6.4.67)

With this definition it is easy to see that p is hermitian and in fact symmetric.
The domain D, is dense in L3(a, b). Thus, if p is hermitian, it is symmetric. To
see hermiticity let

feD, , g€D,. (6.4.68)
Then,

b
e = [ roriea

b *
;’.if*(z)g(x)|3+ / <?%> g(e)dz . (6.4.69)

Since f*(a) = f*(b) = g(a) = g(b) = 0, the term obtained from integration by
parts vanishes and so we have

(f,pg) = (pf,9) . (6.4.70)

Thus, p is hermitian (symmetric) as claimed. On the other hand p # p! since,
as we now show, the domain D+ of p! is much larger than the domain D, of p,
Le. Dy C Dyt , but Dy # Dpt. This means that D, is a proper subset of Dpt.
To see this consider any g € D, and let f be any function whose derivative is
bounded over (e, b) and such that

f(b) = ¢ f(a) (6.4.71)
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where 0 is a constant. Then by a computation, identical to the one above, we
again find

(f,pg) = (pf,9) - (6.4.72)
Thus, as a differential operator
hd
- -2
P=a (6.4.73)

but the domain of p' is larger than the domain of p. It is furthermore easy to
check that if we define

Dyt = {f € Lo(a,b) }% is bounded on|(a, b) and f(b) = eief(a)} (6.4.74)

then p! is also symmetric. Thus, we say that p! is a symmetric extension of p.
In fact one can check that p! is self-adjoint because Dyt = Dp1t. Thus, we have
a self-adjoint extension of p.

A symmetric operator A is essentially self-adjoint if A'! is self-adjoint.
What this means is that although A itself|is not necessarily self-adjoint there is
a unique way to extend it to a self-adjoint operator. That A't is an extension
of A follows from

DA C DA? C DAH’ . (6475)

The operator p discussed above is not essentially self-adjoint because, for
each value of the parameter 6 used to define Dy, we get a different self-adjoint
extension. This means that the physical results we get for different values of
6 are different. A neat way to say this is/that different self-adjoint extensions
give different physics. Rather than being'a nuisance, this makes the structure
of quantum mechanics much richer.

6.5 Cayley Transform: Self-Adjoint Operators

We now examine under what conditions a general symmetric operator possesses
self-adjoint extensions and how many. To do this we need some more machinery.
The operation analogous to a rotation in a Euclidean space &, is a unitary
transformation in H. The characteristic property of a rotation in &, is that it
preserves length and angles or more succinctly, it preserves the inner product.
This is also its characteristic in H.

Definition U is unitary iff Dy = Ry = H! and
ULUN=(1) - (6.5.76)

From this we immediately get

Ut =1 . (6.5.77)
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And since Dy = Ry = H we also get
vut=1. (6.5.78)

Note, unlike the case for finite vector spaces, (6.5.77) does not imply (6.5.78)
without the additional assumptions about domains on U. We now show that A
is self-adjoint iff the operator

U=(A-il)(A+i1)? (6.5.79)
called the Cayley transform of A is unitary.

Proof
Suppose A is self-adjoint in # and f € D4. Then,

| Af if |I? (Af, Af) £i(Af, f) Fi(f, Af) + (£, )
NAFIP+0 712 - (6.5.80)

Therefore, (A+il)f = 0 is only possible if f = 0. Thus, the operators (A4i1)~?
and hence U exist. Furthermore, as we now show, the ranges R44;; and Ra—i1
are dense in #. For suppose g is orthogonal to all vectors in R44; . Then for
f € Ratir or equivalently, f = (A £ i1)h we have:

0=1(g,f) = (g, Ah 2 ih) = (9, Ah) 2 i(g, R) . (6.5.81)
Thus,

(9, AR) = Fi(g, ) . (6.5.82)
So,

gEDyp =Dy (6.5.83)
and

Alg = Ag = +ig . (6.5.84)

But as we have seen this is not possible unless g = 0. Thus, the ranges Ra+i1
are dense in H. We now prove that in fact

Razin =M. (6.5.85)

Let g € H , then since Ra44; is dense in H the limit g, = Af, £if, — g exists.
Also, using (6.5.80)

| gn — gm ”2 = ” A(fn = fm) £ i(fn = fm) ”2
= A= Fm) P+ 1 (fa = f) IP? (6.5.86)

and thus the f, and Af, converge to some vectors f and h respectively. Fur-
thermore, because A is self-adjoint

fE€D, (6.5.87)
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and

h=Af. (6.5.88)
Hence, by definition of g as the limit of g, it follows that

9=Af+if € Razi1 . (6.5.89)

Thus, the limit g of the approximating vectors gy, itself belongs to R4+;;. How-
ever, by taking limits of sequences one may obtain any vector in H. Thus, this
limit may be any element in #. Hence,

Raxin=H (6.5.90)
and we have that
Dy=Ry=%H. (6.5.91)

Now choose any element f, then f € Dy and hence f € D(44i1)-1. Thus, we
can write

f=(A+il)g (6.5.92)
and

Uf = (A-il)(A+i))"Y(A+il)g

= (A-il)g. (6.5.93)
Therefore,
NUFIP = 1A-)g =l Ag II* + 1l ¢ |I?
= (A+ig ]
I FI% . (6.5.94)

Thus, assuming A = Af we conclude that UUt = UtU = 1. It is also always
possible to recover A from U according to

A=i1-U)'1+0) =it +U)1-U)L. (6.5.95)

We now prove the converse, that if U is unitary, then A is self-adjoint. Let
g € D4+ and define

g=Alg. (6.5.96)
Then for any f € Dy

(9,4) =@ f) - (6.5.97)
But since

A=i1+0)1-0)7", (6.5.98)
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all f € Dy are of the form

f=(1-U)h (6.5.99)
where

heDy=% . (6.5.100)
Therefore, (6.5.97) reads:

(9,41 +U)h) = (3,(1 - U)h) (6.5.101)

for any h € H. Now since U is unitary and therefore defined everywhere and con-
serves inner products, we can replace (k, g) by (Uh,Ug) and (h, §) by (Uh,Ug)
to get from (6.5.101)

(Ug,iUR) + (g,h) — (Ug,Uh) + (g, Uh) =0 (6.5.102)
or

(-iUg—ig—-Ug+§,Uh)=0 . (6.5.103)
Thus, —iUg —ig —U§+ § is orthogonal to all elements of H and hence vanishes

—iUg—ig-Ujg+§=0 . (6.5.104)
From this we get

g=—-1§—U(g —13) . (6.5.105)
We now perform some algebra. Thus,

g-1 g+ig

9== —T—U(g—zg) . (6.5.106)

Using (6.5.104) again this becomes

g—ij  Ulg-1§)

9=+ =~ Ulg =) (6.5.107)
and hence

g=(1-0)I=9 (6.5.108)
Similarly we get

g:i(l+U)¥. (6.5.109)

This proves two things: If g € D4+ then a) g € D4 according to (6.5.108), i.e.
it is in D(I_U)—l.

b) Ag=j = Alg (6.5.110)
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since

(v—19) (6.5.111)

Ag=i(1+U)(1-U)"'(1- )25

or
(¢ — i9)
2

This proves that A" = A and hence that (A is self-adjoint. Before proceeding
let us examine the reasons for our interest in self-adjointness. The examination
will be, of necessity, somewhat cursory.

Ag=i(1+U) =7. (6.5.112)

6.6 Some Properties of Self-Adjoint
Operators

To begin, consider the operator A which|means multiplying by a number a.
Self-adjointness implies that for f,g € H

(f,a9) = (af,9) - (6.6.113)
But according to the definition of the inner product we have

(f,ag) = (a*f,9) . (6.6.114)
Thus,

a=a". (6.6.115)

and hence a must be real. This is not a|coincidence. In fact self-adjoint op-
erators, in some sense which will become clear, correspond to real numbers.
To make this precise we now discuss the eigenvalue problem for self-adjoint
operators. Again, let A be a self-adjoint operator; then there are certain vec-
tors belonging to the domain of 4 on which operations by A are particularly
simple. The operation involves multiplication by a number. We have already
encountered this in our solution of the Schrodinger equation

Hyp = EYg . (6.6.116)

Here, operating with H on the vector ¥ involves multiplying ¥ by E. The
vector ¥ is called an eigenfunction of H belonging to the eigenvalue E. More
generally, f; is an eigenfunction of the operator A belonging to the eigenvalue
aj if

Af;=a;f; . (6.6.117)
The important properties of self-adjoint operators are that:
a) All eigenvalues of a self-adjoint operator are real.

b) Eigenvectors belonging to different eigenvalues are orthogonal.
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c) The eigenvectors form a complete set.

We now prove a) and b). The eigenvalues of a self-adjoint operator are real and
the eigenvectors belonging to different eigenvalues are orthogonal.

Proof
Let f;, f; be two eigenfunctions of A belonging to the eigenvalues a; and a;
respectively. Thus,

Afi = aif; (6.6.118)
and
Afj = ajfj . (6.6.119)

Forming the inner product of (6.6.118) with f; we get

(fi Af) = (Afi, fi) = (fiyaifi) = (ai fi, fi) - (6.6.120)
Therefore,
a; =a} (6.6.121)

as required. Note the self-adjointness was necessary for otherwise we do not
know that f; € D+. This proves part a).
To prove part b) we use (6.6.118) and (6.6.119) to get

(fi, Afj) = (Afi, f5) - (6.6.122)
This means that

a;(fi, f5) = ai(fi, £5) (6.6.123)
so that

(aj-ai)(fi, f;) =0 . (6.6.124)
Thus, if a; # a;, then

(fi, fi)=0. (6.6.125)

Thus, we have established the results.

The proof of completeness of the eigenfunctions of a self-adjoint operator is
beyond the scope of this book. Consequently we only show a sort of converse
which makes the result appear plausible. The general theorem is known as the
Spectral Theorem and is discussed in detail in reference [6.1].

Let A be a linear operator with a'complete orthonormal set of eigenvectors
{fx} and corresponding set of real eigenvalues a,, then A is self-adjoint. Thus,
we have that if

Afn = anfn (66126)




124 CHAPTER 6. MATHEMATICAL FOUNDATIONS

and

(fm fm) = Jnm (66127)
where the {a,} are real and the {f,} are complete. Then A = A

Proof
We must show that D4 = D4+ and that for f,g € Dy
(Af,9) = (f, Ag) - (6.6.128)

The proof is based on knowing A on a basis (the eigenfunctions). Suppose
f,9 € Dy4. Then because the {f,} are complete we have the following expansions

f= ) onfn

g = Xn:ﬂnfn (6.6.129)
where n

an = (fa,f)

Bn = (fn,9)- (6.6.130)

Suppose f € Dy. Then,
(f, Af) = Z(amfm,Aanfn)

n

Za,.a’,"na,.

n

= Z(ﬂmamfmyanfn)

n

i

) (Aamfm, anfa)

n

(Af, 1) = (A}, f) . (6.6.131)

Therefore, f € D4t and in a similar manner we get (g, Af) = (Ag, f). Thus, A
is self-adjoint.

6.7 Classification of Symmetric Operators

We now complete the classification of symmetric operators. For the purposes
of physics there is no need to distinguish between self-adjoint and essentially
self- adjoint operators since the latter always have a unique and obvious exten-
sion to self-adjoint operators. We are mainly concerned in determining which
symmetric operators have several self-adjoint extensions. Our main tool in this
investigation is the Cayley transform that we discussed previously.
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Suppose A is an arbitrary symmetric operator (not necessarily self-adjoint).
In that case the corresponding Cayley transform U need not be unitary and the
domain Dy and the range Ry = U Dy need not coincide with the whole Hilbert
space H. If we consider the sets of vectors D and R§ orthogonal to Dy and
Ry, the “size” of these sets gives us an indication of the extent to which U is not
unltary and A is not self-adjoint. It is straightforward to check that the sets Dj;
and Rj are in fact subspaces. We call these subspaces the deficiency subspaces
of A and their dimensions the deficiency indices. Thus, the deficiency indices
of A are

(m,n) = (dim D} , dim R}) . (6.7.132)
Now all elements in Dy are of the form

f=(A+il)y. (6.7.133)
Thus, if h € Dﬁ , then

(b, f)=(h,(A+il)g) =0 (6.7.134)
or

(h, Ag) = —i(h,g) = (ih,g) . (6.7.135)
So h € Dy and

Ath=ih. (6.7.136)
But, if this is true, then,

(h,(A+il)g) = (AT = il)h,g) = 0 (6.7.137)
and h € D. So, we have shown that h € D¢ iff

Ah = ih (6.7.138)

for any h € Dy+.
Thus, dimD is given by the number of linearly independent solutions of

Ath =ik (6.7.139)

belonging to Dy .

Similarly, all vectors in Ry are of the form (4 — il)g and hence by a set
of steps like above, we find that dim R} is given by the number of linearly
independent solutions of

Ath = —ih (6.7.140)

belonging to D 4.

Now from our previous results we know that A is self-adjoint iff U is unitary
and hence iff Ry = Dy = H. Thus, A is self-adjoint iff the deficiency indices
are (0,0). To see what this means we return to our previous example of the
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momentum operator defined on the interval (a, b) and begin with the symmetric,
but not self-adjoint operator with domain

D, ={f€C'|f(a) =0} (6.7.141)

where C! means “functions whose first derivative is continuous”. If we now
consider the expression

b
(o) = [ wiLa

B+ / (’:‘”‘) fdz (6.7.142)

it follows from f(a) = f(b) = 0 that h € Dpf for any h € H such that both
h,h' € L,. Furthermore, the action of p! is the same as that of p, namely

(/3) (d/dz) .
The only solutions of (6.7.136) and (6.7.140) respectively are:

hy = Ae™*/" | h_ = Ae*/*, (6.7.143)

Thus, the deficiency indices are (1,1).

In general if the deficiency indices of a symmetric operator A are (m, n) with
(m #0,n # 0) it is possible to extend (increase the domain) the operator A as
follows. Let two solutions of (6.7.136) and (6.7.140) be hy and h_ respectively.
Then for g € D4 define the operator A’ by:

Allg+0(hy +h_)] = Ag+i8(hy —K_) . (6.7.144)

Clearly A’ is an extension of A since now hy +h_) belongs to D 4. Furthermore,
the deficiency indices for A’ are (m — 1,n + 1). To see this one simply needs to
verify that the corresponding Cayley transform of A, namely U is extended to
U’ where

Uf=Uf if feDy (6.7.145)
and
Uhy=h_ . (6.7.146)

One can proceed in this manner until one gets deficiency indices (r,0) or (0, 7).
In this case no further extension is possible. If one then finds that r # 0, one
has to conclude that such an operator has no self-adjoint extensions.
Although the procedure above yields the self-adjoint extensions of symmetric
operators with deficiency indices (n,n) it is not the most useful approach. For
physicists boundary conditions are usually of important physical significance
with direct physical interpretations. This is brought out in the approach we now
take. For example, if the deficiency indices are (1,1) we get a one-parameter
family of self-adjoint extensions, and for deficiency indices (n,n) we get an n?-
parameter family of self-adjoint extensions. Mathematically this is as far as
one can go. To pick the “correct” extension in these cases depends on the
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physical situation and cannot be decided by mathematics. It requires physics.
To illustrate these points we now discuss some specific examples.

Again consider the momentum operator p = (fi/i) (d/dz) on Ls. Let p be
defined on the interval (=00, 00). In this case the equations for the deficiency
indices read as before

hdf

oo = if (6.7.147)
or

g 1

L=z (6.7.148)

The solutions are
f=AeF/h (6.7.149)

But neither of these solutions is square integrable on (—0,00) and hence the
deficiency indices are (0,0) and defined over the interval (—co < & < 00) the
operator p is self-adjoint.

Now consider the case where the operator (%/i) (d/dz) is defined on the
interval (0, 00). As before the solutions are

f=AeFelh (6.7.150)
This time
f=Ae~elh (6.7.151)

is square integrable, but
f=A4et (6.7.152)

is not. Thus, the deficiency indices are (1,0) and defined over (0 < z < o) the
operator (fi/7) (d/dz) has no self-adjoint extensions. The reason for this is easy
to see. Consider

hdg\ [% . hdg
( idz)_/o (29 ae (6.7.153)

After integrating by parts, this becomes

hdgl k., ® fhdf\*
<f'2.a—r> = z-.f.‘]'o +/(; (;% gde

h o oo, (Rdf
- [y + (idr,g) : (6.7.154)

1

So, for (h/i) (d/dz) to be self-adjoint requires that

h
Iy =0 (6.7.155)
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Now we know that both f and g vanish for 2 — co. Therefore we require
F(0)=0 or g(0)=0. (6.7.156)

In fact to make p = (h/i) (d/dz) self-adjoint requires D, = D, and hence both
f(0) = g(0) = 0. On the other hand, the “eigenfunctions” of this p are Ae'*®
and only vanish at = 0 if A = 0. Thus, this p would have no eigenfunctions if
it were to be self-adjoint. There is also a physical reason for the lack of a self-
adjoint extension in this case. We discuss! this, in more detail, a little further
on.

Finally, consider the operator p = (%/i) (d/dz) defined on the interval a <
z < b. In this case, both solutions Ae**/? are square integrable and the de-
ficiency indices are (1,1). This means that the self-adjoint extensions should
depend on precisely one parameter as we already indicated. We now examine
what this parameter is. In this case we have

b
A
(f,pg) = /f*;:—idz

= ? Fale+ (pf.9) - (6.7.157)
Therefore for self-adjointness we require
f*(b)g(b) = f*(a)g(a) (6.7.158)
L”)) -9
(f(a) =00 (6.7.159)

This implies that
=l =l (6.7.160)

So @ is the parameter determining the different self-adjoint extensions. Actually,
this is a specification of boundary conditions. Thus, if we choose § = 0 we have
periodic boundary conditions. These are the most common. Note that once we
have specified that the domain of p is the set of all square-integrable functions
for a < & < b (abbreviated £2(a,b)) such that

() =€ f(a), (6.7.161)

then the domain of p is the same as that of p and the deficiency indices become
(0,0) showing that p is self-adjoint. To give some idea of the physics behind
these three situations we state a theorem without proof and then use it to
explain the physics behind all this.

Stone’s Theorem

If A is a self-adjoint operator, then

U(s) = e*4 (6.7.162)
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is a unitary operator for every real number s. Furthermore,
Us)U@)=U(s+t) (6.7.163)
and
U(-s)=U(s)t =U(s)7! . (6.7.164)

Conversely given a set of continuous unitary operators satisfying (6.7.163) and
(6.7.164) then there is a self-adjoint operator A such that (6.7.162) holds and
A is given by

iA=lim 201

€0 €

(6.7.165)

Operators satisfying (6.7.163) and (6.7.164) form an algebraic structure called
a group. We now construct such a set of unitary operators and use them to
interpret what we did.

Consider the operator

U(s)f(z) = f(z +) . (6.7.166)
Then,
U(0)f(2) = f(z) (6.7.167)

UYU(s)f(x) =U@)fz+s)=flz+s+t)=U(t+s)f(z) . (6.7.168)

Thus, the operators defined by (6.7.166) satisfy (6.7.163) and also (6.7.164) as
we see by setting ¢t = —s for a left inverse and s = —t for a right inverse. On
the other hand, if f(z) is analytic for a < R(z) < b it has the Taylor expansion

0] n d"'
flets) = Y 5—f)
- 2 (3) 3w
= & ?hf(g) . (6.7.169)
Thus,
U(s) = e*?/® (6.7.170)

and we have succeeded in expressing U(s) in the form (6.7.162). It makes
sense to call U(s) the translation operator since it “translates” functions by
an amount s. Furthermore we call p the generator of translations since for
infinitesimal translations.

s

U(s)—>1+zh

p as s/h—0. (6.7.171)
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In terms of these considerations we can understand why p has a one-parameter
family of self-adjoint extensions on La(a, b).| Actually, our considerations depend
on the fact that f is analytic for a < R(z) <|b. This, however, is not a restriction
since the functions square-integrable and analytic over ¢ < R(2) < b form a
dense set in Ly(a, b).

Suppose f(z) is an infinitely differentiable function which is non-zero only
on an interval completely contained in @ < z < b. An example of such a function
is

0 fe<a<a,z>f>b
f(z) = exp (‘ﬁz“al—x) fa<s<g . (6.7.172)

Note that this function is definitely not analytic over ¢ < ¢ < b since it has
essential singularities at both # = « and z = . Also, an analytic function
cannot vanish on an open interval unless it is identically zero. Now consider the
normalization (i.e. unit probability) associated with f, namely, f: |f(z))? dz.
We want the translation operator U(s) to preserve this normalization, that is,
to be unitary. Thus, we need

/lU |2dz—/ If(2)|? de . (6.7.173)

U(s)f(z) = f(z +9) (6.7.174)

and if s > b— 3 part of the wavefunction “disappears” past the right end point.
To conserve the integral above requires that what disappears at the right must
reappear from the left. Of course the phase of the function can be shifted in
reappearing from the left. Furthermore, all/functions must experience the same
phase shift. Thus, if f; and f, are two such functions and if their phase shifts
are different, say 6; and 0, then translation of the function f = f; + fo will
eventually produce the function f’ = e*1 f + €%z f,. But,

/|U de;e/ (2 de (6.7.175)

unless 8; = 03. So the superposition principle limits the number of phase shift
parameters to one.

Why then does p not have any self-adjoint extensions on L£4(0,00)7 The
answer is as follows. Translating # to the right will never take the function
past the right endpoint. On the other hand, by translating to the left we can
always bring the function past the left endpoint (the origin). In this case there
is not anywhere from where the function can reappear to conserve probability
and hence p can not be made self-adjoint.  This also explains why p is already
self-adjoint on L£4(—00,0).

Another extremely simple problem is the case of a particle in a strongly
repulsive potential such as a quartic or cubic potential

Vig)=—g2" g>0 n=3,4. (6.7.176)
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In this case the Hamiltonian is

2 2

- =P g
H= o +V(z) = o 92" (6.7.177)

By redefining the variables we can bring this to the form

@
H=--7s—a" a>0. (6.7.178)

We want to examine this Hamiltonian on £5(—00,00). To get a feel for the
physical situation consider the problem classically. In the previous example we
saw that the existence of different self-adjoint extensions depended on the fact
that the particle can reach a boundary (a or ) and have to be transmitted or
reflected.

In this case the boundaries are at +00. So we must see if the particle can
in fact reach these boundaries. Now suppose the particle starts at = 0 with
energy E > 0. Then classically its velocity v is given by

%mvz -gz"=E (6.7.179)

[2E 2
v= F+ e L (6.7.180)

Therefore the time to reach oo is

. / Cdr /' « dz

o v 0 /.2"_{3 + % gzn
And for n = 3 or 4, t < . So, the particle reaches +co in a finite time. To
conserve probability it must be reflected and return to the origin in a finite time.
Thus, the time-averaged particle position is near the origin. We therefore expect
to find that all eigenfunctions of this Hamiltonian are square integrable and that
the spectra of the self-adjoint extensions of H are discrete. This is, in fact, the
case and this Hamiltonian is analogous to a free particle Hamiltonian on a finite
finite interval (a,b), (see problem 6.7). For the repulsive quartic potential the
points +oo behave like the end points (a,b). So it is not surprising that the
deficiency indices are (2, 2) for both cases. For the repulsive cubic potential the
situation is different. The particle can again reach £ = 400 in a finite time but
it can never reach £ = —co. Thus we need only specify boundary conditions at
z = +00. In this case the deficiency indices turn out to be (1,1). The main
point of this discussion is that whenever an operator, which is a candidate for
representing an observable, is not self-adjoint but has self-adjoint extensions,
then there are good physical reasons ifor this.

or

(6.7.181)
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6.8 Spontaneously Broken Symmetry

The concept of spontaneously broken symmetries plays a very important role in
some field theories of elementary particles. Since it fits naturally into the topics
we have just discussed, we shall start by defining the concept and then proceed
to illustrate it with an example.

Suppose we have some observable, whose representative operator ¢} com-
mutes with the Hamiltonian H. Then either @ corresponds to a discrete symme-
try operation @Qp such as parity, or else we can use @ to define a one-parameter
family of unitary operators,

Ua) = €9 (6.8.182)
for which @ is the generator. It then follows from

@ H]=0 (6.8.183)
that

e Qe = | (6.8.184)
or else for a discrete symmetry

QpHQL =H. (6.8.185)

We also require that the ground state of the Hamiltonian ¢¢ should be invariant
under either U(e) or @p. This means

U(a)do = o (6.8.186)
or
Qpédo = o - (6.8.187)
Definition

A symmetry corresponding to an observable @ (Qp) is spontaneously broken
if all the above statements except (6.8.186) (respectively (6.8.187)) hold. For
this to occur requires that the ground state be degenerate. This, in itself,
is an unusual phenomenon. To illustrate this phenomenon we consider the
Hamiltonian

p2
H=2 (6.8.188)

2m

defined on the interval —a < z < a. We furthermore pick for p = (h/i) (d/dz)
the self-adjoint extension corresponding to the domain

D, = {f(x) €C" | f(a) = -f(-a)} . (6.8.189)

Thus, instead of periodic we pick “anti-periodic” boundary conditions.
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The complete set of normalized eigenfunctions of this momentum operator
are given by:

falz) = %e”(w/?)ﬂ/a n=041,42,... (6.8.190)

with corresponding eigenvalues (n +1/2)7k/a. These wavefunctions have the
following symmetry properties

fa(2) = f-(n41)(—2) (6.8.191)
and
fa(@) = f-(nr1)(2) - (6.8.192)

Thus, the parity operator P and the time-reversal operator T' have the following
action on them

(Pfa)(®) = f-(n41)() (6.8.193)
T(fa)(®) = f-(n1)(2) - (6.8.194)
The set of functions {f,} are also eigenfunctions of the Hamiltonian. In fact,
n2h?
Hfn = 5—5(n+1/2)f» (6.8.195)
n2h?
Hf (ny1y = Cy— (n+1/2)*f— (a1 - (6.8.196)

Thus, all eigenvalues including the ground state eigenvalue
Eo = E_; = (?K%)/(2ma?)

are doubly degenerate. We further see that although the Hamiltonian H, the
parity operator P, and the time-reversal operator T' commute, the two ground
states fo and f_; are not eigenstates of either the parity operator or the time-
reversal operator

(Pfo)(z) = T(fo)(z) = f-1(2) (6.8.197)
and
(Pf-1)(z) = T(f-1)(2) = fo(z) . (6.8.198)

Thus, parity and time-reversal are spontaneously broken symmetries.
It is possible to restore these symmetries by defining states

6 (2) = 75 1) + S (@)] = o oostn+1/272 (88199

S

as well as
0o(z) = % [~fa@) + fouiny(@)] = % sin(n+1/2)= . (68200)
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These are now simultaneous eigenstates of H, P, and T.

(Pga)*(z) = % g5 () (6.8.201)

(T9n)* () = £ 95 (2) (6.8.202)
n2h?

Hy(2) = 5— 02(2) - (6.8.203)

So, parity and time reversal are no longer broken symmetries. In this case,
however, we have an even more surprising symmetry breaking, for although the
momentum operator p and the Hamiltonian p?/2m commute, these eigenstates
of the Hamiltonian are not eigenstates of the momentum operator. In fact,

nh
pos (¢) = F—(n+1/2) 67 () (6.8.204)
so that in particular
rh _
Pg§ (z) = =5 95 (=) (6.8.205)
and
_ mh |
pgo (2) = +5 90 (2) - (6.8.206)

In this case we therefore have translational symmetry spontaneously broken
since the translation operator

U(s) = ei*?/h (6.8.207)

does not leave the ground states goi invariant. In fact, by expanding

Us)=)_ % (’%”)" (6.8.208)

n

and repeatedly applying (6.8.205) and (6.8/206) we get:

U(s)g (z) = cos (E) g% () Fisin (E) gt (z) . (6.8.209)
2a 2a
This demonstrates conclusively that the translational symmetry is broken.

We now relate the mathematical model we have displayed, to a definite phys-
ical system. If one considers a one-dimensional crystal consisting of only one
type of atom, then the boundary condition in going from nearest neighbour
to nearest neighbour is periodic. The situation repeats itself. Similarly for a
one-dimensional crystal with alternating atoms (ABAB) ..., as in an antiferro-
magnet, the boundary condition from an atom to its next nearest neighbour is
periodic, and hence from nearest neighbour to nearest neighbour anti-periodic.

We can now visualize the physical situation corresponding to our model and
get a clearer understanding of the cause of the broken symmetry. If we consider
such an antiferromagnetic crystal and consider the interval between nearest
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neighbours as fundamental, we must impose antiperiodic boundary conditions.
Furthermore, since the end points correspond physically to different situations
(atoms) it makes a difference whether a particle travels freely from left to right
or right to left. The situations are not mirror images of each other and hence
not eigenstates of the parity operator. Since time-reversal reverses the direction
of travel, these states are also not eigenstates of the time-reversal operator.

One can take a superposition of states of particles travelling to the left and
right, as we did, to get standing waves which are then automatically time-
reversal as well as parity invariant. In this case, however, conservation of prob-
ability brings about a loss of translation invariance. It is clear now that this
“unusual” self-adjoint extension of the momentum operator has just as physical
an interpretation as the usual one with periodic boundary conditions.

It is perhaps also worth while to notice that the commutation relation

[z,p) =ik (6.8.210)

is not valid in this representation since for f € D, , zf ¢ D, in general. In fact,
in this case, zf € D, only if f(a) = f(—a) = 0. Nevertheless, it is true that

[2",p] = 2nh2? ' n=0,1,2,... . (6.8.211)

This concludes our mathematical treatment of self-adjointness. We now turn to
a systematic analysis of the physical interpretation of quantum mechanics.

6.9 Problems

6.1 Consider the set of functions {fx(z) = ¢**f(z) , f(z) € £3}. Show that

kllrgo(y,fk) =0g€Lls
whereas
I fi IP=I1 £ IP£0

The above type of convergence of fi — 0 is called weak convergence as
opposed to the notion of strong convergence defined in the text. Hint: Use
the Riemann-Lebesgue Theorem [1].

6.2 Show that every Cauchy sequence in a finite dimensional vector space
converges strongly (see problem 6.1).

6.3 Consider the operator A = pz?"*! + 2?"+1p where p = (h/i)(d/dz) and
n=1,2,3,.... Find the eigenvalues and eigenfunctions of A. What are
the deficiency indices of A 7 The Hilbert space in this case is £4(—00, 00).
For n = 1 this example is due to von Neumann.
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6.4 A projection operator is a self-adjoint, non-negative operator P satisfying
P2 = P. Let f, be a normalized eigenfunction of a self-adjoint operator
A with only discrete eigenvalues A,
a) Show that the operator P9 = f,.( fn, ) is a projection operator.
b) Show that A can be written

Ap = ZjA fnle )dy-ZA Pub .

This is called the spectral resolution of the operator A.
Hint: Assume completeness of the eigenfunctions.

6.5 Find the spectral resolution (see problem 6.4) of the operator

A= ( . a1+ ) u; real.

a) —ag —ag

6.6 For any operator A the corresponding operator R(z) = (A—21)~", where 1
stands for the unit operator, is called the resolvent operator. Show that for
any square matrix A , R(z) is analytic in z with poles at the eigenvalues
of A.

6.7 Find the deficiency indices and hence all self-adjoint extensions of the
Hamiltonian

B d
" 2m de?

defined on the interval (a, b).
Hint: It may be useful to express the boundary conditions on a function
f € Dy in terms of 2-component quantities

ro) = (1) = Fo)= (75)

and assume that F(b) = UF (a) where U is a non-singular 2 x 2 matrix.

6.8 Given an orthonormal basis set {u,: n = 0,1,2,...} and an operator a
which has the following action on this basis:

at, =\/nu,-; n>0.

Find the adjoint operator a! by explicitly giving its action on this basis
set. Also find the commutator [a,a'] .
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