Chapter 8

Distributions and Fourier
Transforms

8.1 Introduction

In this chapter we develop some more mathematical tools. Again these tools
are not important for computational purposes, but they are important as a
justification for the calculations performed in practice. Although physicists need
not, as a rule, practice mathematics with the same rigour as a mathematicians
they need to know mathematics sufficiently well to know when it is safe to
be sloppy. Furthermore in areas such as quantum field theory where it is not
known whether the difficulties encountered are due to bad mathematics, or bad
physics, or both it is important to ensure that the mathematics at least, is
correct. To this end, we give here a brief introduction to some of the results of
modern analysis. The presentation, although still at a submathematical level
is intended for the more mathematically inclined student. We give definitions
and theorems, but the proofs for the theorems are only sketched, or omitted
altogether. To compensate for this we list several relevant references at the end
of the chapter.

8.2 Functionals

A function may be considered as a mapping from a certain well-defined set of
numbers called the domain into another set of numbers called the range. Thus,
if f denotes a function then f(z) denotes the value of the function f at the point
z. This distinction is not always made but clearly there is such a distinction.
We shall now consider a mapping whose domain is a set of functions called test
functions and whose range is the set of real numbers. Such a mapping is called
a functional. If T is a functional then T'(f) is the value of the functional T
at the function f. Thus the arguments of functionals are functions. From the
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162 CHAPTER 8. DISTRIBUTIONS AND FOURIER TRANSFORMS

class of all possible functionals we pick out a particularly simple class, namely
the linear functionals. A functional T is linear if for f and g belongmg to the
domain of T and a, b two numbers

T(af + bg) = aT(f) +bT(g) . (8.2.1)

An example of such a functional is

1= [ te) fe)de (5.22)

-0

where #(z) is a fixed function and f(z) is in the domain of T if the right hand
side is convergent. Furthermore a functional T is bounded if for all f in a given
space |T(f)] < c || f || where c is a positive constant. There is a remarkable
theorem for bounded linear functionals ona Hilbert space.

Riesz Representation Theorem
Let A be a Hilbert space and T a bounded linear functional on . Then there
exists a uniquely determined vector fp of H such that

T(g) = (fr,9) (8.2.3)

for all g € H. Conversely, of course, any véctor f € H defines a bounded linear
functional T} by

Ty(9) = (f.9) - (8.2.4)

Proof
The proof is rather straightforward and is la proof by construction. Uniqueness
is obvious. For suppose f’ is another vector besides fr satisfying (8.2.3), then

(f = fr,9)=0 (8.2.5)
for all g € H. Thus f' — fr = 0 as desired. ' To prove that fr exists consider the
null space N7 of T where

Nr={g€H|T(g)=0}. (8.2.6)

If Nr = H take fr = 0. This is the trivial case. Now assume Nr # #.
Then there exists at least one vector fo # 0 belonging to Ni, the orthogonal
complement of N7 . In this case define

T(fo)"
fr= f 8.2.7
ThiE ™ 620
This is the desired fr as we now prove. Suppose g € Ny. Then
T(g)=0=(fr,9)- (8.2.8)

Next, if g is of the form
g=afo (8.2.9)



8.2. FUNCTIONALS 163

then we have

(fr.9) = (fr,a fo) = aT(fo) = T(g) (82.10)
as required. We now show that any g € H can be written

g=afo+phfi (8.2.11)
where f; € Np. To prove this recall that

T(fr)#0. (8.2.12)
Then we have the identity

1= (o- 7 ) + 7 8213

which is of the form (8.2.11). Thus, since T is linear we have completed our
proof and shown that

T(9) = (fr,9) (8.2.14)

for all ¢ € H. This shows that on a Hilbert space the only linear functionals
are those given by inner products. We want to extend this notion somewhat.
Therefore, it is natural that we must go beyond the concept of Hilbert space.

In general to define a space we must have a criterion for deciding when two
points of the space are “close”. This criterion defines the topology of the space.
For example, in the finite dimensional vector spaces £, we use the Euclidean
norm (z3 4 23 + - - -+ 22)1/2 to measure closeness. In Hilbert space we use the
norm

I £lI=(f,5)? (8.2.15)

to measure closeness. For functions one also frequently uses point-wise estimates
of the form |f(z) — g(z)|. All of these criteria are useful and define different
topologies. For functionals one also has an estimate which is derived by analogy
with (8.2.2). Thus, if T and S are bounded linear functionals, meaning that
there are positive constants ¢, ¢’ such that

T(f) <cll £l (8.2.16)

and

Sy < £l (8.2.17)

for all f in a given space X , then T and S are “close” if [T'(f) — S(f)| is small.
Here || f || denotes the appropriate norm in X. Thus, the notion of “close” (or
topology) of the linear functionals on X is derived from the topology of &’ itself.

Dual Space
Let X be a space of functions with a given topology. Now consider the set X’
of all bounded linear functionals on X. Then X’ is itself a linear vector space
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with the topology of X’ determined by the topology of X. We call X’ the dual
space of X.

An example of these concepts is Hilbert space itself. In this case the dual
of H is H itself. In fact it is logically correct to consider the inner product on
a Hilbert space as being formed by elements from two spaces, the Hilbert space
H and its dual, which is of course a copy of #.

The point of all this is that one can| take linear functionals that are as
singular or pathological as one wishes if it is possible to find a space of functions
sufficiently nice to compensate for these pathologies. The space of nice functions
is called the space of test-functions. There are many test-function spaces. One
of the most useful of these is the Schwarz space S. Its dual space is called &', the
space of tempered distributions and is sufficiently general to encompass almost
any kind of “function” we shall encounter. To describe these spaces we need
some more terminology.

A function with continuous derivatives|up to and including the nth is called
C™. Thus, continuous functions are called C°. If a function is C™ for all n it
is called C*°. Using this terminology we can define S as the space of all C*
functions which together with their derivatives vanish at infinity faster than the
inverse of any polynomial. To make this more explicit we define the sequence
of semi-norms !

n

Il f IIr,n=sgp e (8.2.18)
where “sup” means “least upper bound”. In that case f belongs to § iff
I f llrn< 00 (8.2.19)

for all integers 7, n. This specifies the topplogy or notion of closeness in § So,
for example, a sequence {f;} of functions in S converges to f if for each r and
n

Jim [ f5 = £ llon=0. (8.2.20)

In terms of this the tempered distributions also have a topology whose definition
can be made very similar to the ¢,d definition for ordinary functions. Thus, T
is continuous at fy if given an € > 0 there exist integers r,n and a § > 0 such
that for

| f=follrn<$d (8.2.21)
we have
IT(f) = T(fo)l <e. (8.2.22)

One way to ensure that (8.2.22) follows from (8.2.21) is to insist that for all , n
there exists a positive constant ¢ such that

TN < e |1 f llrn (8.2.23)

IThe difference between a semi-norm and a norm is that a semi-norm may vanish for a
given element even though that element is different from zero.
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since then

IT() =T =IT(f = foll e I = follrn - (8.2.24)

In fact, there is a theorem that states that every continuous linear functional
T on § satisfies (8.2.23). This means that one can use (8.2.23) to define the
topology on &'

To prepare us for future applications we introduce two more notations for
distributions. To specify the value of T at f we have used T(f). We can also
write this (T, f). This does not mean we have an inner product, it is simply
another way of writing T'(f). As a matter of fact as physicists we carry this
even a step further and write this as

T(f) = / " T(e) fle) da . (8.2.25)

Again this is a purely symbolic way of writing T(f) and does not imply that
any integral such as (8.2.25) exists in any of the usual senses of integral. Nev-
ertheless, the notation (8.2.25) is extremely suggestive and thus if applied with
due caution one may treat this expression as an integral.

The most common of the distributions so treated is the § function. It is

defined by

3(f) = f(0) . (8.2.26)
On the other hand we frequently write this as

/_ " §(2) f(z) dz = £(0) (8.2.27)

It is an easy matter to prove that no function 6 with the property (8.2.27) can
exist. 2 However, if we realize that (8:2.27) does not imply a genuine integral of
a function 4 and is just another, but very suggestive, way of writing (8.2.26) then
all objections to writing (8.2.27) are removed. That d is not a function can also
be seen from the fact that although functions may be multiplied by functions
to give functions, distributions cannot generally be multiplied by distributions
or functions. For example, if we consider the product of 1/x and é(z) this is
not defined in general. Nevertheless there is a smaller domain for which this
product makes sense. An even more acute example is the product

§(2)8'(z) (8.2.28)

where &’(z) is the derivative of é(z).
We now define differentiation of distributions. In fact the definition is given
by analogy with integration by parts using (8.2.25). Thus, we define

‘;IT ()= ()T (%) 4 (8.2.29)

2See von Neumann's book [8.4], pages 23-25.
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This expression is obviously well-defined for all T' € &' since if f € § so is
% € S. In the notation (8.2.25) the definition of the derivative reads

:: %f(z) dz = (-1)" —/—: T(z) % dz . (8.2.30)

It is a simple matter to generalize these results to test functions of several
variables and distributions over these variables. Thus, if f(z1,2,...,2x) is an
element of S*) in each variable, then we may have a distribution T in the dual
space §' *) such that T(f) is well defined. Again another possible symbolic
notation for T'(f) would be

T(f) = /T(zl]zg,...,xk) flzr, 22, .., zk) derdey .. . de, . (8.2.31)
We emphasize once more that although (8.2.31) looks like an integral it is not.

This is simply a symbolic way of writing T(f). Nevertheless we shall use this
way of writing almost all the time since it is the standard notation for physicists.

8.3 Fourier Transforms

Consider the linear transformations F and F defined on S according to

EN0) = [ e fla) iz = R (£332)
(FF)(z) = % /- " v Fp)dp (8.3.33)

Clearly (8.3.32) defines a uniformly and absolutely convergent integral since
e'?% can only improve the convergence of an already splendidly convergent
integral. We shall now prove that F and F map S onto § in a continuous one
to one manner. The proof will give us as a side benefit the formal result
1 [ .
ePEVdp=b(z—y) . (8.3.34)

o

Consider the expression

00 o0
lim L €% dpe=P” / e f(y) dy . (8.3.35)

=0+ 21 J_ oo

Now, for ¢ > 0 both integrals exist and we may interchange their order. Fur-
thermore,

% ipr—ep? ) 2
ePTmP dp = | [ — exp{—a?/4e} . (8.3.36)
oo €
Thus, we get for (8.3.35)

1 0 2
i —(z-y)*/4e
B Tie /_m ¢ flv)dy (8:3.37)
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Now consider a circle (z — y)? = R?. Clearly, due to the factor e=(e-y)*[4e any
contribution to the integral (8.3.37) from points outside the circle vanishes in
the limit as ¢ — 0. Thus, we can estimate the difference between f(z) and
(8.3.37) by

1 ey )
Ve |$—y5Re Y [4e[f(y) — f(z)) dy
< sup |fle) = f(s)] >0 o B0 8539
lz-yI<R

This justifies (8.3.34) and shows that

FF=1. (8.3.39)
Using (8.3.34) we now also get

FF=1. (8.3.40)

Also we have that 7, F map S onto § as stated.

Now, in mapping S onto a copy of itself using F what happens to S'?
In order to keep things well-defined, S’ must be mapped onto §'. Using the
symbolic notation of (8.2.25) this is trivial to see. Since F is a unitary operator
on Hilbert space we have for f,g € H that

(Ff,Fg) = (f,9) - (8.3.41)
This is known as Parseval’s theorem and written out reads
o0 o0
[ rocwi= [ resde (8342
- -00

[ rwa [ e [ @ [ v rep e

where we have used the formulae defining F and G in terms of f and g and
vice-versa. (8.3.43) is already in the desired form to define the Fourier transform
of distributions. Thus suppose g € &' then (8.3.43) reads

(Fo)(F*)=g((FF)) . (8.3.44)

Thus we define the Fourier transform of distributions in &’ using (8.3.44). In
other words if T € S’ then the Fourier transform F7T is defined by

(FT)(f) =T ((F1)) (8.3.45)

where T € S.
It is now a simple matter to use (8.3.45) to show that the Fourier transform
maps &' onto §'.
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8.4 Rigged Hilbert Spaces

To motivate the use and definition of rigged Hilbert spaces (also known as
Gel’fand Triples), we begin by considering the following eigenvalue problem on
H = La(~00,00)

pug = hkuy . (8.4.46)
Since
hd
p=s (8.4.47)
we get
1 ikz
ug(z) = —€"7. (8.4.48)

Var

Now the operator p corresponds to a physical observable, the momentum and
hence the eigenvalue problem (8.4.46) has a definite physical meaning. It tells
us what the possible results of measurements of p are and is also supposed to
give the probability amplitude for obtaining a given measurement. Nevertheless
the “eigenfunctions” uk(z) are not square-integrable and hence do not belong to
our Hilbert space. This is an undesirable situation. It can of course be obviated
by forming wave packets. However the plane waves (8.4.48) are particularly
convenient for practical calculations and we would be reluctant to have to give
up using them. Thus, we are tempted to enlarge our state vector space beyond
Hilbert space. Actually this also provides many simplifications in the analysis
of operators. However we shall not study that aspect.

To show one possible extension we first note that the functions ux(z) belong
to &' if we define them as distributions in| the following manner

ug(f) = ./00 uk(z) f(z)dz . (8.4.49)

—00

Why did we choose 8'? The reasons are mainly technical. Thus F§' is again &'
and this is desirable. Actually other spaces of distributions may be used, but for
the sake of concreteness we concentrate only on §’. Now how does considering
ux as an element of §' help? To answer this we start with a definition.

Let A be a linear operator in §. This means that A is also a linear operator
in A. In fact if A has a dense domain in & it has a dense domain in # since §
is dense in #. To see this consider the hermite functions Hn(:c)e"”z/ 2. All of
these are in § and any element in L£2(—00,00) can be approximated by linear
combinations of these functions. Thus § is dense in H.

Now given such an operator A then T' € &' is called a generalized eigenvector
of A corresponding to the eigenvalue A if

T(Af) = AT(f) (8.4.50)
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for all f € S. Notice that by definition ux(z) is a generalized eigenvector of the
momentum operator p = /i d/dz since in the notation (8.2.25) we have

® 1 ikz h‘ df — ® 1 itk
for f € §. We have simply “integrated” by parts. Thus, we can now legitimately
consider functions such as u,(z) as generalized eigenvectors. We still have to tie
this together with the concept of Hilbert space. One more example is in order
first.

Formally, the eigenvalue problem

ga(2) = aga(2) (8.4.52)
has the solution
9a(z) =b(z —a) . (8.4.53)

Clearly d(z — a) is not square integrable and hence is not in our Hilbert space
H. But for f € § we have

/°° zd(z —a) f(z)dz = a/°° d(z—a) f(z)dz . (8.4.54)

-0 -0

Thus d(z — a) is a generalized eigenvector of the position operator z. We now
define our rigged Hilbert space.

We begin with the space §. On § are defined a countable sequence of norms
| f |ln.r- We now also define on S an inner product which coincides with the
L4 inner product. Now as stated S is dense in £, and we identify H with £, .
Thus § is identified as a subset of #. Together with § and H we consider the
space S'. The triplet of spaces

S,H,S
form a rigged Hilbert space. It is usually denoted by
ScHcCsS .

The advantage of the symbolic notation (8.2.11) is now obvious. Thus, “inner
products” exist between elements of # and H and elements of $ and S’ . We do
not form inner products between elements of 8’ and §’. This is all about rigged
Hilbert spaces that we shall need. It is sufficient to provide a justification of
most of the manipulations that we shall carry out. Further details are readily
available in the references. From now on we shall proceed as if “functions” like
6(z) and e™* were elements of #. To justify our manipulations we can always
fall back on the concept of rigged Hilbert spaces, but we shall not explicitly do
so. As stated at the beginning, this chapter was simply to show that our formal
manipulations can be fully justified.
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8.5 Problems

8.1 Show that the appropriate normalization for the positive parity solution for
scattering from a square well equation (5.7.94) to yield §-function normal-
ization is 1//m. You will have to use the continuity of the wavefunction
at £ = +a as well as equation (5.7.101).

8.2 Show that T is a tempered distribution if T is defined by

o [ d* f(z)
= Fy(z)

where F}, are continuous functions bounded by

dz

|Fk(z)] < Ci(1 4+ |zl)

for some Cy and j depending on k.!As a matter of fact every tempered
distribution can be written in this form. Symbolically one then writes

= d* Fi(z)
Z=: k dak

This formula cannot be taken literally however since the Fy(z) need not
be differentiable. It arises from a formal integration by parts of the first
equation above.

8.3 The test function space D consists of the space of C(®) functions of bounded
support. The support of a function f, (supp f) is the complement of the
largest open set on which the function vanishes. Show that if ferp
then f is an entire function.

8.4 Prove the Theorem: The Fourier transform of a tempered distribution of
fast decrease is a C(*) function bounded by a polynomial. A tempered
distribution of fast decrease F is of the form

F=fT

where f € § and T is also a tempered distribution.
Hint: To prove that the Fourier transform of F is bounded by a polynomial
use the result of problem 8.2.

8.5 Let f(z) be an entire function vanishing rapidly at large [R(z)]. Show that

Y 1 1 _p " fl@)
Egrgl+2[w [z—a+if + x—a—ic] fle)dz =P _oox—adx
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where the principle value integral is defined by

" 1 e i [ L s +Ef(_’ °E

Furthermore, show that

e/n
lim 2/ 7=
=20+ 24 4 ¢

=4(z).

Hence conclude that considered as distributions

1 1 .
cl—lbl(IleL:c—a:l:zc Px_aq:zfrd(:c—a)
that is,
o0
- Sf=)de / f .
1 .
c—%l+ :c—a:tze mf(a)

8.6 Using the result of problem 8.4 and defining
L L™ ks O e
— e dk = hm — / ezk(x+tc) dk +/ ezk(x—:e) dk
21 J_oo =0+ 27 0 oo
prove that

/ e dk = é(z) .

—00

8.7 Let f(k) be a C(*) function bounded by a polynomial. Show that

- /_ Z F(k) €™ dk

is an entire function for S(z) > 0. Using this and the result of the The-
orem proved in problem 8.3 show that every tempered distribution is the
boundary value of an analytic function.

8.8 Calculate the Fourier transform of §()(z).
8.9 Show that

0 if n<m
g™ (z)=<{ (-1)"m! J(x) if n=m
1
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