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The Density Matrix

The quantum space of states is a Hilbert space H. Any state vector |ψ〉 ∈ H is a pure
state. Since any linear combination of elements of H are also an element of H, it follows
that any linear combination of pure states is again a pure state.

But, in the real world we also encounter mixed states. These are described by the density
operator,

ρ ≡
∑

k

pk |ψk〉 〈ψk| , (1)

which characterizes an ensemble of N states, of which nk (on average) are in the state |ψk〉,
and pk ≡ nk/N is simply the probability that a state of the ensemble is observed to be in
the state |ψk〉. By assumption, the state |ψk〉 is normalized to unity, i.e. 〈ψk|ψk〉 = 1. The
probabilities, pk must sum to 1,

∑

k

pk = 1 . (2)

The matrix elements of the density matrix with respect to an orthonormal basis {|i〉} are
then given by,

ρij = 〈i| ρ |j〉 =
∑

k

pk 〈i|ψk〉 〈ψk|j〉 . (3)

Given a self-adjoint operator Ω that acts on the Hilbert space H, we can define an
ensemble average,

〈

Ω
〉

≡
∑

k

pk 〈ψk|Ω |ψk〉 = Tr(Ωρ) .

To verify the last step above, recall that the matrix elements of Ω with respect to an or-
thonormal basis {|i〉} are given by Ωij ≡ 〈i|Ω |j〉. Thus, by definition of the trace,

Tr(Ωρ) =
∑

ij

Ωijρji =
∑

ij

〈i|Ω |j〉
∑

k

pk 〈j|ψk〉 〈ψk|i〉

=
∑

k

pk
∑

ij

〈ψk|i〉 〈i|Ω |j〉 〈j|ψk〉 =
∑

k

pk 〈ψk|Ω |ψk〉 =
〈

Ω
〉

,

after using the completeness relation to sum over i and j.
Since Ω is self-adjoint, it possesses real eigenvalues. Suppose ω is one of the possible

eigenvalues of Ω. Then, ω is the possible outcome of an experiment that measures the
observable corresponding to Ω. Given an ensemble defined by the density operator ρ, the
probability P (ω) of obtaining ω in a measurement is given by

P (ω) = Tr(Pωρ) =
∑

k

pk| 〈ω|ψk〉 |
2 , (4)
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where Pω ≡ |ω〉 〈ω| is the projection operator that projects onto the one-dimensional sub-
space of states spanned by |ω〉. To verify the last step of eq. (4), we use (Pω)ij = 〈i|ω〉 〈ω|j〉 .
It then follows that,

Tr(Pωρ) =
∑

ij

(Pω)ijρji =
∑

ij

〈i|ω〉 〈ω|j〉
∑

k

pk 〈j|ψk〉 〈ψk|i〉

=
∑

k

pk
∑

ij

〈ψk|i〉 〈i|ω〉 〈ω|j〉 〈j|ψk〉 =
∑

k

pk| 〈ω|ψk〉 |
2 .

The properties of the density operator are listed below.

1. ρ† = ρ.

Using eq. (3)

ρ∗ji =
∑

k

pk 〈j|ψk〉
∗ 〈ψk|i〉

∗ =
∑

k

pk 〈ψk|j〉 〈i|ψk〉 = ρij .

Hence, ρ is hermitian.

2. ρ is positive semi-definite.

For any state χ, we have

〈χ| ρ |χ〉 =
∑

k

pk 〈χ|ψk〉 〈ψk|χ〉 =
∑

k

pk| 〈χ|ψk〉 |
2 ≥ 0 ,

where we have used the fact that the probabilities pk are real and non-negative.

3. Tr ρ = 1 .

Using the completeness of the {|i〉} and 〈ψk|ψk〉 = 1, it follows that

Tr ρ =
∑

i

ρii =
∑

k

pk
∑

i

〈ψk|i〉 〈i|ψk〉 =
∑

k

pk = 1 ,

after employing eq. (2).

4. For a pure quantum state, ρ2 = ρ, which implies that Tr ρ2 = 1 in light of property 3
above.

For a pure quantum state, we can always find some element of the Hilbert space, |ψ〉, which
is normalized to unity, such that ρ = |ψ〉 〈ψ|. Then, we trivially obtain

ρ2 = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 〈ψ| = ρ .

5. For a mixed quantum state, 0 < Tr ρ2 < 1.

First we note that in light of property 1 above, ρ2 = ρρ†, which is a non-negative hermitian
operator. Thus, all the eigenvalues of ρ2 are non-negative. Denoting the eigenvalues of ρ2

by λi, it follows that

Tr ρ2 =
∑

i

λi > 0 .
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Note that it is not possible for all of the eigenvalues of ρ2 to be zero, since this would imply
that ρ = 0.1

To prove that Tr ρ2 < 1, we start from eq. (3),2

Tr ρ2 =
∑

k,ℓ

pkpℓ
∑

i,n

〈i|ψk〉 〈ψk|n〉 〈n|ψℓ〉 〈ψℓ|i〉 =
∑

k,ℓ

pkpℓ 〈ψℓ|ψk〉 〈ψk|ψℓ〉 =
∑

k,ℓ

pkpℓ| 〈ψℓ|ψk〉 |
2 ,

(5)
after summing over the two complete sets of states, {|i〉} and {|n〉}. We now make use of
the Schwarz inequality, | 〈ψℓ|ψk〉 |

2 ≤ 〈ψℓ|ψℓ〉 〈ψk|ψk〉. Since |ψk〉 is normalized to unity, we
obtain | 〈ψℓ|ψk〉 |

2 ≤ 1. It then follows that

Tr ρ2 =
∑

k,ℓ

pkpℓ| 〈ψℓ|ψk〉 |
2 ≤ 1 , (6)

after making use of eq. (2). Moreover, the Schwarz inequality is saturated only when |ψk〉
and |ψℓ〉 are proportional for any choice of k and ℓ. Since these are normalized states,
they can only differ by a multiplicative phase. But, this case, |ψk〉 〈ψk| in eq. (1) would be
independent of k, which means one can simply write ρ = |ψ〉 〈ψ|, corresponding to a pure
state. Thus, for a mixed state, the Schwarz inequality is not saturated, and we conclude
that Tr ρ2 < 1. Thus, we can conclude that for a mixed state, 0 < Tr ρ2 < 1.

6. For a uniform distribution over N states, ρ = N−1I, where I is the N × N identity
operator. This is a mixed quantum state. An example of such a quantum state would be
unpolarized light.

Using Tr I = N , we easily verify the first three properties above. Moreover, Tr ρ2 = 1/N
which satisfies the fifth property above for any N > 1. Note that by taking N ≫ 1, we can
obtain an arbitrarily small value of Tr ρ2.

Pure states are governed by the time-dependent Schrodinger equation. A pure state will
evolve into a pure state. So, how does one create mixed states? One way to produce a
mixed state is to consider a system that is sensitive only to a subset of the full quantum
Hilbert space. For example, consider a system that is made up of two separate subsystems.
We will perform measurements using operators that are only sensitive to one of the two
subsystems. In particular, consider two subsystems called subsystem 1 and subsystem 2.
Corresponding to each subsystem is an orthonormal basis {|n, 1〉} and {|m, 2〉}, respectively.
Mathematically, the total Hilbert space is a direct product of two subsystem Hilbert spaces,
H = H1 ⊗H2.

1In general, if an n×n matrix M is diagonalizable, then it possesses n linearly independent eigenvectors.
In this case, there exists an invertible matrix S such that D = S−1MS, where D is a diagonal matrix whose
diagonal elements are the eigenvalues of M . Hence, if all the eigenvalues of M are zero, then it follows that
M = 0. Note that this argument does not apply to matrices that are not diagonalizable, as the famous
example ( 0 1

0 0
) attests. Finally, by noting that all hermitian matrices are diagonalizable, we can conclude

that for any density matrix (which is necessarily nonzero), Tr ρ > 0.
2Given that pk ≥ 0, eq. (2) implies that at least one of the pk appearing in eq. (5) is positive. Hence, it

follows that Tr ρ2 ≥ p2
k
. This provides another argument for Tr ρ > 0.
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A generic pure state of H is of the form

|ψ〉 =
∑

n

∑

m

cnm |n, 1〉 ⊗ |m, 2〉 , (7)

where 〈ψ|ψ〉 = 1 implies that
∑

m,n

|cmn|
2 = 1 . (8)

The corresponding density operator is

ρ = |ψ〉 〈ψ| =
∑

n,m

∑

n′,m′

cnmc
∗
n′m′ |n, 1〉 ⊗ |m, 2〉 〈n′, 1| ⊗ 〈m′, 2| . (9)

Consider an operator Ω that is only sensitive to subsystem 1. That is, when Ω acts on |ψ〉
given by eq. (7), it has no effect on {|m, 2〉}. Using the direct product notation, Ω actually
means Ω⊗ I, where Ω acts on subsystem 1, and the identity operator I acts on subsystem 2.
Then, the ensemble average of Ω is given by

〈

Ω
〉

= Tr1Tr2(ρΩ) = Tr1
[

(Tr2 ρ)Ω
]

,

where Tri (i = 1, 2) is carried out by summing over the subsystem i part of the total system.
Thus, we can express the ensemble average of the operator Ω⊗ I as

〈

Ω
〉

= Tr1(ρ̂Ω) , (10)

where
ρ̂ ≡ Tr2 ρ , (11)

is the effective density matrix for subsystem 1. Even though there are typically quantum
correlations between the two subsystems, observers (by assumption) are only sensitive to
subsystem 1. Thus, in computing an ensemble average of a quantum state of subsystem 1,
we must define the ensemble average solely in terms of subsystem 1 quantities; that is, as a
trace over subsystem 1 as in eq. (10). It is now a simple matter to compute

ρ̂ = Tr2 ρ =
∑

j

〈j, 2| ρ |j, 2〉 , (12)

where ρ is given by eq. (9). Using eq. (12), we then find,

ρ̂ =
∑

j

〈j, 2| ρ |j, 2〉 =
∑

n,m

∑

n′,m′

cnmc
∗
n′m′

∑

j

|n, 1〉 〈j, 2|m, 2〉 〈m′, 2|j, 2〉 〈n′, 1|

=
∑

n,m

∑

n′,m′

cnmc
∗
n′m′

∑

j

|n, 1〉 〈n′, 1| δjmδjm′ . (13)

Performing the sums over j and m′ is now trivial due to the two Knonecker deltas, and we
end up with

ρ̂ =
∑

n,m

∑

n′

cnmc
∗
n′m |n, 1〉 〈n′, 1| .
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This is the relevant density matrix for subsystem 1. Note that in general it corresponds
to a mixed state, since the original state |ψ〉 can possess non-trivial quantum correlations
between the two subsystems as previously noted. But, that information is lost in ρ̂, which
only knows about subsystem 1.

The only way for ρ̂ to correspond to a pure state is if we can decompose cnm as follows,

cnm = bndm , (14)

where
∑

n

|bn|
2 =

∑

m

|dm|
2 = 1 . (15)

In this case, it is straightforward to verify that ρ̂2 = ρ̂, which indicates that the quantum
subsystem 1 is a pure state. Indeed, if eq. (14) holds, then we can write eq. (7) as

|ψ〉 =

(

∑

n

bn |n, 1〉

)(

∑

m

dm |m, 2〉

)

.

in which case, |ψ〉 can be decomposed into a direct product of two pure states,

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ,

where
|ψ1〉 =

∑

n

bn |n, 1〉 , |ψ2〉 =
∑

m

dm |n, 1〉 .

Thus, ρ̂ = |ψ1〉 〈ψ1|, which is clearly a pure state. In contrast, if one cannot write cmn in the
form given by eq. (14), then ρ̂ satisfies 0 < Tr1 ρ̂

2 < 1, and we conclude that subsystem 1 is
a mixed quantum state state.

More explicitly,

Tr1 ρ̂
2 =

∑

n,m,n′

∑

j,k,j′

cnmc
∗
n′mcjkc

∗
j′k 〈i, 1|n, 1〉 〈n

′, 1|ℓ, 1〉 〈ℓ, 1|j, 1〉 〈j′, 1|i, 1〉

=
∑

n,m,n′

∑

j,k,j′

cnmc
∗
n′mcjkc

∗
j′kδinδℓn′δℓjδij′

=
∑

n,n′

(

∑

m

cnmc
∗
n′m

)(

∑

k

cn′kc
∗
nk

)

,

which we can write as

Tr1 ρ̂
2 =

∑

n,n′

∣

∣

∣

∣

∑

m

cnmc
∗
n′m

∣

∣

∣

∣

2

. (16)

Note that Tr1 ρ̂
2 > 0. We can reinterpret eq. (16) by defining the vectors cn, whose compo-

nents are given by cnm. Then, we can rewrite eq. (16) as

Tr1 ρ̂
2 =

∑

n,n′

| 〈cn|cn′〉 |2 , (17)
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where 〈cn|cn′〉 is the complex inner product of the vectors cn and cn′. We can now employ
the Schwarz inequality,

| 〈cn|cn′〉 |2 ≤ 〈cn|cn〉 〈cn′|cn′〉 , (18)

to eq. (17). We then obtain,

Tr1 ρ̂
2 ≤

(

∑

n

〈cn|cn〉

)

2

.

Finally, we note that eq. (8) is equivalent to

∑

n

〈cn|cn〉 = 1 .

Hence, we conclude that 0 < Tr1 ρ̂
2 ≤ 1. Note that the inequality is saturated only when

the Schwarz inequality [cf. eq. (18)] is saturated, i.e. when the all the vectors c1, c2, c3, . . .
are proportional to the same vector, which we shall denote by d. That is, the inequality is
saturated if and only if

cn = bnd , (19)

where bn is the proportionality constant relating the vectors cn and d. Recall that the
components of the vector cn were denoted by cmn. Then, if we denote the components of
the vector d by dm, then, eq. (19) is equivalent to eq. (14). The conclusion of this analysis
is that 0 < Tr1 ρ̂

2 < 1, corresponding to a mixed quantum state, unless eq. (14) is satisfied.
If cnm = bndm, then the inequality is saturated and Tr1 ρ̂

2 = 1, corresponding to a pure
quantum state. We can verify this result explicitly by inserting cnm = bndm directly into
eq. (16),

Tr1 ρ̂
2 =

∑

n,n′

∣

∣

∣

∣

bnb
∗
n′

∑

m

|dm|
2

∣

∣

∣

∣

2

=
∑

n

|bn|
2
∑

n′

|bn′ |2 = 1 ,

after making use of eq. (15). It should be noted that the condition cnm = bndm is very strong.
As shown in the Appendix, if the matrix elements of a matrix C are cnm = bndm, then C is
a rank-one matrix with zero determinant.

APPENDIX: Properties of a matrix that satisfies Cij = aibj

Consider the n × n non-zero matrix C, whose matrix elements are given by Cij = aibj .
More explicitly,

C =











a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
. . .

...
anb1 anb2 · · · anbn











.
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It is a simple matter to check that the following n− 1 vectors,















b2
−b1
0
...
0















,















b3
0

−b1
...
0















, , · · · ,















bn
0
0
...

−b1















, (20)

are linearly independent eigenvectors of C, each with an associated zero eigenvalue. Using
the fact that TrC is the sum of the eigenvalues, it follows that the (potentially) nonzero
eigenvalue of C must be equal to

∑

i aibi, and the corresponding eigenvector is















a1
a2
0
...
an















, (21)

as is easily verified. If
∑

i aibi 6= 0, then 0 is an (n−1)-fold degenerate eigenvalue of C. That
is, C has n − 1 zero eigenvalues and one non-zero eigenvalue. Moreover, all n eigenvectors
listed above are linearly independent. In contrast, if

∑

i aibi = 0, then C has n zero eigen-
values. In this case the eigenvector shown in eq. (21) can be written as a linear combination
of the eigenvectors listed in eq. (20).

In light of these results, one can immediately conclude that C is a rank-1 matrix with
zero determinant. The latter follows from the fact that C possesses a zero eigenvalue,
since detC is a product of its eigenvalues. Moreover, if

∑

aibi 6= 0, then C possesses n
linearly independent eigenvalues, which implies that C is diagonalizable. In the case where
∑

aibi = 0, C possesses n zero eigenvalues, but only n−1 linearly independent eigenvectors.3

3The only n× n matrix that possesses n zero eigenvalues and n linearly independent eigenvectors is the
n× n zero matrix [cf. footnote 1].
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