
13 Hilbert spaces

13.1 Definitions and examples

Let V be a complex vector space with an inner product 〈· | ·〉 : V × V → C satisfying (IP1)–
(IP3) of Section 5.2. Such a space is sometimes called a pre-Hilbert space. As in Eq. (5.11)
define a norm on an inner product space by

‖u‖ =
√
〈u |u〉. (13.1)

The properties (Norm1)–(Norm3) of Section 10.9 hold for this choice of ‖·‖. Condition
(Norm1) is equivalent to (IP3), and (Norm2) is an immediate consequence of (IP1) and
(IP2), for

‖λv‖ =
√
〈λv |λv〉 =

√
λλ〈v |v〉 = |λ| ‖v‖.

The triangle inequality (Norm3) is a consequence of Theorem 5.6. These properties hold
equally in finite or infinite dimensional vector spaces. A Hilbert space (H, 〈· | ·〉) is an inner
product space that is complete in the induced norm; that is, (H, ‖·‖) is a Banach space. An
introduction to Hilbert spaces at the level of this chapter may be found in [1–6], while more
advanced topics are dealt with in [7–11].

The parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (13.2)

holds for all pairs of vectors x, y in an inner product spaceH. The proof is straightforward, by
substituting ‖x + y‖2 = 〈x + y | x + y〉 = ‖x‖2 + ‖y‖2 + 2Re(〈x | y〉), etc. It immediately
gives rise to the inequality

‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2. (13.3)

For complex numbers (13.2) and (13.3) hold with norm replaced by modulus.

Example 13.1 The typical inner product defined on Cn in Example 5.4 by

〈(u1, . . . , un) | (v1, . . . , vn)〉 =
n∑

i=1

uivi

makes it into a Hilbert space. The norm is

‖v‖ =
√
|v1|2 + |v2|2 + · · · + |vn|2,
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13.1 Definitions and examples

which was shown to be complete in Example 10.27. In any finite dimensional inner product
space the Schmidt orthonormalization procedure creates an orthonormal basis for which
the inner product takes this form (see Section 5.2). Thus every finite dimensional Hilbert
space is isomorphic to Cn with the above inner product. The only thing that distinguishes
finite dimensional Hilbert spaces is their dimension.

Example 13.2 Let �2 be the set of all complex sequences u = (u1, u2, . . . ) where ui ∈ C
such that

∞∑
i=1

|ui |2 <∞.

This space is a complex vector, for if u, v are any pair of sequences in �2, then u + v ∈ �2.
For, using the complex number version of the inequality (13.3),

∞∑
i=1

|ui + vi |2 ≤ 2
∞∑

i=1

|ui |2 + 2
∞∑

i=1

|vi |2 <∞.

It is trivial that u ∈ �2 implies λu ∈ �2 for any complex number λ.
Let the inner product be defined by

〈u |v〉 =
∞∑

i=1

uivi .

This is well-defined for any pair of sequences u, v ∈ �2, for∣∣∣ ∞∑
i=1

uivi

∣∣∣ ≤ ∞∑
i=1

∣∣uivi

∣∣
≤ 1

2

∞∑
i=1

(∣∣ui

∣∣2 + ∣∣vi

∣∣2) <∞.
The last step follows from

2
∣∣ab
∣∣2 = 2|a|2|b|2 = |a|2 + |b|2 − (|a| − |b|)2 ≤ |a|2 + |b|2.

The norm defined by this inner product is

‖u‖ =
√√√√ ∞∑

i=1

∣∣ui

∣∣2 ≤ ∞.
For any integer M and n,m > N

M∑
i=1

∣∣u(m)
i − u(n)

i

∣∣2 ≤ ∞∑
i=1

∣∣u(m)
i − u(n)

i

∣∣2 = ‖u(m) − u(n)‖2 < ε2,

and taking the limit n →∞ we have

M∑
i=1

∣∣u(m)
i − ui

∣∣2 ≤ ε2.
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Hilbert spaces

In the limit M →∞
∞∑

i=1

∣∣u(m)
i − ui

∣∣2 ≤ ε2

so that u(m) − u ∈ �2. Hence u = u(m) − (u(m) − u) belongs to �2 since it is the difference
of two vectors from �2 and it is the limit of the sequence u(m) since ‖u(m) − u‖ < ε for
all m > N . It turns out, as we shall see, that �2 is isomorphic to most Hilbert spaces of
interest – the so-called separable Hilbert spaces.

Example 13.3 On C[0, 1], the continuous complex functions on [0, 1], set

〈 f |g〉 =
∫ 1

0
f g dx .

This is a pre-Hilbert space, but fails to be a Hilbert space since a sequence of continuous
functions may have a discontinuous limit.

Exercise: Find a sequence of functions in C[0, 1] that have a discontinuous step function as their
limit.

Example 13.4 Let (X,M, μ) be a measure space, and L2(X ) be the set of all square
integrable complex-valued functions f : X → C, such that∫

X
| f |2 dμ <∞.

This space is a complex vector space, for if f and g are square integrable then∫
X
| f + λg|2 dμ ≤ 2

∫
X
| f |2 dμ+ 2|λ|2

∫
X
|g|2 dμ

by (13.3) applied to complex numbers.
Write f ∼ f ′ iff f (x) = f ′(x) almost everywhere on X ; this is clearly an equivalence

relation on X . We set L2(X ) to be the factor space L2(X )/∼. Its elements are equivalence
classes f̃ of functions that differ at most on a set of measure zero. Define the inner product
of two classes by

〈 f̃ | g̃〉 =
∫

X
f g dμ,

which is well-defined (see Example 5.6) and independent of the choice of representatives.
For, if f ′ ∼ f and g′ ∼ g then let A f and Ag be the sets on which f (x) �= f ′(x) and
g′(x) �= g(x), respectively. These sets have measure zero, μ(A f ) = μ(Ag) = 0. The set on
which f ′(x)g′(x) �= f (x)g(x) is a subset of A f ∪ Ag and therefore must also have measure
zero, so that

∫
X f g dμ = ∫X f ′g′ dμ.

The inner product axioms (IP1) and (IP2) are trivial, and (IP3) follows from

‖ f̃ ‖ = 0 =⇒
∫

X
| f |2 dμ = 0 =⇒ f = 0 a.e.
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13.1 Definitions and examples

It is common to replace an equivalence class of functions f̃ ∈ L2(X ) simply by a represen-
tative function f when there is no danger of confusion.

It turns out that the inner product space L2(X ) is in fact a Hilbert space. The following
theorem is needed in order to show completeness.

Theorem 13.1 (Riesz–Fischer) If f1, f2, . . . is a Cauchy sequence of functions inL2(X ),
there exists a function f ∈ L2(X ) such that ‖ f − fn‖ → 0 as n →∞.

Proof : The Cauchy sequence condition ‖ fn − fm‖ → 0 implies that for any ε > 0 there
exists N such that ∫

X
| fn − fm |2 dμ < ε for all m, n > N .

We may, with some relabelling, pick a subsequence such that f0 = 0 and

‖ fn − fn−1‖ < 2−n.

Setting

h(x) =
∞∑

n=1

| fn(x)− fn−1(x)|

we have from (Norm3),

‖h‖ ≤
∞∑

n=1

‖ fn − fn−1‖ <
∞∑

n=1

2−n = 1.

The function x �→ h2(x) is thus a positive real integrable function on X , and the set of
points where its defining sequence diverges, E = {x | h(x) = ∞}, is a set of measure zero,
μ(E) = 0. Let gn be the sequence of functions

gn(x) =
{

fn − fn−1 if x /∈ E,

0 if x ∈ E .

Since gn = fn − fn−1 a.e. these functions are measurable and ‖gn‖ = ‖ fn − fn−1‖ < 2−n .
The function

f (x) =
∞∑

n=1

gn(x)

is defined almost everywhere, since the series is absolutely convergent to h(x) almost
everywhere. Furthermore it belongs to L2(X ), for

| f (x)|2 =
∣∣∣∑ gn(x)

∣∣∣2 ≤ (∑|gn(x)|
)2
≤ (h(x)

)2
.

Since

fn =
n∑

k=1

( fk − fk−1) =
n∑

k=1

gk a.e.
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Hilbert spaces

it follows that

‖ f − fn‖ =
∥∥∥ f −

n∑
k=1

gk

∥∥∥
=
∥∥∥ ∞∑

k=n+1

gk

∥∥∥
≤

∞∑
k=n+1

‖gk‖

<

∞∑
k=n+1

2−k = 2−n.

Hence ‖ f − fn‖ → 0 as n →∞ and the result is proved. �

Problems

Problem 13.1 Let E be a Banach space in which the norm satisfies the parallelogram law (13.2).
Show that it is a Hilbert space with inner product given by

〈x | y〉 = 1
4

(‖x + y‖2 − ‖x − y‖2 + i‖x − i y‖2 − i‖x + i y‖2
)
.

Problem 13.2 On the vector space F1[a, b] of complex continuous differentiable functions on the
interval [a, b], set

〈 f |g〉 =
∫ b

a
f ′(x)g′(x) dx where f ′ = d f

dx
, g′ = dg

dx
.

Show that this is not an inner product, but becomes one if restricted to the space of functions f ∈
F1[a, b] having f (c) = 0 for some fixed a ≤ c ≤ b. Is it a Hilbert space?

Give a similar analysis for the case a = −∞, b = ∞, and restricting functions to those of compact
support.

Problem 13.3 In the space L2([0, 1]) which of the following sequences of functions (i) is a Cauchy
sequence, (ii) converges to 0, (iii) converges everywhere to 0, (iv) converges almost everywhere to 0,
and (v) converges almost nowhere to 0?

(a) fn(x) = sinn(x), n = 1, 2, . . .

(b) fn(x) =
{

0 for x < 1− 1
n ,

nx + 1− n for 1− 1
n ≤ x ≤ 1.

(c) fn(x) = sinn(nx).
(d) fn(x) = χUn (x), the characteristic function of the set

Un =
[

k

2m
,

k + 1

2m

]
where n = 2m + k, m = 0, 1, . . . and k = 0, . . . , 2m − 1.

334



13.2 Expansion theorems

13.2 Expansion theorems

Subspaces

A subspace V of a Hilbert space H is a vector subspace that is closed with respect to the
norm topology. For a vector subspace to be closed we require the limit of any sequence of
vectors in V to belong to V ,

u1, u2, . . .→ u and all un ∈ V =⇒ u ∈ V .

If V is any vector subspace of H, its closure V is the smallest subspace containing V . It is
the intersection of all subspaces containing V .

If K is any subset of H then, as in Chapter 3, the vector subspace generated by K is

L(K ) =
{

n∑
i=1

αi ui |αi ∈ C, ui ∈ K

}
,

but the subspace generated by K will always refer to the closed subspace L(K ) generated
by K . A Hilbert space H is called separable if there is a countable set K = {u1, u2, . . . }
such that H is generated by K ,

H = L(K ) = L(u1, u2, . . . ).

Orthonormal bases

If the Hilbert space H is separable and is generated by {u1, u2, . . . }, we may use the
Schmidt orthonormalization procedure (see Section 5.2) to produce an orthonormal set
{e1, e2, . . . , en},

〈ei |e j 〉 = δi j =
{

1 if i = j,

0 if i �= j.

The steps of the procedure are

f1 = u1 e1 = f1/‖ f1‖
f2 = u2 − 〈e1 |u2〉e1 e2 = f2/‖ f2‖
f3 = u3 − 〈e1 |u3〉e1 − 〈e2 |u3〉e2 e3 = f3/‖ f3‖, etc.

from which it can be seen that each un is a linear combination of {e1, e2, . . . , en}. Hence
H = L({e1, e2, . . . }) and the set {en | n = 1, 2, . . . } is called a complete orthonormal set
or orthonormal basis of H.

Theorem 13.2 If H is a separable Hilbert space and {e1, e2, . . . } is a complete orthonor-
mal set, then any vector u ∈ H has a unique expansion

u =
∞∑

n=1

cnen where cn = 〈en |u〉. (13.4)
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Hilbert spaces

The meaning of the sum in this theorem is∥∥∥u −
N∑

n=1

cnen

∥∥∥→ 0 as N →∞.

A critical part of the proof is Bessel’s inequality:

N∑
n=1

∣∣〈en |u〉
∣∣2 ≤ ‖u‖2. (13.5)

Proof : For any N > 1

0 ≤
∥∥∥u −

N∑
n=1

〈en |u〉 en

∥∥∥2

= 〈u −∑n〈en |u〉en |u −
∑

m〈em |u〉em〉

= ‖u‖2 − 2
N∑

n=1

〈en |u〉〈en |u〉 +
N∑

n=1

N∑
m=1

〈en |u〉δmn〈em |u〉

= ‖u‖2 −
N∑

n=1

|〈en |u〉|2,

which gives the desired inequality. �

Taking the limit N →∞ in Bessel’s inequality (13.5) shows that the series

∞∑
n=1

∣∣〈en |u〉
∣∣2

is bounded above and therefore convergent since it consists entirely of non-negative terms.
To prove the expansion theorem 13.2, we first show two lemmas.

Lemma 13.3 If vn → v in a Hilbert space H, then for all vectors u ∈ H

〈u |vn〉 → 〈u |v〉.
Proof : By the Cauchy–Schwarz inequality (5.13)∣∣〈u |vn〉 − 〈u |v〉

∣∣ = ∣∣〈u |vn − v〉
∣∣

≤ ‖u‖ ‖vn − v‖
→ 0 �

Lemma 13.4 If {e1, e2, . . . } is a complete orthonormal set and 〈v |en〉 = 0 for n =
1, 2, . . . then v = 0.

Proof : Since {en} is a complete o.n. set, every vector v ∈ H is the limit of a sequence of
vectors spanned by the vectors {e1, e2, . . . },

v = lim
n→∞ vn where vn =

N∑
i=1

vni ei .
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13.2 Expansion theorems

Setting u = v in Lemma 13.3, we have

‖v‖2 = 〈v |v〉 = lim
n→∞〈v |vn〉 = 0.

Hence v = 0 by the condition (Norm1). �

We now return to the proof of the expansion theorem.

Proof of Theorem 13.2: Set

uN =
N∑

n=1

〈en |u〉 en.

This is a Cauchy sequence,

‖uN − uM‖2 =
N∑

n=M

∣∣〈en |u〉
∣∣2 → 0 as M, N →∞

since the series
∑

n

∣∣〈en |u〉
∣∣2 is absolutely convergent by Bessel’s inequality (13.5). By

completeness of the Hilbert space H, uN → u′ for some vector u′ ∈ H. But

〈ek |u − u′〉 = lim
N→∞

〈ek |u − uN 〉 = 〈ek |u〉 − eku = 0

since 〈ek |uN 〉 = 〈ek |u〉 for all N ≥ k. Hence, by Lemma 13.4,

u = u′ = lim
N→∞

uN ,

and Theorem 13.2 is proved. �

Exercise: Show that every separable Hilbert space is either a finite dimensional inner product space,
or is isomorphic with �2.

Example 13.5 For any real numbers a < b the Hilbert space L2([a, b]) is separable. The
following is an outline proof; details may be found in [1]. By Theorem 11.2 any posi-
tive measurable function f ≥0 on [a, b] may be approximated by an increasing sequence
of positive simple functions 0 < sn(x) → f (x). If f ∈ L2([a, b]) then by the dominated
convergence, Theorem 11.11, ‖ f − sn‖ → 0. By a straightforward, but slightly techni-
cal, argument these simple functions may be approximated with continuous functions,
and prove that for any ε > 0 there exists a positive continuous function h(x) such that
‖ f − h‖ < ε. Using a famous theorem of Weierstrass that any continuous function on a
closed interval can be arbitrarily closely approximated by polynomials, it is possible to find
a complex-valued polynomial p(x) such that ‖ f − p‖ < ε. Since all polynomials are of the
form p(x) = c0 + c1x + c2x2 + · · · + cn xn where c ∈ C, the functions 1, x, x2, . . . form a
countable sequence of functions on [a, b] that generate L2([a, b]). This proves separability
of L2([a, b]).

Separability of L2(R) is proved by showing the restricted polynomial functions fn,N =
xnχ[−N ,N ] are a countable set that generates L2(R).
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Example 13.6 On L2([−π, π ]) the functions

φn(x) = einx

√
2π

form an orthonormal basis,

〈φm |φn〉 = 1

2π

∫ π

−π
ei(n−m)x dx = δmn

as is easily calculated for the two separate cases n �= m and n = m. These generate the
Fourier series of an arbitrary square integrable function f on [−π, π ]

f =
∞∑

n=−∞
cnφn a.e.

where cn are the Fourier coefficients

cn = 〈φn | f 〉 = 1√
2π

∫ π

−π
e−inx f (x) dx .

Example 13.7 The hermite polynomials Hn(x) (n = 0, 1, 2, . . . ) are defined by

Hn(x) = (−1)nex2 dne−x2

dxn
.

The first few are

H0(x) = 1, H1(x) = 2x, H2(x)4x2 − 2, H3(x) = 8x3 − 12x, . . .

The nth polynomial is clearly of degree n with leading term (−2x)n . The functionsψn(x) =
e−(1/2)x2

Hn(x) form an orthogonal system in L2(R):

〈ψm |ψn〉 = (−1)n+m
∫ ∞

−∞
ex2 dme−x2

dxm

dne−x2

dxn
dx

= (−1)n+m

([
ex2 dme−x2

dxm

dn−1e−x2

dxn−1

]∞
−∞

−
∫ ∞

−∞

d

dx

(
ex2 dme−x2

dxm

)dn−1e−x2

dxn−1
dx

)
on integration by parts. The first expression on the right-hand side of this equation vanishes
since it involves terms of order e−x2

xk that approach 0 as x →±∞. We may repeat the
integration by parts on the remaining integral, until we arrive at

〈ψm |ψn〉 = (−1)m
∫ ∞

−∞
e−x2 dn

dxn

(
ex2 dme−x2

dxm

)
dx,

which vanishes if n > m since the expression in the brackets is a polynomial of degree m.
A similar argument for n < m yields

〈ψm |ψn〉 = 0 for n �= m.
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13.2 Expansion theorems

For n = m we have, from the leading term in the hermite polynomials,

‖ψn‖2 = 〈ψn |ψn〉 = (−1)n
∫ ∞

−∞
e−x2 dn

dxn

(
ex2 dne−x2

dxn

)
dx

= (−1)n
∫ ∞

−∞
e−x2 dn

dxn

(
(−2x)n

)
dx

= 2nn!
∫ ∞

−∞
e−x2

dx

= 2nn!
√
π.

Thus the functions

φn(x) = e−(1/2)x2√
2nn!

√
π

Hn(x) (13.6)

form an orthonormal set. From Weierstrass’s theorem they form a complete o.n. basis for
L2(R).

The following generalization of Lemma 13.3 is sometimes useful.

Lemma 13.5 If un → u and vn → v then 〈un |vn〉 → 〈u |v〉.

Proof : Using the Cauchy–Schwarz inequality (5.13)∣∣〈un |vn〉 − 〈u |v〉
∣∣ = ∣∣〈un |vn〉 − 〈un |v〉 + 〈un |v〉 − 〈u |v〉

∣∣
≤ ∣∣〈un |vn〉 − 〈un |v〉

∣∣+ ∣∣〈un |v〉 − 〈u |v〉
∣∣

≤ ‖un‖ ‖vn − v‖ + ‖un − u‖ ‖v‖
→ ‖u‖.0+ 0.‖v‖ → 0. �

Exercise: If un → u show that ‖un‖ → ‖u‖, used in the last step of the above proof.

The following identity has widespread application in quantum mechanics.

Theorem 13.6 (Parseval’s identity)

〈u |v〉 =
∞∑

i=1

〈u |ei 〉〈ei |v〉. (13.7)

Proof : Set

un =
n∑

i=1

〈ei |u〉 ei and vn =
n∑

i=1

〈ei |v〉 ei .
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By Theorem 13.2, un → u and vn → v as n →∞. Now using Lemma 13.5,

〈u |v〉 = lim
n→∞〈un |vn〉

= lim
n→∞

n∑
i=1

n∑
j=1

〈ei |u〉〈e j |v〉〈ei |e j 〉

= lim
n→∞

n∑
i=1

n∑
j=1

〈u |ei 〉〈e j |v〉δi j

= lim
n→∞

n∑
i=1

〈u |ei 〉〈ei |v〉.

=
∞∑

i=1

〈u |ei 〉〈ei |v〉. �

For a function f (x) =∑∞
n=−∞ cnφn on [−π, π ], where φn(x) are the standard Fourier

functions given in Example 13.6, Parseval’s identity becomes the well-known formula

‖ f ‖2 =
∫ π

−π
| f (x)|2 dx =

∞∑
n=−∞

|cn|2.

Problems

Problem 13.4 Show that a vector subspace is a closed subset ofH with respect to the norm topology
iff the limit of every sequence of vectors in V belongs to V .

Problem 13.5 Let �0 be the subset of �2 consisting of sequences with only finitely many terms
different from zero. Show that �0 is a vector subspace of �2, but that it is not closed. What is its
closure �0?

Problem 13.6 We say a sequence {xn} converges weakly to a point x in a Hilbert space H, written
xn ⇀ x if 〈xn | y〉 → 〈x | y〉 for all y ∈ H. Show that every strongly convergent sequence, ‖xn − x‖ →
0 is weakly convergent to x . In finite dimensional Hilbert spaces show that every weakly convergent
sequence is strongly convergent.

Give an example where xn ⇀ x but ‖xn‖ �→ ‖x‖. Is it true in general that the weak limit of a
sequence is unique?

Show that if xn ⇀ x and ‖xn‖ �→ ‖x‖ then xn �→ x .

Problem 13.7 In the Hilbert space L2([−1, 1]) let { fn(x)} be the sequence of functions
1, x, x2, . . . , fn(x) = xn, . . .

(a) Apply Schmidt orthonormalization to this sequence, writing down the first three polynomials so
obtained.

(b) The nth Legendre polynomial Pn(x) is defined as

Pn(x) = 1

2nn!

dn

dxn

(
x2 − 1

)n
.

Prove that ∫ 1

−1
Pm(x)Pn(x) dx = 2

2n + 1
δmn .

(c) Show that the nth member of the o.n. sequence obtained in (a) is
√

n + 1
2 Pn(x).
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Problem 13.8 Show that Schmidt orthonormalization in L2(R), applied to the sequence of functions

fn(x) = xne−x2/2,

leads to the normalized hermite functions (13.6) of Example 13.7.

Problem 13.9 Show that applying Schmidt orthonormalization in L2([0,∞]) to the sequence of
functions

fn(x) = xne−x/2

leads to a normalized sequence of functions involving the Laguerre polynomials

Ln(x) = ex dn

dxn

(
xne−x

)
.

13.3 Linear functionals

Orthogonal subspaces

Two vectors u, v ∈ H are said to be orthogonal if 〈u|v〉 = 0, written u ⊥ v. If V is a
subspace of H we denote its orthogonal complement by

V⊥ = {u | u ⊥ v for all v ∈ V }.
Theorem 13.7 If V is a subspace of H then V⊥ is also a subspace.

Proof : V⊥ is clearly a vector subspace, for v, v′ ∈ V⊥ since

〈αv + βv′ |u〉 = α〈v |u〉 + β〈v′ |u〉 = 0

for all u ∈ V . The space V⊥ is closed, for if vn → v where vn ∈ V⊥, then

〈v |u〉 = lim
n→∞〈vn |u〉 = lim

n→∞ 0 = 0

for all u ∈ V . Hence v ∈ V . �

Theorem 13.8 If V is a subspace of a Hilbert space H then every u ∈ H has a unique
decomposition

u = u′ + u′′ where u′ ∈ V, u′′ ∈ V⊥.

Proof : The idea behind the proof of this theorem is to find the element of V that is ‘nearest’
to u. Just as in Euclidean space, this is the orthogonal projection of the vector u onto the
subspace V . Let

d = inf{‖u − v‖ | v ∈ V }
and vn ∈ V a sequence of vectors such that ‖u − vn‖ → d. The sequence {vn} is Cauchy,
for if we set x = u − 1

2 (vn + vm) and y = 1
2 (vn − vm) in the parallelogram law (13.2), then

‖vn − vm‖2 = 2‖u − vn‖2 + 2‖u − vm‖2 − 4‖u − 1
2 (vn + vm)‖2. (13.8)
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For any ε > 0 let N > 0 be such that for all k > N , ‖u − vk‖2 ≤ d2 + 1
4ε. Setting n,m

both > N in Eq. (13.8) we find ‖vn − vm‖2 ≤ ε. Hence vn is a Cauchy sequence.
Since H is complete and V is a closed subspace, there exists a vector u′ ∈ V such that

vn → u′. Setting u′′ = u − u′, it follows from the exercise after Lemma 13.5 that

‖u′′‖ = lim
n→∞‖u − vn‖ = d.

For any v ∈ V set v0 = v/‖v‖, so that ‖v0‖ = 1. Then

d2 ≤ ‖u − (u′ + 〈v0 |u′′〉 v0)‖2

= ‖u′′ − 〈v0 |u′′〉v0‖2

= 〈u′′ − 〈v0 |u′′〉v0 |u′′ − 〈v0 |u′′〉v0〉
= d2 − |〈v0 |u′′〉|2.

Hence 〈v0 |u′′〉 = 0, so that 〈v |u′′〉 = 0. Sincev is an arbitrary vector in V , we have u′′ ∈ V⊥.
A subspace and its orthogonal complement can only have the zero vector in common,

V ∩ V⊥ = {0}, for if w ∈ V ∩ V⊥ then 〈w |w〉 = 0, which implies that w = 0. If u =
u′ + u′′ = v′ + v′′, with u′, v′ ∈ V and u′′, v′′ ∈ V⊥, then the vector u′ − v′ ∈ V is equal
to v′′ − u′′ ∈ V⊥. Hence u′ = v′ and u′′ = v′′, the decomposition is unique. �

Corollary 13.9 For any subspace V , V⊥⊥ = V .

Proof : V ⊆ V⊥⊥ for if v ∈ V then 〈v |u〉 = 0 for all u ∈ V⊥. Conversely, let v ∈ V⊥⊥.
By Theorem 13.8 v has a unique decomposition v = v′ + v′′ where v′ ∈ V ⊆ V⊥⊥ and
v′′ ∈ V⊥. Using Theorem 13.8 again but with V replaced by V⊥, it follows that v′′ = 0.
Hence v = v′ ∈ V . �

Riesz representation theorem

For every v ∈ H the map ϕv : u �→ 〈v |u〉 is a linear functional on H. Linearity is obvious
and continuity follows from Lemma 13.3. The following theorem shows that all (continuous)
linear functionals on a Hilbert space are of this form, a result of considerable significance
in quantum mechanics, as it motivates Dirac’s bra-ket notation.

Theorem 13.10 (Riesz representation theorem) If ϕ is a linear functional on a Hilbert
space H, then there is a unique vector v ∈ H such that

ϕ(u) = ϕv(u) = 〈v |u〉 for all u ∈ H.
Proof : Since a linear functional ϕ : H→ C is required to be continuous, we always have

|ϕ(xn)− ϕ(x)| → 0 whenever ‖x − xn‖ → 0.

Let V be the null space of ϕ,

V = {x |ϕ(x) = 0}.
This is a closed subspace, for if xn → x and ϕ(xn) = 0 for all n, then ϕ(x) = 0 by continuity.
If V = H thenϕ vanishes onH and one can set v = 0. Assume therefore that V �= H, and let
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w be a non-zero vector such that w �∈ V . By Theorem 13.8, there is a unique decomposition

w = w ′ + w ′′ where w ′ ∈ V, w ′′ ∈ V⊥.

Then ϕ(w ′′) = ϕ(w)− ϕ(w ′) = ϕ(w) �= 0 since w �∈ V . For any u ∈ H we may write

u =
(

u − ϕ(u)

ϕ(w ′′)
w ′′
)
+ ϕ(u)

ϕ(w ′′)
w ′′,

where the first term on the right-hand side belongs to V since the linear functional ϕ gives
the value 0 when applied to it, while the second term belongs to V⊥ as it is proportional to
w ′′. For any v ∈ V⊥ we have then

〈v |u〉 = ϕ(u)

ϕ(w ′′)
〈v |w ′′〉.

In particular, setting

v = ϕ(w ′′)
‖w ′′‖2

w ′′ ∈ V⊥

gives

〈v |u〉 = ϕ(u)

ϕ(w ′′)
ϕ(w ′′)
‖w ′′‖2

〈w ′′ |w ′′〉 = ϕ(u).

Hence this v is the vector required for the theorem. It is the unique vector with this property,
for if 〈v − v′ |u〉 = 0 for all u ∈ H then v = v′, on setting u = v − v′. �

Problems

Problem 13.10 If S is any subset of H, and V the closed subspace generated by S, V = L(S), show
that S⊥ = {u ∈ H | 〈u | x〉 = 0 for all x ∈ S} = V⊥.

Problem 13.11 Which of the following is a vector subspace of �2, and which are closed? In each
case find the space of vectors orthogonal to the set.

(a) VN = {(x1, x2, . . . ) ∈ �2 | xi = 0 for i > N }.
(b) V =

∞⋃
N=1

VN = {(x1, x2, . . . ) ∈ �2 | xi = 0 for i > some N }.
(c) U = {(x1, x2, . . . ) ∈ �2 | xi = 0 for i = 2n}.
(d) W = {(x1, x2, . . . ) ∈ �2 | xi = 0 for some i}.

Problem 13.12 Show that the real Banach space R2 with the norm ‖(x, y)‖ = max{|x |, |y|} does
not have the closest point property of Theorem 13.8. Namely for a given point x and one-dimensional
subspace L , there does not in general exist a unique point in L that is closest to x.

Problem 13.13 If A : H→ H is an operator such that Au ⊥ u for all u ∈ H, show that A = 0.
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13.4 Bounded linear operators

Let V be any normed vector space. A linear operator A : V → V is said to be bounded if

‖Au‖ ≤ K‖u‖
for some constant K ≥ 0 and all u ∈ V .

Theorem 13.11 A linear operator on a normed vector space is bounded if and only if it
is continuous with respect to the norm topology.

Proof : If A is bounded then it is continuous, for if ε > 0 then for any pair of vectors u, v
such that ‖u − v‖ < ε/K

‖Au − Av‖ = ‖A(u − v)‖ ≤ K‖u − v‖ < ε.
Conversely, let A be a continuous operator on V . If A is not bounded, then for each

N > 0 there exists uN such that ‖AuN‖ ≥ N‖uN‖. Set

w N = uN

N‖uN‖ ,

so that

‖w N‖ = 1

N
→ 0.

Hence w N → 0, but ‖Aw N‖ ≥ 1, so that Awn definitely does not → 0, contradicting the
assumption that A is continuous. �

The norm of a bounded operator A is defined as

‖A‖ = sup{‖Au‖ | ‖u‖ ≤ 1}.
By Theorem 13.11, A is continuous at x = 0. Hence there exists ε > 0 such that ‖Ax‖ ≤ 1
for all ‖x‖ ≤ ε. For any u with ‖u‖ ≤ 1 let v = εu so that ‖v‖ ≤ ε and

‖Au‖ = 1

ε
‖Av‖ ≤ 1

ε
.

This shows ‖A‖ always exists for a bounded operator.

Example 13.8 On �2 define the two shift operators S and S′ by

S
(
(x1, x2, x3, . . . )

) = (0, x1, x2, . . . )

and

S′
(
(x1, x2, x3, . . . )

) = (x2, x3, . . . ).

These operators are clearly linear, and satisfy

‖Sx‖ = ‖x‖ and ‖S′x‖ ≤ ‖x‖.
Hence the norm of the operator S is 1, while ‖S′‖ is also 1 since equality holds for x1 = 0.
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Example 13.9 Let α be any bounded measurable function on the Hilbert space L2(X )
of square integrable functions on a measure space X . The multiplication operator Aα :
L2(X ) → L2(X ) defined by Aα( f ) = α f is a bounded linear operator, for α f is measurable
for every f ∈ L2(X ), and it is square integrable since

|α f |2 ≤ M2| f |2 where M = sup
x∈X
|α(x)|.

The multiplication operator is well-defined on L2(X ), for if f and f ′ are equal almost
everywhere, f ∼ f ′, then α f ∼ α f ′; thus there is no ambiguity in writing Aα f for Aα[ f ].
Linearity is trivial, while boundedness follows from

‖Aα f ‖2 =
∫

X
|α f |2 dμ ≤ M2

∫
X
| f |2 dμ = M2‖ f ‖2.

Exercise: If A and B are bounded linear operators on a normed vector space, show that A + λB and
AB are also bounded.

A bounded operator A : V → V is said to be invertible if there exists a bounded operator
A−1 : V → V such that AA−1 = A−1 A = I ≡ idV . A−1 is called the inverse of A. It is
clearly unique, for if B A = C A then B = B I = B AA−1 = C AA−1 = C . It is important
that we specify A−1 to be both a right and left inverse. For example, in �2, the shift operator
S defined in Example 13.8 has left inverse S′, since S′S = I , but it is not a right inverse for
SS′(x1, x2, . . . ) = (0, x2, x3, . . . ). Thus S is not an invertible operator, despite the fact that
it is injective and an isometry, ‖Sx‖ = ‖x‖. For a finite dimensional space these conditions
would be enough to guarantee invertibility.

Theorem 13.12 If A is a bounded operator on a Banach space V , with ‖A‖ < 1, then the
operator I − A is invertible and

(I − A)−1 =
∞∑

n=0

An.

Proof : Let x be any vector in V . Since ‖Ak x‖ ≤ ‖A‖(Ak−1x) it follows by simple
induction that Ak is bounded and has norm ‖Ak‖ ≤ (‖A‖)k . The vectors un = (I + A +
A2 + · · · + An)x form a Cauchy sequence, since

‖un − um‖ = ‖(Am+1 + · · · + An)x‖
≤ (‖A‖m+1 + · · · + ‖A‖n

)‖x‖

≤ ‖A‖m+1

1− ‖A‖‖x‖

→ 0 as m →∞.
Since V is a Banach space, um → u for some u ∈ V , so there is a linear operator T : V → V
such that u = T x . Furthermore, since T − (I + A + · · · + An) is a bounded linear operator,
it follows that T is bounded. Writing T =∑∞

k=1 Ak , in the sense that

lim
m→∞

(
T −

m∑
k=1

Ak
)

x = 0,
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it is straightforward to verify that (I − A)T x = T (I − A)x = x , which shows that T =
(I − A)−1. �

Adjoint operators

Let A : H→ H be a bounded linear operator on a Hilbert space H. We define its adjoint
to be the operator A∗ : H→ H that has the property

〈u | Av〉 = 〈A∗u |v〉 for all u, v ∈ H. (13.9)

This operator is well-defined, linear and bounded.

Proof : For fixed u, the map ϕu : v �→ 〈u | Av〉 is clearly linear and continuous, on using
Lemma 13.3. Hence ϕu is a linear functional, and by the Riesz representation theorem there
exists a unique element A ∗ u ∈ H such that

〈A∗u |v〉 = ϕu(v) = 〈u | Av〉.
The map u �→ A ∗ u is linear, since for an arbitrary vector v

〈A∗(u + λw) |v〉 = 〈u + λw | Av〉
= 〈u | Av〉 + λ〈w | Av〉
= 〈A∗u + λA∗w |v〉.

To show that the linear operator A∗ is bounded, let u be any vector,

‖A∗u‖2 = |〈A∗u | A∗u〉|
= |〈u | AA∗u〉|
≤ ‖u‖ ‖AA∗u‖
≤ ‖A‖ ‖u‖ ‖A∗u‖.

Hence, either A∗u = 0 or ‖A∗u‖ ≤ ‖A‖ ‖u‖. In either case ‖A∗u‖ ≤ ‖A‖ ‖u‖. �

Theorem 13.13 The adjoint satisfies the following properties:

(i) (A + B)∗ = A∗ + B∗,
(ii) (λA)∗ = λA∗,

(iii) (AB)∗ = B∗A∗,
(iv) A∗∗ = A,
(v) if A is invertible then (A−1)∗ = (A∗)−1.

Proof : We provide proofs of (i) and (ii), leaving the others as exercises.

(i) For arbitrary u, v ∈ H

〈(A + B)∗u |v〉 = 〈u | (A + B)v〉 = 〈u | Av + Bv〉
= 〈u | Av〉 + 〈u | Bv〉 = 〈A∗u |v〉 + 〈B∗u |v〉 = 〈A∗u + B∗u |v〉. (13.10)

As 〈w |v〉 = 〈w ′ |v〉 for all v ∈ H implies w = w ′, we have

(A + B)∗u = A∗u + B∗u.
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(ii) For any pair of vectors u, v ∈ H

〈(λA)∗u |v〉 = 〈u |λAv〉 = λ〈u | Av〉
= λ〈A∗u |v〉 = 〈λA∗u |v〉. (13.11)

The proofs of (iii)–(v) are on similar lines.

Example 13.10 The right shift operator S on �2 (see Example 13.8) induces the inner
product

〈x | Sy〉 = x1.0+ x2 y1 + x3 y2 + · · · = 〈S′x | y〉,
where S′ is the left shift. Hence S∗ = S′. Similarly S′∗ = S, since

〈x | S′y〉 = x1 y2 + x2 y3 + · · · = 〈S′x | y〉.
Example 13.11 Let α be a bounded measurable function on the Hilbert space L2(X )
of square integrable functions on a measure space X , and Aα the multiplication operator
defined in Example 13.9. For any pair of functions f , g square integrable on X , the equation
〈A∗α f |g〉 = 〈 f | Aαg〉 reads∫

X
A∗α f g dμ =

∫
X

f Aαg dμ =
∫

X
f αg dμ.

Since g is an arbitrary function from L2(X ), we have A∗α f = α f a.e., and in terms of the
equivalence classes of functions in L2(X ) the adjoint operator reads

A∗α[ f ] = [α f ].

The adjoint operator of a multiplication operator is the multiplication operator by the com-
plex conjugate function.

We define the matrix element of the operator A between the vectors u and v in H to
be 〈u | Av〉. If the Hilbert space is separable and ei is an o.n. basis then, by Theorem 13.2,
we may write

Ae j =
∑

i

ai j ei where ai j = 〈ei | Ae j 〉.

Thus the matrix elements of the operator between the basis vectors are identical with the
components of the matrix of the operator with respect to this basis, A = [ai j ]. The adjoint
operator has decomposition

A∗e j =
∑

i

a∗i j ei where a∗i j = 〈ei | A∗e j 〉.

The relation between the matrix elements [a∗i j ] and [ai j ] is determined by

a∗i j = 〈ei | A∗e j 〉 = 〈Aei |e j 〉 = 〈e j | Aei 〉 = a ji ,

or, in matrix notation,

A∗ ≡ [a∗i j ] = [ a ji ] = AT = A†.
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In quantum mechanics it is common to use the conjugate transpose notation A† for the adjoint
operator, but the equivalence with the complex adjoint matrix only holds for orthonormal
bases.

Exercise: Show that in an o.n. basis Au =∑i u′i ei where u =∑i ui ei and u′i =
∑

j ai j u j .

Hermitian operators

An operator A is called hermitian if A = A∗, so that

〈u | Av〉 = 〈A∗u |v〉 = 〈v | A∗u〉 = 〈Au |v〉.
If H is separable and e1, e2, . . . a complete orthonormal set, then the matrix elements in
this basis, ai j = 〈ei | Ae j 〉, have the hermitian property

ai j = a ji .

In other words, a bounded operator A is hermitian if and only if its matrix with respect to
any o.n. basis is hermitian,

A = [ai j ] = AT = A†.

These operators are sometimes referred to as self-adjoint, but in line with modern usage we
will use this term for a more general concept defined in Section 13.6.

Let M be a closed subspace of H then, by Theorem 13.8, any u ∈ H has a unique
decomposition

u = u′ + u′′ where u′ ∈ M, u′′ ∈ M⊥.

We define the projection operator PM : H→ H by PM (u) = u′, which maps every vector
of H onto its orthogonal projection in the subspace M .

Theorem 13.14 For every subspace M, the projection operator PM is a bounded hermi-
tian operator and satisfies P2

M = PM (called an idempotent operator). Conversely any
idempotent hermitian operator P is a projection operator into some subspace.

Proof : 1. PM is hermitian. For any two vectors from u, v ∈ H

〈u | PMv〉 = 〈u |v′〉 = 〈u′ + u′′ |v′〉 = 〈u′ |v′〉
since 〈u′′ |v′〉 = 0. Similarly,

〈PM u |v〉 = 〈u′ |v〉 = 〈u′ |v′ + v′′〉 = 〈u′ |v′〉.
Thus PM = P∗M .

2. PM is bounded, for ‖PM u‖2 ≤ ‖u‖2 since

‖u‖2 = 〈u |u〉 = 〈u′ + u′′ |u′ + u′′〉 = 〈u′ |u′〉 + 〈u′′ |u′′〉 ≥ ‖u′‖2.

3. PM is idempotent, for P2
M u = PM u′ = u′ since u′ ∈ M . Hence P2

M = PM .
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4. Suppose P is hermitian and idempotent, P2 = P . The operator P is bounded and therefore
continuous, for by the Cauchy–Schwarz inequality (5.13),

‖Pu‖2 = |〈Pu | Pu〉| = |〈u | P2u〉| = |〈u | Pu〉| ≤ ‖u‖ ‖Pu‖.
Hence either ‖Pu‖ = 0 or ‖Pu‖ ≤ ‖u‖.

Let M = {u | u = Pu}. This is obviously a vector subspace ofH. It is closed by continuity
of P , for if un → u and Pun = un , then Pun → Pu = limn→∞ un = u. Thus M is a
subspace of H. For any vector v ∈ H, set v′ = Pv and v′′ = (I − P)v = v − v′. Then
v = v′ + v′′ and v′ ∈ M , v′′ ∈ M⊥, for

Pv′ = P(Pv) = P2v = Pv = v′,
and for all w ∈ M

〈v′′ |w〉 = 〈(I−P)v |w〉 = 〈v |w〉−〈Pv |w〉 = 〈v |w〉−〈v | Pw〉 = 〈v |w〉−〈v |w〉 = 0.
�

Unitary operators

An operator U : H→ H is called unitary if

〈Uu |Uv〉 = 〈u |v〉 for all u, v ∈ H.

Since this implies 〈U ∗Uu |v〉 = 〈u |v〉, an operator U is unitary if and only if U−1 = U ∗.
Every unitary operator is isometric, ‖Uu‖ = ‖u‖ for all u ∈ H – it preserves the distance
d(u, v) = ‖u − v‖ between any two vectors. Conversely, every isometric operator is unitary,
for if U is isometric then

〈U (u + v) |U (u + v)〉 − i〈U (u + iv) |U (u + iv)〉 = 〈u + v |u + v〉 − i〈u + iv |u + iv〉.
Expanding both sides and using 〈Uu |Uu〉 = 〈u |u〉 and 〈Uv |Uv〉 = 〈v |v〉, gives

2〈Uu |Uv〉 = 2〈u |v〉.
If {e1, e2, . . . } is an orthonormal basis then so is

e′1 = Ue1, e′2 = Ue2, . . . ,

for

〈e′i |e′j 〉 = 〈Uei |Ue j 〉 = 〈U ∗Uei |e j 〉 = 〈ei |e j 〉 = δi j .

Conversely for any pair of complete orthonormal sets {e1, e2, . . . } and {e′1, e′2, . . . } the
operator defined by Uei = e′i is unitary, for if u is any vector then, by Theorem 13.2,

u =
∑

i

ui ei where ui = 〈ei |u〉.

Hence

Uu =
∑

i

uiUei =
∑

i

ui e
′
i ,
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which gives

ui = 〈ei |u〉 = 〈e′i |Uu〉.
Parseval’s identity (13.7) can be applied in the primed basis,

〈Uu |Uv〉 =
∑

i

〈Uu |e′i 〉〈e′i |Uv〉

=
∑

i

uivi

=
∑

i

〈u |ei 〉〈ei |v〉

= 〈u |v〉,
which shows that U is a unitary operator.

Exercise: Show that if U is a unitary operator then ‖U‖ = 1.

Exercise: Show that the multiplication operator Aα on L2(X ) is unitary iff |α(x)| = 1 for all x ∈ X .

Problems

Problem 13.14 The norm ‖φ‖ of a bounded linear operator φ : H→ C is defined as the greatest
lower bound of all M such that |φ(u)| ≤ M‖u‖ for all u ∈ H. If φ(u) = 〈v |u〉 show that ‖φ‖ = ‖v‖.
Hence show that the bounded linear functional norm satisfies the parallelogram law

‖φ + ψ‖2 + ‖φ − ψ‖2 = 2‖φ‖2 + 2‖ψ‖2.

Problem 13.15 If {en} is a complete o.n. set in a Hilbert space H, and αn a bounded sequence
of scalars, show that there exists a unique bounded operator A such that Aen = αnen . Find the norm
of A.

Problem 13.16 For bounded linear operators A, B on a normed vector space V show that

‖λA‖ = |λ| ‖A‖, ‖A + B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖ ‖B‖.
Hence show that ‖A‖ is a genuine norm on the set of bounded linear operators on V .

Problem 13.17 Prove properties (iii)–(v) of Theorem 13.13. Show that ‖A∗‖ = ‖A‖.
Problem 13.18 Let A be a bounded operator on a Hilbert space H with a one-dimensional range.

(a) Show that there exist vectors u, v such that Ax = 〈v | x〉u for all x ∈ H.
(b) Show that A2 = λA for some scalar λ, and that ‖A‖ = ‖u‖‖v‖.
(c) Prove that A is hermitian, A∗ = A, if and only if there exists a real number a such that v = au.

Problem 13.19 For every bounded operator A on a Hilbert space H show that the exponential
operator

eA =
∞∑

n=0

An

n!
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is well-defined and bounded on H. Show that

(a) e0 = I .
(b) For all positive integers n, (eA)n = en A.
(c) eA is invertible for all bounded operators A (even if A is not invertible) and e−A = (eA)−1.
(d) If A and B are commuting operators then eA+B = eAeB .
(e) If A is hermitian then ei A is unitary.

Problem 13.20 Show that the sum of two projection operators PM + PN is a projection operator iff
PM PN = 0. Show that this condition is equivalent to M ⊥ N .

Problem 13.21 Verify that the operator on three-dimensional Hilbert space, having matrix repre-
sentation in an o.n. basis ⎛⎜⎝ 1

2 0 i
2

0 1 0
− i

2 0 1
2

⎞⎟⎠
is a projection operator, and find a basis of the subspace it projects onto.

Problem 13.22 Let ω = e2πi/3. Show that 1+ ω + ω2 = 0.

(a) In Hilbert space of three dimensions let V be the subspace spanned by the vectors (1, ω, ω2) and
(1, ω2, ω). Find the vector u0 in this subspace that is closest to the vector u = (1,−1, 1).

(b) Verify that u − u0 is orthogonal to V .
(c) Find the matrix representing the projection operator PV into the subspace V .

Problem 13.23 An operator A is called normal if it is bounded and commutes with its adjoint,
A∗A = AA∗. Show that the operator

Aψ(x) = cψ(x)+ i

∫ b

a
K (x, y)ψ(y) dy

on L2([a, b]), where c is a real number and K (x, y) = K (y, x), is normal.

(a) Show that an operator A is normal if and only if ‖Au‖ = ‖A∗u‖ for all vectors u ∈ H.

(b) Show that if A and B are commuting normal operators, AB and A + λB are normal for
all λ ∈ C.

13.5 Spectral theory

Eigenvectors

As in Chapter 4 a complex number α is an eigenvalue of a bounded linear operator A :
H→ H if there exists a non-zero vector u ∈ H such that

Au = αu.

u is called the eigenvector of A corresponding to the eigenvalue α.

Theorem 13.15 All eigenvalues of a hermitian operator A are real, and eigenvectors
corresponding to different eigenvalues are orthogonal.
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Proof : If Au = αu then

〈u | Au〉 = 〈u |αu〉 = α‖u‖2.

Since A is hermitian

〈u | Au〉 = 〈Au |u〉 = 〈αu |u〉 = α‖u‖2.

For a non-zero vector ‖u‖ �= 0, we have α = α; the eigenvalue α is real.
If Av = βv then

〈u | Av〉 = 〈u |βv〉 = β〈u |v〉
and

〈u | Av〉 = 〈Au |v〉 = 〈αu |v〉 = α〈u |v〉 = α〈u |v〉.
If β �= α then 〈u |v〉 = 0. �

A hermitian operator is said to be complete if its eigenvectors form a complete o.n. set.

Example 13.12 The eigenvalues of a projection operator P are always 0 or 1, for

Pu = αu =⇒ P2u = P(αu) = αPu = α2u

and since P is idempotent,

P2u = Pu = αu.

Hence α2 = α, so that α = 0 or 1. If P = PM then the eigenvectors corresponding to
eigenvalue 1 are the vectors belonging to the subspace M , while those having eigenvalue 0
belong to its orthogonal complement M⊥. Combining Theorems 13.8 and 13.2, we see that
every projection operator is complete.

Theorem 13.16 The eigenvalues of a unitary operator U are of the form α = eia where a
is a real number, and eigenvectors corresponding to different eigenvalues are orthogonal.

Proof : Since U is an isometry, if Uu = αu where u �= 0, then

‖u‖2 = 〈u |u〉 = 〈Uu |Uu〉 = 〈αu |αu〉 = αα‖u‖2.

Hence αα = |α|2 = 1, and there exists a real a such that α = eia .
If Uu = αu and Uv = βv, then

〈u |Uv〉 = βuv.

But U ∗U = I implies u = U ∗Uu = αU ∗u, so that

U ∗u = α−1u = αu since |α|2 = 1.

Therefore

〈u |Uv〉 = 〈U ∗u |v〉 = 〈αu |v〉 = α〈u |v〉.
Hence (α − β)〈u |v〉 = 0. If α �= β then u and v are orthogonal, 〈u |v〉 = 0. �
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Spectrum of a bounded operator

In the case of a finite dimensional space, the set of eigenvalues of an operator is known as
its spectrum. The spectrum is non-empty (see Chapter 4), and forms the diagonal elements
in the Jordan canonical form. In infinite dimensional spaces, however, operators may have
no eigenvalues at all.

Example 13.13 In �2, the right shift operator S has no eigenvalues, for suppose

S(x1, x2, . . . ) = (0, x1, x2, . . . ) = λ(x1, x2, . . . ).

If λ �= 0 then x1 = 0, x2 = 0, . . . , hence λ is not an eigenvalue. But λ = 0 also implies
x1 = x2 = · · · = 0, so this operator has no eigenvalues at all.

Exercise: Show that every λ such that |λ| < 1 is an eigenvalue of the left shift operator S′ = S∗. Note
that the spectrum of S and its adjoint S∗ may be unrelated in the infinite dimensional case.

Example 13.14 Let α(x) be a bounded integrable function on a measure space X , and let
Aα : g �→ αg be the multiplication operator defined in Example 13.9. There is no normal-
izable function g ∈ L2(X ) such that α(x)g(x) = λg(x) unless α(x) has the constant value
λ on an interval E of non-zero measure. For example, if α(x) = x on X = [a, b], then f (x)
is an eigenvector of Ax iff there exists λ ∈ C such that

x f (x) = λ f (x),

which is only possible through [a, b] if f (x) = 0. In quantum mechanics (see Chapter 14)
this problem is sometimes overcome by treating the eigenvalue equation as a distributional
equation. Then the Dirac delta function δ(x − x0) acts as a distributional eigenfunction,
with eigenvalue a < λ = x0 < b,

xδ(x − x0) = x0δ(x − x0).

Examples such as 13.14 lead us to consider a new definition for the spectrum of an
operator. Every operator A has a degeneracy at an eigenvalue λ, in that A − λI is not an
invertible operator. For, if (A − λI )−1 exists then Au �= λu, for if Au = λu then

u = (A − λI )−1(A − λI )u = (A − λI )−10 = 0.

We say a complex number λ is a regular value of a bounded operator A on a Hilbert
space H if A − λI is invertible – that is, (A − λI )−1 exists and is bounded. The spectrum
�(A) of A is defined to be the set of λ ∈ C that are not regular values of A. If λ is an
eigenvalue of A then, as shown above, it is in the spectrum of A but the converse is not true.
The eigenvalues are often called the point spectrum. The other points of the spectrum are
called the continuous spectrum. At such points it is conceivable that the inverse exists but
is not bounded. More commonly, the inverse only exists on a dense domain of H and is
unbounded on that domain. We will leave discussion of this to Section 13.6.

Example 13.15 Ifα(x) = x then the multiplication operator Aα on L2([0, 1]) has spectrum
consisting of all real numbers λ such that 0 ≤ λ ≤ 1. If λ > 1 or λ < 0 or has non-zero
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imaginary part then the function β = x − λ is clearly invertible and bounded on the interval
[0, 1]. Hence all these are regular values of the operator Ax . The real values 0 ≤ λ ≤ 1 form
the spectrum of Ax . From Example 13.14 none of these numbers are eigenvalues, but they
do lie in the spectrum of Ax since the function β is not invertible. The operator Aβ is then
defined, but unbounded, on the dense set [0, 1]− {λ}.

Theorem 13.17 Let A be a bounded operator on a Hilbert space H.

(i) Every complex number λ ∈ �(A) has magnitude |λ| ≤ ‖A‖.
(ii) The set of regular values of A is an open subset of C.

(iii) The spectrum of A is a compact subset of C.

Proof : (i) Let |λ| > ‖A‖. The operator A/λ then has norm < 1 and by Theorem 13.12
the operator I − A/λ is invertible and

(A − λI )−1 = −λ−1

(
I − A

λ

)−1

= −λ−1
∞∑

n=0

( A

λ

)n
.

Hence λ is a regular value. Spectral values must therefore have |λ| ≤ ‖A‖.
(ii) If λ0 is a regular value, then for any other complex number λ

I − (A − λ0 I )−1(A − λI ) = (A − λ0 I )−1
(
(A − λ0 I )− (A − λI )

)
= (A − λ0 I )−1(λ− λ0).

Hence

‖I − (A − λ0 I )−1(A − λI )‖ = |λ− λ0| ‖(A − λ0 I )−1‖ < 1

if

|λ− λ0| < 1

‖(A − λ0 I )−1‖ .

By Theorem 13.12, for λ in a small enough neighbourhood of λ the operator I − (I − (A −
λ0 I )−1(A − λ)

) = (A − λ0 I )−1(A − λI ) is invertible. If B is its inverse, then

B(A − λ0 I )−1(A − λ) = I

and A − λI is invertible with inverse B(A − λ0 I )−1. Hence the regular values form an open
set.

(iii) The spectrum�(A) is a closed set since it is the complement of an open set (the regular
values). By part (i), it is a subset of a bounded set |λ| ≤ ‖A‖, and is therefore a compact
set. �

Spectral theory of hermitian operators

Of greatest interest is the spectral theory of hermitian operators. This theory can become
quite difficult, and we will only sketch some of the proofs.
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Theorem 13.18 The spectrum �(A) of a hermitian operator A consists entirely of real
numbers.

Proof : Suppose λ = a + ib is a complex number with b �= 0. Then ‖(A − λI )u‖2 =
‖(A − aI )u‖2 + b2‖u‖2, and

‖u‖ ≤ 1

|b| ‖(A − λI )u‖. (13.12)

The operator A − λI is therefore one-to-one, for if (A − λI )u = 0 then u = 0.
The set V = {(A − λI )u | u ∈ H} is a subspace of H. To show closure (the vector sub-

space property is trivial), let vn = (A − λI )un → v be a convergent sequence of vectors in
V . From the fact that it is a Cauchy sequence and the inequality (13.12), it follows that un

is also a Cauchy sequence, having limit u. By continuity of the operator A − λI , it follows
that V is closed, for

(A − λI )u = lim
n→∞(A − λI )un = lim

n→∞ vn = v.

Finally, V = H, for if w ∈ V⊥, then 〈(A − λI )u |w〉 = 〈u | (A − λI )w〉 = 0 for all u ∈
H. Setting u = (A − λI )w gives (A − λI )w = 0. Since A − λI is one-to-one, w = 0.
Hence V⊥ = {0}, the subspace V = H and every vector u ∈ H can be written in the form
u = (A − λI )v. Thus A − λI is invertible, and the inequality (13.12) can be used to show
it is bounded. �

The full spectral theory of a hermitian operator involves reconstructing the operator from
its spectrum. In the finite dimensional case, the spectrum consists entirely of eigenvalues,
making up the point spectrum. From Theorem 13.15 the eigenvalues may be written as a
non-empty ordered set of real numbers λ1 < λ2 < · · · < λk . For each eigenvalue λi there
corresponds an eigenspace Mi of eigenvectors, and different spaces are orthogonal to each
other. A standard inductive argument can be used to show that every hermitian operator on
a finite dimensional Hilbert space is complete, so the eigenspaces span the entire Hilbert
space. In terms of projection operators into these eigenspaces Pi = PMi , these statements
can be summarized as

A = λ1 P1 + λ2 P2 + · · · + λk Pk

where

P1 + P2 + · · · + Pk = I, Pi Pj = Pj Pi = δi j Pi .

Essentially, this is the familiar statement that a hermitian matrix can be ‘diagonalized’
with its eigenvalues along the diagonal. If we write, for any two projection operators,
PM ≤ PN iff M ⊆ N , we can replace the operators Pi with an increasing family of projection
operators Ei = P1 + P2 + · · · + Pi . These are projection operators since they are clearly
hermitian and idempotent, (Ei )2 = Ei , and project into an increasing family of subspaces,
Vi = L(M1 ∪ M2 ∪ · · · ∪ Mi ), having the property Vi ⊂ Vj if i < j . Since Pi = Ei − Ei−1,
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where E0 = 0, we can write the spectral theorem in the form

A =
n∑

i=1

λi (Ei − Ei−1).

For infinite dimensional Hilbert spaces, the situation is considerably more complicated,
but the projection operator language can again be used to effect. The full spectral theorem
in arbitrary dimensions is as follows:

Theorem 13.19 Let A be a hermitian operator on a Hilbert spaceH, with spectrum�(A).
By Theorem 13.17 this is a closed bounded subset of R. There exists an increasing family
of projection operators Eλ (λ ∈ R), with Eλ ≤ Pλ′ for λ ≤ λ′, such that

Eλ = 0 for λ < inf(�(A)), Eλ = I for λ > sup(�(A))

and

A =
∫ ∞

−∞
λ dEλ.

The integral in this theorem is defined in the Lebesgue–Stieltjes sense. Essentially it
means that if f (x) is a measurable function, and g(x) is of the form

g(x) = c +
∫ x

0
h(x) dx

for some complex constant c and integrable function h(x), then∫ b

a
f (x) d(g(x)) =

∫ b

a
f (x)h(x) dx .

A function g of this form is said to be absolutely continuous; the function h is uniquely
defined almost everywhere by g and we may write it as a kind of derivative of g, h(x) = g′(x).
For the finite dimensional case this theorem reduces to the statement above, on setting Eλ
to have discrete jumps by Pi at each of the eigenvalues λi . The proof of this result is not
easy. The interested reader is referred to [3, 6] for details.

Problems

Problem 13.24 Show that a non-zero vector u is an eigenvector of an operator A if and only if
|〈u | Au〉| = ‖Au‖‖u‖.
Problem 13.25 For any projection operator PM show that every value λ �= 0, 1 is a regular value,
by showing that (PM − λI ) has a bounded inverse.

Problem 13.26 Show that every complex numberλ in the spectrum of a unitary operator has |λ| = 1.

Problem 13.27 Prove that every hermitian operator A on a finite dimensional Hilbert space can be
written as

A =
k∑

i=1

λi Pi where
k∑

i=1

Pi = I, Pi Pj = Pj Pi = δi j Pi .
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Problem 13.28 For any pair of hermitian operators A and B on a Hilbert space H, define A ≤ B iff
〈u | Au〉 ≤ 〈u | Bu〉 for all u ∈ H. Show that this is a partial order on the set of hermitian operators –
pay particular attention to the symmetry property, A ≤ B and B ≤ A implies A = B.

(a) For multiplication operators on L2(X ) show that Aα ≤ Aβ iff α(x) ≤ β(x) a.e. on X .
(b) For projection operators show that the definition given here reduces to that given in the text,

PM ≤ PN iff M ⊆ N .

13.6 Unbounded operators

A linear operator A on a Hilbert space H is unbounded if for any M > 0 there exists a
vector u such that ‖Au‖ ≥ M‖u‖. Very few interesting examples of unbounded operators
are defined on all of H – for self-adjoint operators, there are none at all. It is therefore
usual to consider an unbounded operator A as not being necessarily defined over all of H
but only on some vector subspace DA ⊆ H called the domain of A. Its range is defined
as the set of vectors that are mapped onto, RA = A(DA). In general we will refer to a pair
(A, DA), where DA is a vector subspace of H and A : DA → RA ⊆ H is a linear map, as
being an operator in H. Often we will simply refer to the operator A when the domain DA

is understood.
We say the domain DA is a dense subspace of H if for every vector u ∈ H and any

ε > 0 there exists a vector v ∈ DA such that ‖u − v‖ < ε. The operator A is then said to
be densely defined.

We say A is an extension of B, written B ⊆ A, if DB ⊆ DA and A
∣∣

DB
= B. Two operators

(A, DA) and (B, DB) in H are called equal if and only if they are extensions of each other –
their domains are equal, DA = DB and Au = Bu for all u ∈ DA.

For any two operators in H we must be careful about simple operations such as addition
A + B and multiplication AB. The former only exists on the domain DA+B = DA ∩ DB ,
while the latter only exists on the set B−1(RB ∩ DA). Thus operators in H do not form a
vector space or algebra in any natural sense.

Example 13.16 In H = �2 let A : H→ H be the operator defined by

(Ax)n = 1

n
xn.

This operator is bounded, hermitian and has domain DA = H since

∞∑
n=1

|xn|2 <∞ =⇒
∞∑

n=1

∣∣∣ xn

n

∣∣∣2 <∞.
The range of this operator is

RA =
{

y
∣∣∣ ∞∑

n=1

n2|yn|2 <∞
}
,

which is dense in �2 – since every x ∈ �2 can be approximated arbitrarily closely by, for
example, a finite sum

∑N
n=1 xnen where en are the standard basis vectors having components
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(en)m = δnm . The inverse operator A−1, defined on the dense domain DA−1 = RA, is un-
bounded since

‖A−1en‖ = ‖nen‖ = n →∞.
Example 13.17 In the Hilbert space L2(R) of equivalence classes of square integrable
functions (see Example 13.4), set D to be the vector subspace of elements ϕ̃ having a
representative ϕ from the C∞ functions on R of compact support. This is essentially the
space of test functions D∞(R) defined in Chapter 12. An argument similar to that outlined
in Example 13.5 shows that D is a dense subspace of L2(R). We define the position operator
Q : D → D ⊂ L2(R) by Qϕ̃ = x̃ϕ. We may write this more informally as

(Qϕ)(x) = xϕ(x).

Similarly the momentum operator P : D → D is defined by

Pϕ(x) = −i
d

dx
ϕ(x).

Both these operators are evidently linear on their domains.

Exercise: Show that the position and momentum operators in L2(R) are unbounded.

If A is a bounded operator defined on a dense domain DA, it has a unique extension to all
of H (see Problem 13.30). We may always assume then that a bounded operator is defined
on all of H, and when we refer to a densely defined operator whose domain is a proper
subspace of H we implicitly assume it to be an unbounded operator.

Self-adjoint and symmetric operators

Lemma 13.20 If DA is a dense domain and u a vector in H such that 〈u |v〉 = 0 for all
v ∈ DA, then u = 0.

Proof : Let w be any vector inH and ε > 0. Since DA is dense there exists a vector v ∈ DA

such that ‖w − v‖ < ε. By the Cauchy–Schwarz inequality

|〈u |w〉| = |〈u |w − v〉| ≤ ‖u‖‖w − v‖ < ε‖u‖.
Since ε is an arbitrary positive number, 〈u |w〉 = 0 for all w ∈ H; hence u = 0. �

If (A, DA) is an operator in H with dense domain DA, then let DA∗ be defined by

u ∈ DA∗ ⇐⇒ ∃u∗such that 〈u | Av〉 = 〈u∗ |v〉, ∀v ∈ DA.

If u ∈ DA∗ we set A∗u = u∗. This is uniquely defined, for if 〈u∗1 − u∗2 |v〉 = 0 for all
v ∈ DA then u∗1 = u∗2 by Lemma 13.20. The operator (A∗, DA∗ ) is called the adjoint of
(A, DA).

We say a densely defined operator (A, DA) in H is closed if for every sequence un ∈
DA such that un → u and Aun → v it follows that u ∈ DA and Au = v. Another way of
expressing this is to say that an operator is closed if and only if its graph G A = {(x, Ax) | x ∈
DA} is a closed subset of the product set H×H. The notion of closedness is similar to
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continuity, but differs in that we must assert the limit Aun → v, while for continuity it is
deduced. Clearly every continuous operator is closed, but the converse does not hold in
general.

Theorem 13.21 If A is a densely defined operator then its adjoint A∗ is closed.

Proof : Let yn be any sequence of vectors in DA∗ such that yn → y and A∗yn → z. Then
for all x ∈ DA

〈y | Ax〉 = lim
n→∞〈yn | Ax〉 = lim

n→∞〈A
∗yn | x〉 = 〈z | x〉.

Since DA is a dense domain, it follows from Lemma 13.20 that y ∈ DA∗ and A∗y = z. �

Example 13.18 Let H be a separable Hilbert space with complete orthonormal basis en

(n = 0, 1, 2, . . . ). Let the operators a and a∗ be defined by

a en =
√

nen−1, a∗ en =
√

n + 1en+1.

The effect on a typical vector x =∑∞
n=0 xnen , where xn = 〈x |en〉, is

a x =
∞∑

n=0

xn+1

√
n + 1en, a∗ x =

∞∑
n=1

xn−1
√

nen.

The operator a∗ is the adjoint of a since

〈a∗y | x〉 = 〈y |ax〉 =
∞∑

n=1

yn

√
n + 1xn+1

and both operators have domain of definition

D = Da = Da∗ =
{

y
∣∣∣ ∑

n=1

|yn|2n <∞
}
,

which is dense in H (see Example 13.16). In physics, H is the symmetric Fock space,
in which en represents n identical (bosonic) particles in a given state, and a∗ and a are
interpreted as creation and annihilation operators, respectively.

Exercise: Show that N = a∗a is the particle number operator, Nen = nen , and the commutator is
[a, a∗] = aa∗ − a∗a = I . What are the domains of validity of these equations?

Theorem 13.22 If (A, DA) and (B, DB) are densely defined operators in H then A ⊆
B =⇒ B∗ ⊆ A∗.

Proof : If A ⊆ B then for any vectors u ∈ DA and v ∈ DB∗

〈v | Au〉 = 〈v | Bu〉 = 〈B∗v |u〉.
Hence v ∈ DA∗ , so that DB∗ ⊆ DA∗ and

〈v | Au〉 = 〈A∗v |u〉 = 〈B∗v |u〉.
By Lemma 13.20 A∗v = B∗v, hence B∗ ⊆ A∗. �
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An operator (A, DA) on a dense domain is said to be self-adjoint if A = A∗. This means
that not only is Au = A∗u wherever both sides are defined, but also that the domains are
equal, DA = DA∗ . By Theorem 13.21 every self-adjoint operator is closed. This is not the
only definition that generalizes the concept of a hermitian operator to unbounded operators.
The following related definition is also useful. A densely defined operator (A, DA) in H is
called a symmetric operator if 〈Au |v〉 = 〈u | Av〉 for all u, v ∈ DA.

Theorem 13.23 An operator (A, DA) on a dense domain in H is symmetric if and only if
A∗ is an extension of A, A ⊆ A∗.

Proof : If A ⊆ A∗ then for all u, v ∈ DA ⊆ DA∗

〈u | Av〉 = 〈A∗u |v〉.
Furthermore, since A∗u = Au for all u ∈ DA, we have the symmetry condition 〈u | Av〉 =
〈Au |v〉.

Conversely, if A is symmetric then

〈u | Av〉 = 〈Au |v〉 for all u, v ∈ DA.

On the other hand, the definition of adjoint gives

〈u | Av〉 = 〈A∗u |v〉 for all u ∈ DA∗ , v ∈ DA.

Hence if u ∈ DA then u ∈ DA∗ and Au = A∗u, which two conditions are equivalent to
A ⊆ A∗. �

From this theorem it is immediate that every self-adjoint operator is symmetric, since
A = A∗ =⇒ A ⊆ A∗.

Exercise: Show that the operators A and A−1 of Example 13.16 are both self-adjoint.

Example 13.19 In Example 13.17 we defined the position operator (Q, D) having domain
D, the space of C∞ functions of compact support on R. This operator is symmetric in L2(R),
since

〈ϕ |Qψ〉 =
∫ ∞

−∞
ϕ(x)xψ(x) dx =

∫ ∞

−∞
xϕ(x)ψ(x) dx = 〈Qϕ |ψ〉

for all functions ϕ,ψ ∈ D. However it is not self-adjoint, since there are many functions
ϕ �∈ D for which there exists a function ϕ∗ such that 〈ϕ |Qψ〉 = 〈ϕ∗ |ψ〉 for allψ ∈ D. For
example, the function

ϕ(x) =
{

1 for − 1 ≤ x ≤ 1

0 for |x | > 1

is not in D since it is not C∞, yet

〈ϕ |Qψ〉 = 〈ϕ∗ |ψ〉, ∀ψ ∈ D where ϕ∗(x) = xϕ(x).

Similarly, the function ϕ = 1/(1+ x2) does not have compact support, yet satisfies the same
equation. Thus the domain DQ∗ of the adjoint operator Q∗ is larger than the domain D, and
(Q, D) is not self-adjoint.
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To rectify the situation, let DQ be the subspace of L2(R) of functions ϕ such that
xϕ ∈ L2(R), ∫ ∞

−∞
|xϕ(x)|2 dx <∞.

Functionsϕ andϕ′ are always to be identified, of course, if they are equal almost everywhere.
The operator (Q, DQ) is symmetric since

〈ϕ |Qψ〉 =
∫ ∞

−∞
ϕ(x)xψ(x) dx = 〈Qϕ |ψ〉

for all ϕ,ψ ∈ DQ . The domain DQ is dense in L2(R), for if ϕ is any square integrable
function then the sequence of functions

ϕn(x) =
{
ϕ(x) for − n ≤ x ≤ n

0 for |x | > n

all belong to DQ and ϕn → ϕ as n →∞ since

‖ϕ − ϕn‖2 =
∫ −n

−∞
|ϕ(x)|2 dx +

∫ ∞

n
|ϕ(x)|2 dx → 0.

By Theorem 13.23, Q∗ is an extension of Q since the operator (Q, DQ) is symmetric. It
only remains to show that DQ∗ ⊆ DQ . The domain DQ∗ is the set of functions ϕ ∈ L2(R)
such that there exists a function ϕ∗ such that

〈ϕ |Qψ〉 = 〈ϕ∗ |ψ〉, ∀ψ ∈ DQ .

The function ϕ∗ has the property∫ ∞

−∞

(
xϕ(x)− ϕ∗)ψ(x) dx = 0, ∀ψ ∈ DQ .

Since DQ is a dense domain this is only possible if ϕ∗(x) = xϕ(x) a.e. Since ϕ∗ ∈ L2(R) it
must be true that xϕ(x) ∈ L2(R), whence ϕ(x) ∈ DQ . This proves that DQ∗ ⊆ DQ . Hence
DQ∗ = DQ , and since ϕ∗(x) = xϕ(x) a.e., we have ϕ∗ = Qϕ. The position operator is
therefore self-adjoint, Q = Q∗.

Example 13.20 The momentum operator defined in Example 13.17 on the domain D of
differentiable functions of compact support is symmetric, for

〈ϕ | Pψ〉 =
∫ ∞

−∞
−iϕ(x)

dψ

dx
dx

= [−iϕ(x)ψ(x)
]∞
−∞ +

∫ ∞

−∞
i

dϕ(x)

dx
ψ(x) dx

=
∫ ∞

−∞
i

dϕ(x)

dx
ψ(x) dx

= 〈Pϕ |ψ〉
for all ϕ,ψ ∈ D. Again, it is not hard to find functions ϕ outside D that satisfy this relation
for all ψ , so this operator is not self-adjoint. Extending the domain so that the momentum
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operator becomes self-adjoint is rather trickier than for the position operator. We only give
the result; details may be found in [3, 7]. Recall from the discussion following Theorem 13.19
that a function ϕ : R → C is said to be absolutely continuous if there exists a measurable
function ρ on R such that

ϕ(x) = c +
∫ x

0
ρ(x) dx .

We may then set Dϕ = ϕ′ = ρ. When ρ is a continuous function, ϕ(x) is differentiable
and Dϕ = dϕ(x)/dx . Let DP consist of those absolutely continuous functions such that ϕ
and Dϕ are square integrable. It may be shown that DP is a dense vector subspace of
L2(R) and that the operator (P, DP ) where Pϕ = −i Dϕ is a self-adjoint extension of the
momentum operator P defined in Example 13.17.

Spectral theory of unbounded operators

As for hermitian operators, the eigenvalues of a self-adjoint operator (A, DA) are real and
eigenvectors corresponding to different eigenvalues are orthogonal. If Au = λu, then λ is
real since

λ = 〈u | Au〉
‖u‖2

= 〈Au |u〉
‖u‖2

= 〈u | Au〉
‖u‖2

= λ.

If Au = λu and Av = μv, then

0 = 〈Au |v〉 − 〈u | Av〉 = (λ− μ)〈u |v〉
whence 〈u |v〉 = 0 whenever λ �= μ.

For each complex number define �λ to be the domain of the resolvent operator
(A − λI )−1,

�λ = D(A−λI )−1 = RA−λI .

The operator (A − λI )−1 is well-defined with domain �λ provided λ is not an eigenvalue.
For, if λ is not an eigenvalue then ker(A − λI ) = {0} and for every y ∈ RA−λI there exists
a unique x ∈ DA such that y = (A − λI )x .

Exercise: Show that for all complex numbers λ, the operator A − λI is closed.

As for bounded operators a complex number λ is said to be a regular value for A if
�λ = H. The resolvent operator (A − λI )−1 can then be shown to be a bounded (continuous)
operator. The set of complex numbers that are not regular are again known as the spectrum
of A.

Theorem 13.24 λ is an eigenvalue of a self-adjoint operator (A, DA) if and only if the
resolvent set �λ is not dense in H.

Proof : If Ax = λx where x �= 0, then

0 = 〈(A − λI )x |u〉 = 〈x | (A − λI )u〉
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for all u ∈ DA. Hence 〈x |v〉 = 0 for all v ∈ �λ = RA−λI . If �λ is dense in H then, by
Lemma 13.20, this can only be true for x = 0, contrary to assumption.

Conversely if �λ is not dense then by Theorem 13.8 there exists a non-zero vector
x ∈ (�λ)⊥. This vector has the property

0 = 〈x | (A − λI )u〉 = 〈(A − λI )x |u〉
for all u ∈ DA. Since DA is a dense domain, x must be an eigenvector, Ax = λx . �

It is natural to classify the spectrum into two parts – the point spectrum consisting of
eigenvalues, where the resolvent set �λ is not dense in H, and the continuous spectrum
consisting of those values λ for which �λ is not closed. Note that these are not mutually
exclusive; it is possible to have eigenvalues λ for which the resolvent set is neither closed nor
dense. The entire spectrum of a self-adjoint operator can, however, be shown to consist of
real numbers. The spectral theorem 13.19 generalizes for self-adjoint operators as follows:

Theorem 13.25 Let A be a self-adjoint operator on a Hilbert space H. There exists an
increasing family of projection operators Eλ (λ ∈ R), with Eλ ≤ Pλ′ for λ ≤ λ′, such that

E−∞ = 0 and E∞ = I

such that

A =
∫ ∞

−∞
λ dEλ,

where the integral is interpreted as the Lebesgue–Stieltjes integral

〈u | Au〉 =
∫ ∞

−∞
λ d〈u |Eλu〉

valid for all u ∈ DA

The proof is difficult and can be found in [7]. Its main use is that it permits us to define
functions f (A) of a self-adjoint operator A for a very wide class of functions. For example
if f : R → C is a Lebesgue integrable function then we set

f (A) =
∫ ∞

−∞
f (λ) dEλ.

This is shorthand for

〈u | f (A)v〉 =
∫ ∞

−∞
f (λ) d〈u |Eλv〉

for arbitrary vectors u ∈ H, v ∈ DA. One of the most useful of such functions is f = eix ,
giving rise to a unitary transformation

U = ei A =
∫ ∞

−∞
eiλ dEλ.

This relation between unitary and self-adjoint operators has its main expression in Stone’s
theorem, which generalizes the result for finite dimensional vector spaces, discussed in
Example 6.12 and Problem 6.12.
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Theorem 13.26 Every one-parameter unitary group of transformations Ut on a Hilbert
space, such that UtUs = Ut+s , can be expressed in the form

Ut = ei At =
∫ ∞

−∞
eiλt dEλ.

Problems

Problem 13.29 For unbounded operators, show that

(a) (AB)C = A(BC).
(b) (A + B)C = AC + BC .
(c) AB + AC ⊆ A(B + C). Give an example where A(B + C) �= AB + AC .

Problem 13.30 Show that a densely defined bounded operator A in H has a unique extension to an
operator Â defined on all of H. Show that ‖ Â‖ = ‖A‖.
Problem 13.31 If A is self-adjoint and B a bounded operator, show that B∗AB is self-adjoint.

Problem 13.32 Show that if (A, DA) and (B, DB) are operators on dense domains inH then B∗A∗ ⊆
(AB)∗.

Problem 13.33 For unbounded operators, show that A∗ + B∗ ⊆ (A + B)∗.

Problem 13.34 If (A, DA) is a densely defined operator and DA∗ is dense in H, show that A ⊆ A∗∗.

Problem 13.35 If A is a symmetric operator, show that A∗ is symmetric if and only if it is self-adjoint,
A∗ = A∗∗.

Problem 13.36 If A1, A2, . . . , An are operators on a dense domain such that

n∑
i=1

A∗i Ai = 0,

show that A1 = A2 = · · · = An = 0.

Problem 13.37 If A is a self-adjoint operator show that

‖(A + i I )u‖2 = ‖Au‖2 + ‖u‖2

and that the operator A + i I is invertible. Show that the operator U = (A − i I )(A + i I )−1 is unitary
(called the Cayley transform of A).
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