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Mathematical Introduction 

The aim of this book is to provide you with an introduction to quantum mechanics, 
starting from its axioms. It is the aim of this chapter to equip you with the necessary 
mathematical machinery. All the math you will need is developed here, starting from 
some basic ideas on vectors and matrices that you are assumed to know. Numerous 
examples and exercises related to classical mechanics are given, both to provide some 
relief from the math and to demonstrate the wide applicability of the ideas developed 
here. The effort you put into this chapter will be well worth your while: not only 
will it prepare you for this course, but it will also unify many ideas you may have 
learned piecemeal. To really learn this chapter, you must, as with any other chapter, 
work out the problems. 

1.1. Linear Vector Spaces: Basics 

In this section you will be introduced to linear vector spaces. You are surely 
familiar with the arrows from elementary physics encoding the magnitude and 
direction of velocity, force, displacement, torque, etc. You know how to add them 
and multiply them by scalars and the rules obeyed by these operations. For example, 
you know that scalar multiplication is associative: the multiple of a sum of two 
vectors is the sum of the multiples. What we want to do is abstract from this simple 
case a set of basic features or axioms, and say that any set of objects obeying the same 
forms a linear vector space. The cleverness lies in deciding which of the properties to 
keep in the generalization. If you keep too many, there will be no other examples;  
if you keep too few, there will be no interesting results to develop from the axioms. 

The following is the list of properties the mathematicians have wisely chosen as 
requisite for a vector space. As you read them, please compare them to the world 
of arrows and make sure that these are indeed properties possessed by these familiar 
vectors. But note also that conspicuously missing are the requirements that every 
vector have a magnitude and direction, which was the first and most salient feature 
drilled into our heads when we first heard about them. So you might think that 
dropping this requirement, the baby has been thrown out with the bath water. 
However, you will have ample time to appreciate the wisdom behind this choice as 1 
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you go along and see a great unification and synthesis of diverse ideas under the 
heading of vector spaces. You will see examples of vector spaces that involve entities 
that you cannot intuitively perceive as having either a magnitude or a direction. 
While you should be duly impressed with all this, remember that it does not hurt at 
all to think of these generalizations in terms of arrows and to use the intuition to 
prove theorems or at the very least anticipate them. 

Definition 1. A linear vector space V is a collection of objects 
I 2 >, .. . , I V>, . . . , I W>, . . . , called vectors, for which there exists 

1. A definite rule for forming the vector sum, denoted I V> + I W> 
2. A definite rule for multiplication by scalars a,  b,.  . . , denoted al V> with the 
following features: 

• The result of these operations is another element of the space, a feature called 
closure: l V> + l W> e V. 

• Scalar multiplication is distributive in the vectors: a(IV> +I W> ) = 
al V> + al W>.  

• Scalar multiplication is distributive in the scalars: (a+ b)IV>= al V> + blV>. 
• Scalar multiplication is associative:  a(bl  V>)  = abl V > . 
• Addition is commutative:  l V> +I W> =I W>+1  V>.  
• Addition is associative: IV> + (I W> + l Z> ) = (IV> + I W > ) + I Z> . 
• There exist a null vector 10> obeying I V> +10> = I V>. 
• For every vector I V> there exists an inverse under addition, l —  V>, such that 

I V>+1 — V>=1 0 >. 

There is a good way to remember all of these; do what comes naturally. 

Definition 2. The numbers a, b, . . . are called the field over which the vector 
space is defined. 

If the field consists of all real numbers, we have a real vector space, if they are 
complex, we have a complex vector space. The vectors themselves are neither real or 
complex; the adjective applies only to the scalars. 

Let us note that the above axioms imply 

• 10> is unique, i.e., if  1 0'> has all the properties of  10>, then 10> = I 0'>. 
• 01 V> =10>. 
• I — V>= — I V>. 
• l— V> is the unique additive inverse of I V>. 

The proofs are left as to the following exercise. You don't have to know the proofs, 
but you do have to know the statements. 

Exercise 1.1.1. Verify these claims. For the first consider 10> +10'> and use the advertised 
properties of the two null vectors in turn. For the second start with 10> = (0 + 1)1 V> +I — V>. 
For the third, begin with 1 V> + (-1 V> )= 01 V> =10>. For the last, let  1W> also satisfy 
I V> +IW>=10>. Since 10> is unique, this means 1 V> +1  W>=  V> +1— V>. Take it from here. 
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Figure 1.1. The rule for vector addition. Note that it obeys axioms 
(i)-(iii). 

Exercise 1.1.2. Consider the set of all entities of the form (a, b, c) where the entries are 
real numbers. Addition and scalar multiplication are defined as follows: 

(a, b, c)+ (d, e, f)= (a,+ d, b + e, c +f) 

a(a, b, c)= (aa, ab, ac). 

Write down the null vector and inverse of (a, b, c). Show that vectors of the form (a, b, 1) do 
not form a vector space. 

Observe that we are using a new symbol I V> to denote a generic vector. This 
object is called ket V and this nomenclature is due to Dirac whose notation will be 
discussed at some length later. We do not purposely use the symbol V to denote the 
vectors as the first step in weaning you away from the limited concept of the vector 
as an arrow. You are however not discouraged from associating with l V> the arrow-
like object till you have seen enough vectors that are not arrows and are ready to 
drop the crutch. 

You were asked to verify that the set of arrows qualified as a vector space as 
you read the axioms. Here are some of the key ideas you should have gone over. 
The vector space consists of arrows, typical ones being V and I». The rule for 
addition is familiar: take the tail of the second arrow, put it on the tip of the first, 
and so on as in Fig. 1.1. 

Scalar multiplication by a corresponds to stretching the vector by a factor a. 
This is a real vector space since stretching by a complex number makes no sense. (If 
a is negative, we interpret it as changing the direction of the arrow as well as resealing 
it by I al .) Since these operations acting on arrows give more arrows, we have closure. 
Addition and scalar multiplication clearly have all the desired associative and distri-
butive features. The null vector is the arrow of zero length, while the inverse of a 
vector is the vector reversed in direction. 

So the set of all arrows qualifies as a vector space. But we cannot tamper with 
it. For example, the set of all arrows with positive z-components do not form a 
vector space: there is no inverse. 

Note that so far, no reference has been made to magnitude or direction. The 
point is that while the arrows have these qualities, members of a vector space need 
not. This statement is pointless unless I can give you examples, so here are two. 

Consider the set of all 2  X  2 matrices. We know how to add them and multiply 
them by scalars (multiply all four matrix elements by that scalar). The corresponding 
rules obey closure, associativity, and distributive requirements. The null matrix has 
all zeros in it and the inverse under addition of a matrix is the matrix with all elements 
negated. You must agree that here we have a genuine vector space consisting of 
things which don't have an obvious length or direction associated with them. When 
we want to highlight the fact that the matrix M is an element of a vector space, we 
may want to refer to it as, say, ket number 4 or: I 4>. 
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4 As a second example, consider all functionsf(x) defined in an interval 0 < x <L. 
We define scalar multiplication by a simply as af(x) and addition as pointwise 
addition:  the sum of two functions f and g has the value f(x)+ g(x) at the point x. 
The null function is zero everywhere and the additive inverse  off  is —f. 
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Exercise 1.1.3. Do functions that vanish at the end points x=0 and x=L form a vector 
space? How about periodic functions obeying f(0)=f(L)? How about functions that obey 
f(0)= 4? If the functions do not qualify, list the things that go wrong. 

The next concept is that of linear independence of a set of vectors 11 >,  12>.  ..  I n>.  
First consider a linear relation of the form 

E aili>=1 0 > 
i = 

We may assume without loss of generality that the left-hand side does not 
contain any multiple of 10>, for if it did, it could be shifted to the right, and combined 
with the 10> there to give 10> once more. (We are using the fact that any multiple 
of 10> equals 10>.) 

Definition 3. The set of vectors is said to be linearly independent if the only such 
linear relation as Eq. (1.1.1) is the trivial one with all ai = 0. If the set of vectors 
is not linearly independent, we say they are linearly dependent. 

Equation (1.1.1) tells us that it is not possible to write any member of the 
linearly independent set in terms of the others. On the other hand, if the set of 
vectors is linearly dependent, such a relation will exist, and it must contain at least 
two nonzero coefficients. Let us say a3  0 0. Then we could write 

(1.1.2) 
i=1,03 a3 

thereby expressing 13> in terms of the others. 
As a concrete example, consider two nonparallel vectors 11> and 12> in a plane. 

These form a linearly independent set. There is no way to write one as a multiple of 
the other, or equivalently, no way to combine them to get the null vector. On the 
other hand, if the vectors are parallel, we can clearly write one as a multiple of the 
other or equivalently play them against each other to get 0. 

Notice I said 0 and not 10>. This is, strictly speaking, incorrect since a set of 
vectors can only add up to a vector and not a number. It is, however, common to 
represent the null vector by 0. 

Suppose we bring in a third vector 13> also in the plane. If it is parallel to either 
of the first two, we already have a linearly dependent set. So let us suppose it is not. 
But even now the three of them are linearly dependent. This is because we can write 
one of them, say 13>,  as a linear combination of the other two. To find the combina-
tion, draw a line from the tail of 13> in the direction of 11>. Next draw a line 
antiparallel to 12> from the tip of 13>. These lines will intersect since 11> and 12> are 
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Exercise 1.1.4. Consider three elements from the vector space of real 2 x 2 matrices : 

1,>4
0 
	

I3> = [- 

 —1] 

0 0 	0 1 	 0 —2 

Are they linearly independent? Support your answer with details. (Notice we are calling 
these matrices vectors and using kets to represent them to emphasize their role as elements 
of a vector space. 

Exercise 1.1.5. Show that the following row vectors are linearly dependent: (1, 1, 0), 
(1, 0, 1), and (3, 2, 1). Show the opposite for (1, 1, 0), (1, 0, 1), and (0, 1, 1). 

Definition 4. A vector space has dimension n if it can accommodate a maximum 
of n linearly independent vectors. It will be denoted by  V(R) if the field is real 
and by  V(C) if the field is complex. 

In view of the earlier discussions, the plane is two-dimensional and the set of 
all arrows not limited to the plane define a three-dimensional vector space. How 
about 2 x 2 matrices? They form a four-dimensional vector space. Here is a proof. 
The following vectors are linearly independent:  

	

I1>=[1 0 
	[ 0 1 

1 2>= 	I3>=[° 	14>=[0 
 ol 

	

0 0 	0  0 	1 0 	0 1 

since it is impossible to form linear combinations of any three of them to give the 
fourth any three of them will have a zero in the one place where the fourth does 
not. So the space is at least four-dimensional. Could it be bigger? No, since any 
arbitrary 2 x 2 matrix can be written in terms of them: 

[a b 
1> + b12> + c13> + d14> 

c di = al  

If the scalars a, b, c, d are real, we have a real four-dimensional space, if they 
are complex we have a complex four-dimensional space. 

Theorem 1. Any vector I V> in an n-dimensional space can be written as a 
linearly combination of n linearly independent vectors 11> . . . In>. 

The proof is as follows: if there were a vector I V> for which this were not 
possible, it would join the given set of vectors and form a set of n+ 1 linearly 
independent vectors, which is not possible in an n-dimensional space by definition. 
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Definition 5. A set of n linearly independent vectors in an n-dimensional space 
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	 is called a basis. 

Thus we can write, on the strength of the above 

(1.1.3) 

where the vectors I i>  form a basis. 

Definition 6. The coefficients of expansion y, of a vector in terms of a linearly 
independent basis (I i> ) are called the components of the vector in that basis. 

Theorem 2. The expansion in Eq. (1.1.1) is unique. 

Suppose the expansion is not unique. We must then have a second expansion: 

v>= E vni> 
	

(1.1.4) 

Subtracting Eq. (1.1.4) from Eq. (1.1.3) (i.e., multiplying the second by the 
scalar —1 and adding the two equations) we get 

10> =E (v1-100 
	

(1.1.5) 

which implies that 

yi = y; 	 (1.1.6) 

since the basis vectors are linearly independent and only a trivial linear relation 
between them can exist. Note that given a basis the components are unique, but if 
we change the basis, the components will change. We refer to V> as the vector in 
the abstract, having an existence of its own and satisfying various relations involving 
other vectors. When we choose a basis the vectors assume concrete forms in terms 
of their components and the relation between vectors is satisfied by the components. 
Imagine for example three arrows in the plane, A, B , e satisfying Â + B =  e according 
to the laws for adding arrows. So far no basis has been chosen and we do not need 
a basis to make the statement that the vectors from a closed triangle. Now we choose 
a basis and write each vector in terms of the components. The components will 
satisfy C, = A, + B,, i= 1, 2. If we choose a different basis, the components will change 
in numerical value, but the relation between them expressing the equality of e to 
the sum of the other two will still hold between the new set of components. 
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V>=> 	and (1.1.7) 

I w> = E wiii> 	then (1.1.8) 

v> + w> =E (vi+ (1.1.9) 

where we have used the axioms to carry out the regrouping of terms. Here is the 
conclusion: 

To add two vectors, add their components. 

There is no reference to taking the tail of one and putting it on the tip of the 
other, etc., since in general the vectors have no head or tail. Of course, if we are 
dealing with arrows, we can add them either using the tail and tip routine or by 
simply adding their components in a basis. 

In the same way, we have: 

al V>=aEvili>=Eavili> 	 (1.1.10) 

In other words, 

To multiply a vector by a scalar, multiply all its components by the scalar. 

1.2. Inner Product Spaces 

The matrix and function examples must have convinced you that we can have 
a vector space with no preassigned definition of length or direction for the elements. 
However, we can make up quantities that have the same properties that the lengths 
and angles do in the case of arrows. The first step is to define a sensible analog of 
the dot product, for in the case of arrows, from the dot product 

;I• /3=IAIIBI cos 0 	 (1.2.1) 

we can read off the length of say À as VI A I • I AI and the cosine of the angle between 
two vectors as  A • /3/1AIIBI. Now you might rightfully object: how can you use the dot 
product to define the length and angles, if the dot product itself requires knowledge of 
the lengths and angles? The answer is this. Recall that the dot product has a second 
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Figure 1.2. Geometrical proof that the dot product obeys axiom (iii) 
for an inner product. The axiom requires that the projections obey 
Pk+ Pi -  Pik • 

   

Pj 

     

        

     

Pik 

   

        

equivalent expression in terms of the  components:  

;1• 	,4,13,+ Ay13,+ Az Bz 	 (1.2.2) 

Our goal is to define a similar formula for the general case where we do have the 
notion of components in a basis. To this end we recall the main features of the above 
dot product: 

1.A • h = 13 • ;I (symmetry) 
2. ;I' • A  >  O 	0  ¶A  = 0 (positive semidefiniteness) 
3. • (bh+ ce)= b:4-  • h+ cÂ • C(linearity)  

The linearity of the dot product is illustrated in Fig. 1.2. 
We want to invent a generalization called the inner product or scalar product 

between any two vectors I V> and I W>. We denote it by the symbol < VI W>. It is 
once again a number (generally complex) dependent on the two vectors. We demand 
that it obey the following axioms: 

• < VI W> =  <W V> * (skew-symmetry) 
• <V V> 	iff I V> = 1 0 > (positive semidefiniteness) 
• < VI (al W> + Z>)_ < VlaW+ bZ> = a<VIW> + b<VIZ> (linearity in ket) 

Definition 7. A vector space with an inner product is called an inner product 
space. 

Notice that we have not yet given an explicit rule for actually evaluating the 
scalar product, we are merely demanding that any rule we come up with must have 
these properties. With a view to finding such a rule, let us familiarize ourselves with 
the axioms. The first differs from the corresponding one for the dot product and 
makes the inner product sensitive to the order of the two factors, with the two 
choices leading to complex conjugates. In a real vector space this axioms states the 
symmetry of the dot product under exchange of the two vectors. For the present, 
let us note that this axiom ensures that <V V> is real. 

The second axiom says that < VI V> is not just real but also positive semidefinite, 
vanishing only if the vector itself does. If we are going to define the length of the 
vector as the square root of its inner product with itself (as in the dot product) this 
quantity had better be real and positive for all nonzero vectors. 
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What if the first factor in the product is a linear superposition, i.e., what is 
<aW+ bZIV>? This is determined by the first axiom: 

<aW+ bZI V> = <VlaW+ bZ>* by BI 

= (a<VIW> + b<VIZ>)*  

= a*  <VIW> *  +b* <VIZ> *  

=a* <WIV>+ b* <ZIV> 
	

(1.2.3) 

which expresses the antilinearity of the inner product with respect to the first factor 
in the inner product. In other words, the inner product of a linear superposition 
with another vector is the corresponding superposition of inner products if the super-
position occurs in the second factor, while it is the superposition with all coefficients 
conjugated if the superposition occurs in the first factor. This asymmetry, unfamiliar 
in real vector spaces, is here to stay and you will get used to it as you go along. 

Let us continue with inner products. Even though we are trying to shed the 
restricted notion of a vector as an arrow and seeking a corresponding generalization 
of the dot product, we still use some of the same terminology. 

Definition 8. We say that two vectors are orthogonal or perpendicular if their 
inner product vanishes. 

Definition 9. We will refer to ,/< VI V> I VI as the norm or length of the vector. 
A normalized vector has unit norm. 

Definition 10. A set of basis vectors all of unit norm, which are pairwise ortho-
gonal will be called an orthonormal basis. 

We will also frequently refer to the inner or scalar product as the dot product. 
We are now ready to obtain a concrete formula for the inner product in terms 

of the components. Given l V> and I W> 

I v>=E i> 

we follow the axioms obeyed by the inner product to obtain:  

< VI W> 	E wjoli> 	 (1.2.4) 

To go any further we have to know <i I j>, the inner product between basis vectors. 
That depends on the details of the basis vectors and all we know for sure is that 
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they are linearly independent. This situation exists for arrows as well. Consider a 
two-dimensional problem where the basis vectors are two linearly independent but 
nonperpendicular vectors. If we write all vectors in terms of this basis, the dot 
product of any two of them will likewise be a double sum with four terms (determined 
by the four possible dot products between the basis vectors) as well as the vector 
components. However, if we use an orthonormal basis such as j, only diagonal 
terms like  <i l  i> will survive and we will get the familiar result A • fi=i4,13,+A5 B5  
depending only on the components. 

For the more general nonarrow case, we invoke Theorem 3. 

Theorem 3 (Gram-Schmidt). Given a linearly independent basis we can form 
linear combinations of the basis vectors to obtain an orthonormal basis. 

Postponing the proof for a moment, let us assume that the procedure has been 
implemented and that the current basis is orthonormal: 

<ili>=  {1 for i =j
= 

0 for i0j — Y  

where 8,  is called the Kronecker delta symbol. Feeding this into Eq. (1.2.4) we find 
the double sum collapses to a single one due to the Kronecker delta, to give 

<v 1 
w> (1.2.5) 

This is the form of the inner product we will use from now on. 
You can now appreciate the first axiom; but for the complex conjugation of 

the components of the first vector,  <V V> would not even be real, not to mention 
positive. But now it is given by 

<v1v>=E (1.2.6) 

and vanishes only for the null vector. This makes it sensible to refer to < VI V> as 
the length or norm squared of a vector. 

Consider Eq. (1.2.5). Since the vector I V> is uniquely specified by its compo-
nents in a given basis, we may, in this basis, write it as a column vector: 

- 
VI 

V2 

in this basis 	 (1.2.7) 

vn_ 

I V>—*  
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- 

W I 

W2 

: in this basis 	 (1.2.8) 

Wn- 

The inner product < VI W> is given by the matrix product of the transpose conjugate 
of the column vector representing I V> with the column vector representing 1 W>:  

WI 

W2 

< VI W> = [v; , vl , . . . , 0] (1.2.9) 

_Wn- 

1.3. Dual Spaces and the Dirac Notation 

There is a technical point here. The inner product is a number we are trying to 
generate from two kets I V> and I W>, which are both represented by column vectors 
in some basis. Now there is no way to make a number out of two columns by direct 
matrix multiplication, but there is a way to make a number by matrix multiplication 
of a row times a column. Our trick for producing a number out of two columns has 
been to associate a unique row vector with one column (its transpose conjugate) 
and form its matrix product with the column representing the other. This has the 
feature that the answer depends on which of the two vectors we are going to convert 
to the row, the two choices (<V  W> and  <WI V>) leading to answers related by 
complex conjugation as per axiom 1(h). 

But one can also take the following alternate view. Column vectors are concrete 
manifestations of an abstract vector I V> or ket in a basis. We can also work back-
ward and go from the column vectors to the abstract kets. But then it is similarly 
possible to work backward and associate with each row vector an abstract object 
<WI, called bra- W. Now we can name the bras as we want but let us do the following. 
Associated with every ket 1 V> is a column vector. Let us take its adjoint, or transpose 
conjugate, and form a row vector. The abstract bra associated with this will bear 
the same label, i.e., it be called < VI. Thus there are two vector spaces, the space of 
kets and a dual space of bras, with a ket for every bra and vice versa (the components 
being related by the adjoint operation). Inner products are really defined only 
between bras and kets and hence from elements of two distinct but related vector 
spaces. There is a basis of vectors I i>  for expanding kets and a similar basis  <il for 
expanding bras. The basis ket 1i> is represented in the basis we are using by a column 
vector with all zeros except for a 1 in the ith row, while the basis bra  <i l  is a row 
vector with all zeros except for a 1 in the ith column. 
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V2 

(1.3.1) 

Vn_ 

where 4--* means "within a basis." 
There is, however, nothing wrong with the first viewpoint of associating a scalar 

product with a pair of columns or kets (making no reference to another dual space) 
and living with the asymmetry between the first and second vector in the inner 
product (which one to transpose conjugate?). If you found the above discussion 
heavy going, you can temporarily ignore it. The only thing you must remember is 
that in the case of a general nonarrow vector space:  

• Vectors can still be assigned components in some orthonormal basis, just as with 
arrows, but these may be complex. 

• The inner product of any two vectors is given in terms of these components by 
Eq. (1.2.5). This product obeys all the axioms. 

1.3.1. Expansion of Vectors in an Orthonormal Basis 

Suppose we wish to expand a vector I V> in an orthonormal basis. To find the 
components that go into the expansion we proceed as follows. We take the dot 
product of both sides of the assumed expansion with I j> : (or <A if you are a purist) 

I v> =E vil (1.3.2) 

01 V> =E (1.3.3) 

= V, (1.3.4) 

i.e., the find the jth component of a vector we take the dot product with the jth unit 
vector, exactly as with arrows. Using this result we may write 

I V>=  1001 v> (1.3.5) 

Let us make sure the basis vectors look as they should. If we set I V> =Ij> in Eq. 
(1.3.5), we find the correct  answer:  the ith component of the jth basis vector is 8„. 
Thus for example the column representing basis vector number 4 will have a 1 in 
the 4th row and zero everywhere else. The abstract relation 

I v> =E vil i> (1.3.6) 
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V2 0 
: 

 1 0 

=VI  : + V2 0 + • • • vn  : (1.3.7) 

_Vn_. _0_ _0_ _1_ 

1.3.2. Adjoint Operation 

We have seen that we may pass from the column representing a ket to the 
row representing the corresponding bra by the adjoint operation, i.e., transpose 
conjugation. Let us now ask: if < VI is the bra corresponding to the ket I V> what 
bra corresponds to al V> where a is some scalar? By going to any basis it is readily 
found that 

—

avi

- 

av2  

al V> —+ 

 

—> [a * * a v 2 , . ,a*0]—> <V1a* (1.3.8) 

    

     

_avn_ 

It is customary to write al V> as laV> and the corresponding bra as <aVI. What 
we have found is that 

<a1/1= <Via* 	 (1.3.9) 

Since the relation between bras and kets is linear we can say that if we have an 
equation among kets such as 

al V>=bl W>+ clZ>+ • • 	 (1.3.10) 

this implies another one among the corresponding bras: 

< VI a* =<W1b* + <ZIe* + • • • 
	 (1.3.11) 

The two equations above are said to be adjoints of each other. Just as any equation 
involving complex numbers implies another obtained by taking the complex conju-
gates of both sides, an equation between (bras) kets implies another one between 
(kets) bras. If you think in a basis, you will see that this follows simply from the 
fact that if two columns are equal, so are their transpose conjugates. 

Here is the rule for taking the adjoint: 
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We can extend this rule as follows. Suppose we have an expansion for a vector: 

I v>= E 
1=1 

(1.3.12) 

in terms of basis vectors. The adjoint is 

<v1= E <ilvr 
i= 1 

Recalling that vi = <i V> and v? =  <V  i>, it follows that the adjoint of 

	

- I v>= E i><iV> 
	

(1.3.13) 

is 

	

<V1= E <vli>01 
	

(1.3.14) 

from which comes the rule: 

To take the adjoint of an equation involving bras and kets and coefficients, 
reverse the order of all factors, exchanging bras and kets and complex conjugating 
all coefficients. 

Gram—Schmidt Theorem 

Let us now take up the Gram—Schmidt procedure for converting a linearly 
independent basis into an orthonormal one. The basic idea can be seen by a simple 
example. Imagine the two-dimensional space of arrows in a plane. Let us take two 
nonparallel vectors, which qualify as a basis. To get an orthonormal basis out of 
these, we do the following: 

• Rescale the first by its own length, so it becomes a unit vector. This will be the 
first basis vector. 

• Subtract from the second vector its projection along the first, leaving behind only 
the part perpendicular to the first. (Such a part will remain since by assumption 
the vectors are nonparallel.) 

• Rescale the left over piece by its own length. We now have the second basis vector: 
it is orthogonal to the first and of unit length. 

This simple example tells the whole story behind this procedure, which will now 
be discussed in general terms in the Dirac notation. 
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11> =1/>  — where 1 1 1 =‘/<I1 I> 

Clearly 

</V>  
<110 - 	2  - 1 

1-1 1 

As for the second vector in the basis, consider 

12'>=1//>-11><1111> 

which is III> minus the part pointing along the first unit vector. (Think of the arrow 
example as you read on.) Not surprisingly it is orthogonal to the  latter:  

<112'> =  <1111>—  < 11 1><11H>  =0  

We now divide 12'> by its norm to get 12> which will be orthogonal to the first and 
normalized to unity. Finally, consider 

1 3 '› = 	— I 1 ><11 HI> — 12><2IIII> 

which is orthogonal to both 11> and 12>. Dividing by its norm we get 13>, the third 
member of the orthogonal basis. There is nothing new with the generation of the 
rest of the basis. 

Where did we use the linear independence of the original basis? What if we had 
started with a linearly dependent basis? Then at some point a vector like 12'> or 13'> 
would have vanished, putting a stop to the whole procedure. On the other hand, 
linear independence will assure us that such a thing will never happen since it amounts 
to having a nontrivial linear combination of linearly independent vectors that adds 
up the null vector. (Go back to the equations for 12'> or 13'> and satisfy yourself 
that these are linear combinations of the old basis vectors.) 

Exercise 1.3.1. Form an orthogonal basis in two dimensions starting with ;1= 3i+ 4j and 
21— 6j. Can you generate another orthonormal basis starting with these two vectors? If 

so, produce another. 
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Exercise 1.3.2. Show how to go from the basis 

CHAPTER 1 
3 	 0 

II> =[()] 	1H> =[11 	IIH> =[2 
0 	 2 	 5 

to the orthonormal basis 

I 1> = 
1 

O 
[01 12>=  

o 
[1/.13 
2/N/3 

o 

l//5 

When we first learn about dimensionality, we associate it with the number of 
perpendicular directions. In this chapter we defined in terms of the maximum number 
of linearly independent vectors. The following theorem connects the two definitions. 

Theorem 4. The dimensionality of a space equals n 1 ,  the maximum number of 
mutually orthogonal vectors in it. 

To show this, first note that any mutually orthogonal set is also linearly indepen-
dent. Suppose we had a linear combination of orthogonal vectors adding up to 
zero. By taking the dot product of both sides with any one member and using the 
orthogonality we can show that the coefficient multiplying that vector had to vanish. 
This can clearly be done for all the coefficients, showing the linear combination is 
trivial. 

Now n 1  can only be equal to, greater than or lesser than n, the dimensionality 
of the space. The Gram—Schmidt procedure eliminates the last case by explicit con-
struction, while the linear independence of the perpendicular vectors rules out the 
penultimate option. 

Schwarz and Triangle Inequalities 

Two powerful theorems apply to any inner product space obeying our axioms: 

Theorem 5. The Schwarz Inequality 

I<VI W>I 	I VII WI 	 (1.3.15) 

Theorem 6. The Triangle Inequality 

I V+ WI I 	+ WI 	 (1.3.16) 

The proof of the first will be provided so you can get used to working with bras 
and kets. The second will be left as an exercise. 
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product of their lengths and the triangle inequality says that the length of a sum 	INTRODUCTION 
cannot exceed the sum of the lengths. This is an example which illustrates the merits 
of thinking of abstract vectors as arrows and guessing what properties they might 
share with arrows. The proof will of course have to rely on just the axioms. 

To prove the Schwarz inequality, consider axiom 1(i) applied to 

We get 

< w  1 v> 1 z> = 1 v> 	1 wl , 1 w > (1.3.17) 

<WI V> 	< WI V>  
<ZIZ> = < V 	2  W V 	2  W> 

1W! 	I WI 

= <VI V> 
<W V><  VI W>  < WI  V> *< V> 

1W1 2  

+ <WI V> *< WI V>< WI W>  
I WI 4  

> 0 	 (1.3.18) 

where we have used the antilinearity of the inner product with respect to the bra. 
Using 

< v>* = < w> 
we find 

< VI V> > < WI V>< VI W> 
I WI 2  

Cross-multiplying by 1 W1 2  and taking square roots, the result follows. 

(1.3.19) 

Exercise 1.3.3. When will this inequality be satisfied? Does this agree with you experience 
with arrows? 

Exercise 1.3.4. Prove the triangle inequality starting with 1 V+ W1 2 . You must use 
Re< VI W> 1< VI W>1 and the Schwarz inequality. Show that the final inequality becomes an 
equality only if 1 V> = al W> where a is a real positive scalar. 

1.4. Subspaces 

Definition 11. Given a vector space V, a subset of its elements that form a 
vector space among themselves t is called a  subspace. We  will denote a particular 
subspace i of dimensionality ni  by V`. 

Vector addition and scalar multiplication are defined the same way in the subspace as in V. 



Example 1.4.1. In the space V3 (R), the following are some example of sub-
spaces: (a) all vectors along the x axis, the space V);  (b) all vectors along the y 
axis, the space V); (c) all vectors in the x —y plane, the space Vly . Notice that all 
subspaces contain the null vector and that each vector is accompanied by its inverse 
to fulfill axioms for a vector space. Thus the set of all vectors along the positive x 
axis alone do not form a vector space. El 
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Definition 12. Given two subspaces 0/7' and VT), we define their sum 
V7'0V7i= V",:k as the set containing (1) all elements of V", (2) all elements of 
V7, (3) all possible linear combinations of the above. But for the elements (3), 
closure would be lost. 

Example 1.4.2. If, for example, V,I 0V) contained only vectors along the x and 
y axes, we could, be adding two elements, one from each direction, generate one 
along neither. On the other hand, if we also included all linear combinations, we 
would get the correct answer, VI OV) = CI 

Exercise 1.4.1.* In a space V", prove that the set of all vectors {I Vi>, I Vi>, • • • I ,  
orthogonal to any I V> 00>, form a subspace V" - I . 

Exercise 1.4.2. Suppose vp and vp are two subspaces such that any element of V I  is 
orthogonal to any element of V2. Show that the dimensionality of  V, V2  is n 1 + n2 . (Hint: 
Theorem 6.) 

1.5. Linear Operators 

An operator û is an instruction for transforming any given vector I V> into 
another, I V'>. The action of the operator is represented as follows: 

f/1 v>=1 
	

(1.5.1) 

One says that the operator f-/ has transformed the ket  I V> into the ket  I V'>. We 
will restrict our attention throughout to operators û that do not take us out of the 
vector space, i.e., if I V> is an element of a space V, so is I V'>= s-/I V>. 

Operators can also act on bras: 

< rin=< v" 1 
	

(1.5.2) 

We will only be concerned with linear operators, i.e., ones that obey the following 
rules: 

not' Vi> = anI Vi> (1.5.3a) 

ntal vi>+fil Vi>1=aq vi>+finl vi> (1.5.3b) 

(1.5.4a) 

(<Vila -F<Vilf3 ) 2 =a<viln+fi<v.iln (1.5.4b) 



Figure 1.3. Action of the operator  R( ,ri ). Note that 
R[12>+13>]= R12> +R13> as expected of a linear operator. (We 
will often refer to R(Iiri) as R if no confusion is likely.) 

19 
MATHEMATICAL 
INTRODUCTION 

Example 1.5.1. The simplest operator is the identity operator, I, which carries 
the instruction: 

I—>Leave the vector alone! 

Thus, 

/1 V> = 1 V> for all kets 1 V> 
	

(1.5.5) 

and 

< V1/= < VI for all bras  <V 
	

(1.5.6) 

We next pass on to a more interesting operator on V3 (R): 

7ri)—>Rotate vector by r about the unit vector i 

[More generally, R(0) stands for a rotation by an angle 0=101 about the axis parallel 
to the unit vector 6= tve.] Let us consider the action of this operator on the three 
unit vectors i, j, and k, which in our notation will be denoted by 11>, 12>, and 13> 
(see Fig. 1.3). From the figure it is clear that 

Rani/11>H» (1.5.7a) 

R(iri)1 2>=1 3 > (1.5.7b) 

Rani/13> = — 12> (1.5.7c) 

Clearly  R(ri)  is linear. For instance, it is clear from the same figure that 
R[12>+13>]=R12>+RI3>. 	 LI  

The nice feature of linear operators is that once their action on the basis vectors 
is known, their action on any vector in the space is determined. If 

nii>=10 

for a basis II>, 12>, 	, In> in  V's, then for any I V> =E vi I i> 

v>=Env,ii>=E vs/10=E or> 	(1.5.8) 
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I V > = 	+ v2 I 2> + v3 I3> 

is any vector, then 

RI V> = v i Ri 1> + v2RI2> + v3RI3>=  vii 1> + v2 I3> — v 3 I2> 

The product of two operators stands for the instruction that the instructions 
corresponding to the two operators be carried out in sequence 

V> = A(f/I V> )= Ain V> 	 (1.5.9) 

where I S2 V> is the ket obtained by the action of S2 on I V>. The order of the operators 
in a product is very important: in general, 

ûA-A[û,  A] 

called the commutator of  û and A isn't zero. For example  R(ri)  and R(1 n-j) do 
not commute, i.e., their commutator is nonzero. 

Two useful identities involving commutators are 

[SI, AO] = 	0] + [S2, A] 0 	 (1.5.10) 

[An,  O] = 	0] + [A, op 	 (1.5.11) 

Notice that apart from the emphasis on ordering, these rules resemble the chain rule 
in calculus for the derivative of a product. 

The inverse of 0, denoted by sr', satisfiest 

ofri = fr'n =1 
	

(1.5.12) 

Not every operator has an inverse. The condition for the existence of the inverse is 
given in Appendix A.1. The operator R(7ri) has an inverse: it is R(--Iri). The 
inverse of a product of operators is the product of the inverses in reverse: 

mAyl 	 (1.5.13) 

for only then do we have 

(SIA)(SIA) -1 = (SIA)(A-I SI-1 )= SIAA-10-1  =s-g-/ -1 = I 

1.6. Matrix Elements of Linear Operators 

We are now accustomed to the idea of an abstract vector being represented in 
a basis by an n-tuple of numbers, called its components, in terms of which all vector 

In  V(C) with n finite, S2 -1 S2= I .4.> S2S2- ' =I. Prove this using the ideas introduced toward the end of 
Theorem A.1.1., Appendix A.1. 



[

OPP> 01q2> • •• Ololn> vi 
<2û1l> v2 

v' 

(1.6.3) 

<nli../1 1> 	• • • 	 t;n 

operations can be carried out. We shall now see that in the same manner a linear 
operator can be represented in a basis by a set of n2  numbers, written as an n  X  n 
matrix, and called its matrix elements in that basis. Although the matrix elements, 
just like the vector components, are basis dependent, they facilitate the computation 
of all basis-independent quantities, by rendering the abstract operator more tangible. 

Our starting point is the observation made earlier, that the action of a linear 
operator is fully specified by its action on the basis vectors. If the basis vectors suffer 
a change 
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(where I i'>  is known), then any vector in this space undergoes a change that is readily 
calculable: 

ci  v>=û  E viii>=E vinli>=E vilr> 

When we say I i'>  is known, we mean that its components in the original basis 

Ur> =</Inli>n,, 	 (1.6.1) 

are known. The n2  numbers, ny , are the matrix elements of  û in this basis. If 

then the components of the transformed ket I V'> are expressable in terms of the ni, 
and the components of I V'> : 

v; =  <il  v'>= <ilol v>= Oln(E Vi  Li>) 

=E 

=ES-lif t); 	 (1.6.2) 

Equation (1.6.2) can be cast in matrix form: 

A mnemonic: the elements of the first column are simply the components of the first 
transformed basis vector I l'> =op> in the given basis. Likewise, the elements of the 
jth column represent the image of the jth basis vector after û acts on it. 
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Example 1.6.1. Combining our mnemonic with the fact that the operator R(ri) 
has the following effect on the basis vectors: 

R(zi)11>=11> 

R(iri)12> =13> 

R(ri)13>= —12> 

we can write down the matrix that represents it in the 11>, 12>, 13> basis: 

10 	0] 
R(1 ni) [0 0 —1 

01 	0 
(1.6.4) 

For instance, the —1 in the third column tells us that R rotates 13> into —12>. One 
may also ignore the mnemonic altogether and simply use the definition R,.,= 
to compute the matrix. 	 0 

Exercise 1.6.1. An operator f2 is given by the matrix 

001 1 
100  
010 

What is its action? 

Let us now consider certain specific operators and see how they appear in matrix 
form. 

(1) The Identity Operator I. 

01'0= <ilj>=Su 	 (1.6.5) 

Thus I is represented by a diagonal matrix with l's along the diagonal. You should 
verify that our mnemonic gives the same result. 

(2) The Projection Operators. Let us first get acquainted with projection opera-
tors. Consider the expansion of an arbitrary ket 1 V> in a basis: 

v>= E iixii v> 
i=, 
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IV>=(
E li>01)IV> 

i=1 

(1.6.6) 

Since Eq. (1.6.6) is true for all I V>, the object in the brackets must be identified 
with the identity (operator) 

i= iixil= E Pi 
i=1 	i= 

(1.6.7) 

The object P, = 1001 is called the projection operator for the ket i>. Equation (1.6.7), 
which is called the completeness relation, expresses the identity as a sum over projec-
tion operators and will be invaluable to us. (If you think that any time spent on the 
identity, which seems to do nothing, is a waste of time, just wait and see.) 

Consider 

Pil V>= 001 V>= 	 (1.6.8) 

Clearly P, is linear. Notice that whatever I V> is,  P11  V> is a multiple of  I i>  with 
a coefficient (v,) which is the component of I V> along I i>.  Since P, projects out the 
component of any ket I V> along the direction  I i>,  it is called a projection operator. 
The completeness relation, Eq. (1.6.7), says that the sum of the projections of a 
vector along all the n directions equals the vector itself. Projection operators can 
also act on bras in the same way: 

< Pi =< vl iXil = vr<1 I 
	

(1.6.9) 

Pojection operators corresponding to the basis vectors obey 

PiPi = I i>< i lj><jI = 80 Pi 
	 (1.6.10) 

This equation tells us that (1) once P, projects out the part of  I V> along I i>,  further 
applications of P, make no difference; and (2) the subsequent application of P ( j i) 
will result in zero, since a vector entirely along I i>  cannot have a projection along a 
perpendicular direction I j>. 



24 

                    

                    

          

E( .  

          

                    

                    

CHAPTER 1 

                   

                   

                   

                    

                    

                    

                      

                      

                      

                      

                      

                      

Figure 1.4.  P.  and Py  are polarizers p aced in the way of a beam traveling along the z axis. The action 
of the polarizers on the electric field E obeys the law of combination of projection operators: 
P,Py =  

The following example from optics may throw some light on the discussion. 
Consider a beam of light traveling along the z axis and polarized in the x —y plane 
at an angle 0 with respect to the y axis (see Fig. 1.4). If a polarizer Py , that only 
admits light polarized along the y axis, is placed in the way, the projection E cos 0 
along the y axis is transmitted. An additional polarizer Py  placed in the way has no 
further effect on the beam. We may equate the action of the polarizer to that of a 
projection operator Py that acts on the electric field vector E. If Py  is followed by a 
polarizer Px  the beam is completely blocked. Thus the polarizers obey the equation 
P,P,= 8,, P, expected of projection operators. 

Let us next turn to the matrix elements of  P. There are two approaches. The 
first one, somewhat indirect, gives us a feeling for what kind of an object li><i  is. 
We know 

0 
0 

I i> 

0 

and 

<i 	(0, 0, . . . , 1, 0, 0, . . . , 0) 
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0 
0 

liXi l (1.6.11) 

o 	 o_  

by the rules of matrix multiplication. Whereas < VI V'> = (1  X  n matrix) x 
(nx 1 matrix) = (1 x 1 matrix) is a scalar, I V>< V1 = (n x 1 matrix) x (1 x n matrix) = 
(nx n matrix) is an operator. The inner product < VI V'> represents a bra and ket 
which have found each other, while I V>< FI, sometimes called the outer product, 
has the two factors looking the other way for a bra or a ket to dot with. 

The more direct approach to the matrix elements gives 

(PI ) k/ = <kli><iIl> = 8 	8 - ki -  (1.6.12) 

which is of course identical to Eq. (1.6.11). The same result also follows from mne-
monic. Each projection operator has only one nonvanishing matrix element, a 1 at 
the ith element on the diagonal. The completeness relation, Eq. (1.6.7), says that 
when all the P, are added, the diagonal fills out to give the identity. If we form the 
sum over just some of the projection operators, we get the operator which projects 
a given vector into the subspace spanned by just the corresponding basis vectors. 

Matrices Corresponding to Products of Operators 

Consider next the matrices representing a product of operators. These are related 
to the matrices representing the individual operators by the application of Eq. (1.6.7) : 

()A)=<iIQAlj> = <iIQIAIi> 

=E <ilnIkXklAll>=E nikAki (1.6.13) 

Thus the matrix representing the product of operators is the product of the matrices 
representing the factors. 

The Adjoint of an Operator 

Recall that given a ket  a l V> la V>  the corresponding bra is 

<a VI =-- <Via*  (and not <Via) 

1 
0 

6 

(0, 0, . . . , 1, 0, .. . , 0) = 1 
0 
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v>= I n v> 

the corresponding bra is 

<nvi =< Vf 
	

(1.6.14) 

which defines the operator nt . One may state this equation in words: if SI turns a 
ket  I V> to I V'>,  then f2t  turns the bra <VI into <FI. Just as a and a*, IV> and 
<VI are related but distinct objects, so are f2 and f2 t . The relation between f2, and 
f2t , called the adjoint of f2 or "omega dagger," is best seen in a basis: 

(nt)y= 

=<ilni>*=<./Inli>* 

SO 

W,= skt 
	

(1.6.15) 

In other words, the matrix representing fi r  is the transpose conjugate of the matrix 
representing f2. (Recall that the row vector representing <VI is the transpose conju-
gate of the column vector representing I V>. In a given basis, the adjoint operation is 
the same as taking the transpose conjugate.) 

The adjoint of a product is the product of the adjoints in reverse: 

(1)A) t_ Atilt 	 (1.6.16) 

To prove this we consider <A VI. First we treat f2A as one operator and get 

<OA VI = <(f)A) VI = < VI (f)A) t  

Next we treat (A V) as just another vector, and write 

<A VI = <f2(A V )1 = <A VI f2 t  

We next pull out A, pushing fir  further out: 

<A VI = < VI AtSlt  

Comparing this result with the one obtained a few lines above, we get the desired 
result. 

Consider now an equation consisting of kets, scalars, and operators, such as 

aiI Vi>= a2I V2> + a3IV3><V41 V5>+ a4QAIV6> 	(1.6.17a) 



What is its adjoint? Our old rule tells us that it is 

< a: = < V2I +<V51V4><V31a+<(211V6lat 

In the last term we can replace <SIA V6 1 by 

< V61(f2A) t  = < KlAtnt  

so that finally we have the adjoint of Eq. (1.6.17a): 

< I at =<V2IctI+<V51V4><V3laT+<V61A tfirat (1.6.17b) 
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The final rule for taking the adjoint of the most general equation we will ever 
encounter is this: 

When a product of operators, bras, kets, and explicit numerical coefficients is 
encountered, reverse the order of all factors and make the substitutions S24-42t , 
I>*-  <I, a. a*. 

(Of course, there is no real need to reverse the location of the scalars a except in 
the interest of uniformity.) 

Hermitian, Anti -Hermitian, and Unitary Operators 

We now turn our attention to certain special classes of operators that will play 
a major role in quantum mechanics. 

Definition 13. An operator f2 is Hermitian if f2t =f2. 

Definition 14. An operator SI is anti-Hermitian if f2t  = 

The adjoint is to an operator what the complex conjugate is to numbers. Hermitian 
and anti-Hermitian operators are like pure real and pure imaginary numbers. Just 
as every number may be decomposed into a sum of pure real and pure imaginary 
parts, 

a—
a+a 
	+

a—a 

2 	2 

we can decompose every operator into its Hermitian and anti-Hermitian parts: 

n- Q-Ent + u-sf 
2 	2 

(1.6.18) 

Exercise 1.6.2.* Given f2 and A are Hermitian what can you say about (1) KM; (2) 
OA+ 2,11; (3) [f2, A]; and (4) i[S2, A]? 
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(1.6.19) 

This equation tells us that U and Ut  are inverses of each other. Consequently, 
from Eq. (1.5.12), 

eu= I 	 (1.6.20) 

Following the analogy between operators and numbers, unitary operators are 
like complex numbers of unit modulus, u = 9  . Just as u*u =1, so is  Ut U=I.  

Exercise 1.6.3. *  Show that a product of unitary operators is unitary. 

Theorem 7. Unitary operators preserve the inner product between the vectors 
they act on. 

Proof Let 

and 

Then 

Ivç>= ul vi> 

I 	= ul v2> 

<VIV>= <UV2lUV i > 

= < v2 i eV ' vi> = < 1/21 vi> (1.6.21) 

(Q.E.D.) 

Unitary operators are the generalizations of rotation operators from V3 (R) to 
✓ (C), for just like rotation operators in three dimensions, they preserve the lengths 
of vectors and their dot products. In fact, on a real vector space, the unitarity 
condition becomes U- ' = UT  (T means transpose), which defines an orthogonal or 
rotation matrix. [R ( ni) is an example.] 

Theorem 8. If one treats the columns of an n  X  n unitary matrix as components 
of n vectors, these vectors are orthonormal. In the same way, the rows may be 
interpreted as components of n orthonormal vectors. 

Proof]. According to our mnemonic, the jth column of the matrix representing 
U is the image of the jth basis vector after U acts on it. Since U preserves inner 
products, the rotated set of vectors is also orthonormal. Consider next the rows. We 
now use the fact that Ut  is also a rotation. (How else can it neutralize U to give 
Ut  U= /?) Since the rows of U are the columns of Ut  (but for an overall complex 
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Proof 2. Since Ut  U= /, 

3u=<ilhlf>=<il Ut Uli> 

=E <il oelkXkl uli> 

=E UlkUkj =  E UAUkj 
	 (1.6.22) 

which proves the theorem for the columns. A similar result for the rows follows if 
we start with the equation UUt =L Q.E.D. 

Note that Cy — land UUt  = I are not independent conditions. 

Exercise 1.6.4.* It is assumed that you know (1) what a determinant is, (2) that det SZ T = 
det (T denotes transpose), (3) that the determinant of a product of matrices is the product 
of the determinants. [If you do not, verify these properties for a two-dimensional case 

n=[ a p) 
8) 

with det 	(a —  f3').]  Prove that the determinant of a unitary matrix is a complex number 
of unit modulus. 

Exercise 1.6.5.* Verify that R (  A) is unitary (orthogonal) by examining its matrix. 

Exercise 1.6.6. Verify that the following matrices are unitary: 

1 [1 	i i 	1 — 

2 172  i 	11 2 
1[1+ 

1—i 	1+i 

Verify that the determinant is of the form e'°  in each case. Are any of the above matrices 
Hermitian? 

1.7. Active and Passive Transformations 

Suppose we subject all the vectors I V> in a space to a unitary transformation 

I 	v> 
	

(1.7.1) 

Under this transformation, the matrix elements of any operator SI are modified as 
follows: 

V>—><UV'ISII UV>=OPIUtS2U1 V> 	(1.7.2) 
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(1.7.3) 

The first case is called an active transformation and the second a passive transforma-
tion. The present nomenclature is in reference to the vectors: they are affected in an 
active transformation and left alone in the passive case. The situation is exactly the 
opposite from the point of view of the operators. 

Later we will see that the physics in quantum theory lies in the matrix elements 
of operators, and that active and passive transformations provide us with two equiva-
lent ways of describing the same physical transformation. 

Exercise 1.7.1.* The trace of a matrix is defined to be the sum of its diagonal matrix 
elements 

Tr =En, 

Show that 

(1) Tr(SIA)=Tr(M2) 
(2) Tr(f2A0)=Tr(A9S2 )=TR(OSIA) (The permutations are cyclic). 
(3) The trace of an operator is unaffected by a unitary change of basis 10-0 Uli>. [Equiva-

lently, show Tr f2=Tr(Uff2U).] 

Exercise 1.7.2. Show that the determinant of a matrix is unaffected by a unitary change 
of basis. [Equivalently show det n=det(UtS2U).] 

1.8. The Eigenvalue Problem 

Consider some linear operator SI acting on an arbitrary nonzero ket  I  V>: 

(21 v>= 1 
	

(1.8.1) 

Unless the operator happens to be a trivial one, such as the identity or its multiple, 
the ket will suffer a nontrivial change, i.e., I V'> will not be simply related to I V>. 
So much for an arbitrary ket. Each operator, however, has certain kets of its own, 
called its eigenkets, on which its action is simply that of rescaling: 

(1.8.2) 

Equation (1.8.2) is an eigenvalue  equation: I  V> is an eigenket of SI with eigenvalue 
co. In this chapter we will see how, given an operator SI, one can systematically 
determine all its eigenvalues and eigenvectors. How such an equation enters physics 
will be illustrated by a few examples from mechanics at the end of this section, and 
once we get to quantum mechanics proper, it will be eigen, eigen, eigen all the way. 
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Il V> = I V> 

for all l V>, we conclude that 

(1) the only eigenvalue of / is 1; 
(2) all vectors are its eigenvectors with this eigenvalue. 	 0 

Example 1.8.2. After this unqualified success, we are encouraged to take on a 
slightly more difficult case: SI= P y , the projection operator associated with a normal-
ized ket l V>. Clearly 

(1) any ket al V>, parallel to l V> is an eigenket with eigenvalue 1: 

P v laV>=I V><VIaV>=alY>IVI 2 =1•lay> 

(2) any ket l VI>, perpendicular to l V>, is an eigenket with eigenvalue 0: 

P vl vi > = I v>< vl vi> = 0 =01 vi > 

(3) kets that are neither, i.e., kets of the form al V> + fil VI>, are simply not 
eigenkets: 

Pv(al v > + )61 vi> )= la v> 0 r(al v> + fil v±>) 

Since every ket in the space falls into one of the above classes, we have found 
all the eigenvalues and eigenvectors. 	 0 

Example 1.8.3. Consider now the operator Ra ri). We already know that it 
has one eigenket, the basis vector 11> along the x axis: 

R( .- iri)ll>=11> 

Are there others? Of course, any vector all> along the x axis is also unaffected by 
the x rotation. This is a general feature of the eigenvalue equation and reflects the 
linearity of the operator: 

if 

01 V> = co l v > 

then 

Slal V> = ail' Y>=acolV>=o)alV> 
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for any multiple a. Since the eigenvalue equation fixes the eigenvector only up to 
an overall scale factor, we will not treat the multiples of an eigenvector as distinct 
eigenvectors. With this understanding in mind, let us ask if R ( in) has any eigenvec-
tors besides l l>. Our intuition says no, for any vector not along the x axis necessarily 
gets rotated by R(ici) and cannot possibly transform into a multiple of itself. Since 
every vector is either parallel to 11> or isn't, we have fully solved the eigenvalue 
problem. 

The trouble with this conclusion is that it is wrong! RO xi) has two other 
eigenvectors besides II>. But our intuition is not to be blamed, for these vectors are 
in V3(C) and not V 3 (R). It is clear from this example that we need a reliable and 
systematic method for solving the eigenvalue problem in  V(C). We now turn our 
attention to this very question. El 

The Characteristic Equation and the Solution to the Eigenvalue Problem 

We begin by rewriting Eq. (1.8.2) as 

(2— co/)1 V> = I 0> 	 (1.8.3) 

Operating both sides with (52— od) -1 , assuming it exists, we get 

(1.8.4) 

Now, any finite operator (an operator with finite matrix elements) acting on the null 
vector can only give us a null vector. It therefore seems that in asking for a nonzero 
eigenvector I V>, we are trying to get something for nothing out of Eq. (1.8.4). This 
is impossible. It follows that our assumption that the operator (SI — o)/) -1  exists (as 
a finite operator) is false. So we ask when this situation will obtain. Basic matrix 
theory tells us (see Appendix A.1) that the inverse of any matrix M is given by 

M' 
_cofactor MT  

det M 
(1.8.5) 

Now the cofactor of M is finite if M is. Thus what we need is the vanishing of the 
determinant. The condition for nonzero eigenvectors is therefore 

det(52— co/)= 0 	 (1.8.6) 

This equation will determine the eigenvalues co. To find them, we project Eq. (1.8.3) 
onto a basis. Dotting both sides with a basis bra <i I, we get 

<i l S2 — coil V> 0  
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E (ny  CO 8)Vi = 0 	 (1.8.7) 

Setting the determinant to zero will give us an expression of the form 

E cmcom = o 
m=0 

Equation (1.8.8) is called the characteristic equation and 

Pn(co)= E cmcom 
m = 0 

(1.8.8) 

(1.8.9) 

is called the characteristic polynomial. Although the polynomial is being determined 
in a particular basis, the eigenvalues, which are its roots, are basis independent, for 
they are defined by the abstract Eq. (1.8.3), which makes no reference to any basis. 

Now, a fundamental result in analysis is that every nth-order polynomial has n 
roots, not necessarily distinct and not necessarily real. Thus every operator in  V(C) 
has n eigenvalues. Once the eigenvalues are known, the eigenvectors may be found, 
at least for Hermitian and unitary operators, using a procedure illustrated by the 
following example. [Operators on  V(C) that are not of the above variety may not 
have n eigenvectors—see Exercise 1.8.4. Theorems 10 and 12 establish that Hermitian 
and unitary operators on  V(C) will have n eigenvectors.] 

Example 1.8.4. Let us use the general techniques developed above to find all 
the eigenvectors and eigenvalues of R (  ri). Recall that the matrix representing it is 

10 
R(iri)4--> [0 	0 

01 
—1 

0] 

0 

Therefore the characteristic equation is 

det(R —  0)1) = 
1 — co 

0 
0 

0 

—co 

1 

0 

—1 
—co 

=0 

(1 —co)(co 2 +1)=0 	 (1.8.10) 



34 with roots co = 1, ±  i. We know that co = 1 corresponds to il>. Let us see this come 
out of the formalism. Feeding co = 1 into Eq. (1.8.7) we find that the components 

, x2 , and x3  of the corresponding eigenvector must obey the equations 
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[x 2 1= 	[0]—> 	— x2  — x3  = 01 — I ]  
X3 = 

0 1 0 - 1 X3 	0 	X2 	X3 = 0 

Thus any vector of the form 

xi i 

	

xi I 1 > 	0 
0 

is acceptable, as expected. It is conventional to use the freedom in scale to normalize 
the eigenvectors. Thus in this case a choice is 

I co =1 >  =1 1 > 40 

I say a choice, and not the choice, since the vector may be multiplied by a number 
of modulus unity without changing the norm. There is no universally accepted con-
vention for eliminating this freedom, except perhaps to choose the vector with real 
components when possible. 

Note that of the three simultaneous equations above, the first is not a real 
equation. In general, there will be only (n— 1) LI equations. This is the reason the 
norm of the vector is not fixed and, as shown in Appendix A.1, the reason the 
determinant vanishes. 

Consider next the equations corresponding to co = i. The components of the 
eigenvector obey the equations 

(1— Ox i 	(i.e., x, = 0) 

— 	— X3 = 0 	(i.e., x2 iX3) 

X2 - iX3 = 0 	(i.e., x2 = ix3) 

Notice once again that we have only n— 1 useful equations. A properly normalized 
solution to the above is 

Ico=i,  4.,  1  roi 

 2112 
j 

 



A similar procedure yields the third eigenvector: 

la) = — i> 	[ —01 	0 

In the above example we have introduced a popular convention: labeling the 
eigenvectors by the eigenvalue. For instance, the ket corresponding to co = co ;  is 
labeled I co = co,> or simply I co,>. This notation presumes that to each co, there is just 
one vector labeled by it. Though this is not always the case, only a slight change in 
this notation will be needed to cover the general case. 

The phenomenon of a single eigenvalue representing more than one eigenvector 
is called degeneracy and corresponds to repeated roots for the characteristic poly-
nomial. In the face of degeneracy, we need to modify not just the labeling, but also 
the procedure used in the example above for finding the eigenvectors. Imagine that 
instead of R(ni) we were dealing with another operator S2 on V 3  (R) with roots co 
and co 2  =  w 3 . It appears as if we can get two eigenvectors, by the method described 
above, one for each distinct co. How do we get a third? Or is there no third? These 
equations will be answered in all generality shortly when we examine the question 
of degeneracy in detail. We now turn our attention to two central theorems on 
Hermitian operators. These play a vital role in quantum mechanics. 

Theorem 9. The eigenvalues of a Hermitian operator are real. 
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Proof Let 

Dot both sides with <col 

Take the adjoint to get 

Since S2 = S21. , this becomes 

Subtracting from Eq. (1.8.11) 

n10)>=(01(0> 

<coin! co> = co<col co> 

<colot l co> = ce<colco> 

<colol co> = (.0*<col co> 

o = ( co --ce)<wiv> 

(1.8.11) 

co = co* Q.E.D. 
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Theorem 10. To every Hermitian operator f2, there exists (at least) a basis 
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	 consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and 

has its eigenvalues as its diagonal entries. 

Proof Let us start with the characteristic equation. It must have at least one 
root, call it co l . Corresponding to co l  there must exist at least one nonzero eigenvector 
lc-DI>. [If not, Theorem (A.1.1) would imply that (f2- co l I) is invertible.] Consider 
the subspace VI-1 1  of all vectors orthogonal to 'col>. Let us choose as our basis the 
vector I co l > (normalized to unity) and any n - 1 orthonormal vectors 
{V 1 , V 1 ,...,  V1-1 1 } in VI7 1 . In this basis f2 has the following form: 

0 0 0 0 • • 0-  

 

  

(1.8.12) 

    

 

o 

   

    

The first column is just the image of 10) 1 > after f2 has acted on it. Given the 
first column, the first row follows from the Hermiticity of f2. 

The characteristic equation now takes the form 

(a)1 -  co) • (determinant of boxed submatrix) = 0 

n-1 

(co 1  - co) E cm0om=(co l —copn - l(0))=o 
0 

Now the polynomial P"-  1  must also generate one root, oh, and a normalized 
eigenvector i 0) 2 >. Define the subspace VI-1,22 of vectors in 4/1-1  I  orthogonal to 1(.02> 
(and automatically to I w2> )  and repeat the same procedure as before. Finally, the 
matrix f2 becomes, in the basis I col>, I (02>, • • • ,  

(01 0 0 0 
0 co2  0 o 

Ç 4-  0 0 CO3 0 

0 0 0 

Since every I co,> was chosen from a space that was orthogonal to the previous 
ones, co IX I co2>, • • • , I coi-i> ; the basis of eigenvectors is orthonormal. (Notice that 
nowhere did we have to assume that the eigenvalues were all distinct.) Q.E.D. 

[The analogy between real numbers and Hermitian operators is further strength-
ened by the fact that in a certain basis (of eigenvectors) the Hermitian operator can 
be represented by a matrix with all real elements.] 

In stating Theorem 10, it was indicated that there might exist more than one 
basis of eigenvectors that diagonalized f2. This happens if there is any degeneracy. 
Suppose col = (02= co. Then we have two orthonormal vectors obeying 



f210)1> =coko i > 
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It follows that 

n[al co 1> + 01(02>] =-- acol col> +0(01(02> = co[al col> +01 0)2>] 

for any a and )6. Since the vectors 'co l > and 10) 2 > are orthogonal (and hence LI), 
we find that there is a whole two-dimensional subspace spanned by I co l > and I 0o2>, 
the elements of which are eigenvectors of I2 with eigenvalue co. One refers to this 
space as an eigenspace of 52 with eigenvalue co. Besides the vectors I col> and I (02>, 
there exists an infinity of orthonormal pairs Ico>,100, obtained by a rigid rotation 
of 'col>, I 00, from which we may select any pair in forming the eigenbasis of S2. 
In general, if an eigenvalue occurs m, times, that is, if the characteristic equation has 
m, of its roots equal to some co i , there will be an eigenspace Vn.: from which we may 
choose any m, orthonormal vectors to form the basis referred to in Theorem 10. 

In the absence of degeneracy, we can prove Theorem 9 and 10 very easily. Let 
us begin with two eigenvectors: 

coi> = 	coi> (1.8.13a) 

f2 1c0J> = Coj IWj> (1.8.13b) 

Dotting the first with <coi l and the second with <coil, we get 

<0);Inl (0i> = (0i<0)11 (0i> (1.8.14a) 

<coil n1(0.> = Coj <Wj I Wj> (1.8.14b) 

Taking the adjoint of the last equation and using the Hermitian nature of 52, we get 

= 0)1<w; 1 (0s)  

Subtracting this equation from Eq. (1.8.14a), we get 

0--(co i —coi)<coi lco i> 
	

(1.8.15) 

If i=j, we get, since <co i  I co i > 00, 

(1.8.16) 
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<coi I 	0 
	

(1.8.17) 

since co ;  — co,* -= o), — co./ 0 0 by assumption. That the proof of orthogonality breaks 
down for co, = co, is not surprising, for two vectors labeled by a degenerated eigenvalue 
could be any two members of the degenerate space which need not necessarily be 
orthogonal. The modification of this proof in this case of degeneracy calls for argu-
ments that are essentially the ones used in proving Theorem 10. The advantage in 
the way Theorem 10 was proved first is that it suffers no modification in the degener-
ate case. 

Degeneracy 

We now address the question of degeneracy as promised earlier. Now, our 
general analysis of Theorem 10 showed us that in the face of degeneracy, we have 
not one, but an infinity of orthonormal eigenbases. Let us see through an example 
how this variety manifests itself when we look for eigenvectors and how it is to be 
handled. 

Example 1.8.5. Consider an operator S2 with matrix elements 

S.24— 
1 

[0 2 
 1 

0 

0 
0 
11 

1 

in some basis. The characteristic equation is 

(co — 2)2co = 0 

co =0,  2, 2 

The vector corresponding to co =0 is found by the usual means to be 

1 
!co 

--- 0> 
	

21/2 
 [ 01] 

—1 

The case co = 2 leads to the following equations for the components of the 
eigenvector : 

± X3 ----- 0 

0 = 0 

xl  —x2 =0 



Now we have just one equation, instead of the two (n-1) we have grown accustomed 
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degrees of freedom besides the usual one (of normalization). The conditions 

XI = X3 

X2 arbitrary 

define an ensemble of vectors that are perpendicular to the first, I co = 0>, i.e., lie in 
a plane perpendicular to I co = 0>. This is in agreement with our expectation that a 
twofold "degeneracy should lead to a two-dimensional eigenspace. The freedom in x2  
(or more precisely, the ratio x2/x3) corresponds to the freedom of orientation in this 
plane. Let us arbitrarily choose x2  = 1, to get a normalized eigenvector corresponding 
to w =2: 

1  
I co = 2> 4--> 31/2 [111 

The third vector is now chosen to lie in this plane and to be orthogonal to the second 
(being in this plane automatically makes it perpendicular to the first I co = 0> ) : 

1 
1  

I = 2, second one> 	—2 co 
6h/2[ ]  

1 

Clearly each distinct choice of the ratio, x2/x3  , gives us a distinct doublet of orthonor- 
mal eigenvectors with eigenvalue 2. 	 0 

Notice that in the face of degeneracy, I co i > no longer refers to a single ket but 
to a generic element of the eigenspace  V. To refer to a particular element, we must 
use the symbol I co i , a>, where a labels the ket within the eigenspace. A natural 
choice of the label a will be discussed shortly. 

We now consider the analogs of Theorems 9 and 10 for unitary operators. 

Theorem 11. The eigenvalues of a unitary operator are complex numbers of 
unit modulus. 

Theorem 12. The eigenvectors of a unitary operator are mutually orthogonal. 
(We assume there is no degeneracy.) 
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Ul ui> ui  I ui> 	 (1.8.18a) 

and 

U uf> = uf > 	 (1.8.18b) 

If we take the adjoint of the second equation and dot each side with the corresponding 
side of the first equation, we get 

<tti lUt  Ului> =ui uI<ui lui> 

so that 

If i=j, we get, since <ui  I ui> 0 0, 

while if i 0j, 

(1 —u i u,*)<uf lu,> = 0 	 (1.8.19) 

(1.8.20a) 

(1.8.20b) 

since  l ue > 	 Otti ti*u,u,* 0 1. (Q.E.D.) 
If U is degenerate, we can carry out an analysis parallel to that for the Hermitian 

operator 52, with just one difference. Whereas in Eq. (1.8.12), the zeros of the first 
row followed from the zeros of the first column and f  = SI, here they follow from 
the requirement that the sum of the modulus squared of the elements in each row 
adds up to 1. Since  lui!  = 1, all the other elements in the first row must vanish. 

Diagonalization of Hermitian Matrices 

Consider a Hermitian operator 52 on  V(C) represented as a matrix in some 
orthonormal basis l 1>, . , I i>, 	, In>. If we trade this basis for the eigenbasis 
w1>,.  , I w>,. 	con>, the matrix representing S2 will become diagonal. Now the 

operator U inducing the change of basis 

oh> = 	i> 	 (1.8.21) 

is clearly unitary, for it "rotates" one orthonormal basis into another. (If you wish 
you may apply our mnemonic to U and verify its unitary nature: its columns contain 
the components of the eigenvectors  I  a),> that are orthonormal.) This result is often 
summarized by the  statement:  

Every Hermitian matrix on  V(C) may be diagonalized by a unitary change of 
basis. 
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If f2 is a Hermitian matrix, there exists a unitary matrix U (built out of the 	INTRODUCTION 

eigenvectors of S2) such that UtS2U is diagonal. 
Thus the problem of finding a basis that diagonalizes 52 is equivalent to solving 

its eigenvalue problem. 

Exercise 1.8.1. (1) Find the eigenvalues and normalized eigenvectors of the matrix 

S-1=[

1 

0 

0 

3 	1 

2 	0 

1 	4 

(2) Is the matrix Hermitian? Are the eigenvectors orthogonal? 

Exercise 1.8.2. *  Consider the matrix 

001  

S2= [0 0 0 

100 

(1) Is it Hermitian? 
(2) Find its eigenvalues and eigenvectors. 
(3) Verify that UtS2U is diagonal, U being the matrix of eigenvectors of D. 

Exercise 1.8.3.* Consider the Hermitian matrix 

2  00 
Û  = 1 [ 0  

3 —1 
2 

0 —1 3 

(1) Show that co, = w 2  = 1; w 3  = 2. 
(2) Show that I co =2> is any vector of the form 

0 

(2a2)"
[ al 

1  

(3) Show that the co = 1 eigenspace contains all vectors of the form 

1  

02+2c2),/2pi 
c 

either by feeding w = 1 into the equations or by requiring that the co = 1 eigenspace be ortho-
gonal to I co =2>. 

—a 
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Exercise 1.8.4. An arbitrary nx n matrix need not have n eigenvectors. Consider as an 
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	example 

= 
[-41 21 ] 

(1) Show that co l  = w2= 3. 
(2) By feeding in this value show we get only one eigenvector of the form 

1  Hai(2a2)"2  La 

We cannot find another one that is LI. 

Exercise 1.8.5.* Consider the matrix 

[

cos 0 sin 01 
—sin 0 cos OJ 

(1) Show that it is unitary. 
(2) Show that its eigenvalues are e° and C`° . 
(3) Find the corresponding eigenvectors; show that they are orthogonal. 
(4) Verify that eflU= (diagonal matrix), where U is the matrix of eigenvectors of 11. 

Exercise 1.8.6.* (1) We have seen that the determinant of a matrix is unchanged under 
a unitary change of basis. Argue now that 

det f2 = product of eigenvalues of  û =  11 co, 

for a Hermitian or unitary a. 
(2) Using the invariance of the trace under the same transformation, show that 

Tr f2 = E 

Exercise 1.8.7. By using the results on the trace and determinant from the last problem, 
show that the eigenvalues of the matrix 

are 3 and —1. Verify this by explicit computation. Note that the Hermitian nature of the 
matrix is an essential ingredient. 



Exercise 1.8.8.* Consider Hermitian matrices M', M 2, M 3 , M4  that obey 

j= 1, . . , 4 

(1) Show that the eigenvalues of M i  are ± 1. (Hint: go to the eigenbasis of  W, and use 
the equation for i=j.) 

(2) By considering the relation 

M iMi= —M/M i  for i Of 

show that M /  are traceless. [Hint: Tr(A CB)=Tr(CBA).] 
(3) Show that they cannot be odd-dimensional matrices. 

Exercise 1.8.9. A collection of masses m a , located at ra  and rotating with angular velocity 
co around a common axis has an angular momentum 

= E rna (ra X  va) 
a 

where va  =  w X  ra  is the velocity of  ma . By using the identity 

A x (B x  C) = B(A • C) — C(A • B) 

show that each Cartesian component 1i  of 1 is given by 

1i = E Iwo);  

where 

Mu = E mjr2a s,— (ra ) i (ra ); ] 
a 

or in Dirac notation 

Il> =  MI w>  

(1) Will the angular momentum and angular velocity always be parallel? 
(2) Show that the moment of inertia matrix My  is Hermitian. 
(3) Argue now that there exist three directions for w such that I and co will be parallel. 

How are these directions to be found? 
(4) Consider the moment of inertia matrix of a sphere. Due to the complete symmetry 

of the sphere, it is clear that every direction is its eigendirection for rotation. What does this 
say about the three eigenvalues of the matrix M? 

Simultaneous Diagonalization of Two Hermitian Operators 

Let us consider next the question of simultaneously diagonalizing two Hermitian 
operators. 

Theorem 13. If 0 and A are two commuting Hermitian operators, there exists 
(at least) a basis of common eigenvectors that diagonalizes them both. 
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nlffli>=coilcoi> 

An' w i>= co i nico i> 

Since [A, II] = 0, 

nAlcoi>=NiAlcoe> (1.8.22) 

i.e., A/ co,> is an eigenvector of SI with eigenvalue co,. Since this vector is unique up 
to a scale, 

AI oi> =A1I w> (1.8.23) 

Thus  loi>  is also an eigenvector of A with eigenvalue A. Since every eigenvector of 
is an eigenvector of A, it is evident that the basis I co,> will diagonalize both 

operators. Since fl is nondegenerate, there is only one basis with this property. 
What if both operators are degenerate? By ordering the basis vectors such that 

the elements of each eigenspace are adjacent, we can get one of them, say fl, into 
the form (Theorem 10) 

COI 

CO2 

con, 

con, 

Now this basis is not unique: in every eigenspace V 	VT corresponding to the 
eigenvalue co,, there exists an infinity of bases. Let us arbitrarily pick in VT: a set 
co„ a> where the additional label a runs from 1 to m i  

How does A appear in the basis? Although we made no special efforts to get A 
into a simple form, it already has a simple form by virtue of the fact that it commutes 
with a Let us start by mimicking the proof in the nondegenerate case: 

nnicoi, a> = Anicoi, a > = coiAlcoi, a> 

Proof Consider first the case where at least one of the operators is nondegener-
ate, i.e., to a given eigenvalue, there is just one eigenvector, up to a scale. Let us 
assume SI is nondegenerate. Consider any one of its eigenvectors : 
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Now, since vectors from different eigenspaces are orthogonal [Eq. (1.8.15)], 

<(ob  fliAlco„ a>=0 

if I co i , a> and I co»  13> are basis vectors such that co, 0 co,. Consequently, in this basis, 

A 

which is called a block diagonal matrix for obvious reasons. The block diagonal form 
of A reflects the fact that when A acts on some element I co„ a> of the eigenspace 
VT', it turns it into another element of VT'. Within each subspace i, A is given by 
a matrix Ai , which appears as a block in the equation above. Consider a matrix Ai  
in VT, . It is Hermitian since A is. It can obviously be diagonalized by trading the 
basis  I o,  1>, I co i , 2>, , I co i , mi > in VT' that we started with, for the eigenbasis of 
A.  Let us make such a change of basis in each eigenspace, thereby rendering A 
diagonal. Meanwhile what of II? It remains diagonal of course, since it is indifferent 
to the choice of orthonormal basis in each degenerate eigenspace. If the eigenvalues 
of A, are Al l)  Al2) , . , en')  then we end up with 

   

A-+  

 

2, f ,n1) 
x11) 

 

    

    

(O1 

CO1 

CO2 

Q.E.D. 
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If A is not degenerate within any given subspace, A. k)  e)  for any k, 1, and i, the 
basis we end up with is unique: the freedom SI gave us in each eigenspace is fully 
eliminated by A. The elements of this basis may be named uniquely by the pair of 
indices w and Â. as I w,2.>, with playing the role of the extra label a. If A is 
degenerate within an eigenspace of SI, if say 2.1 1)  = 2. there is a two-dimensional 
eigenspace from which we can choose any two orthonormal vectors for the common 
basis. It is then necessary to bring in a third operator F, that commutes with both 
SI and A, and which will be nondegenerate in this subspace. In general, one can 
always find, for finite n, a set of operators 42, A, F, . . . } that commute with each 
other and that nail down a unique, common, eigenbasis, the elements of which may 
be labeled unambiguously as 1w, X, y, . . . >. In our study of quantum mechanics it 
will be assumed that such a complete set of commuting operators exists if n is infinite. 

Exercise 1.8.10. *  By considering the commutator, show that the following Hermitian 
matrices may be simultaneously diagonalized. Find the eigenvectors common to both and 
verify that under a unitary transformation to this basis, both matrices are diagonalized. 

1 

= [CI 

1 

0l 

0 	0] 

0 	1 

[2 

, 	A=l  [ 

1 

1 

0 

— 1 

—1  

11 
2 

Since û is degenerate and A is not, you must be prudent in deciding which matrix dictates 
the choice of basis. 

Example 1.8.6. We will now discuss, in some detail, the complete solution to a 
problem in mechanics. It is important that you understand this example thoroughly, 
for it not only illustrates the use of the mathematical techniques developed in this 
chapter but also contains the main features of the central problem in quantum 
mechanics. 

The mechanical system in question is depicted in Fig. 1.5. The two masses m 
are coupled to each other and the walls by springs of force constant k. If x l  and x2  
measure the displacements of the masses from their equilibrium points, these coordi-
nates obey the following equations, derived through an elementary application of 
Newton's laws:  

2k 
x1+ —  x2 

2k 
= X I - 17; X2 

(1.8.24a) 

(1.8.24b) 

Figure 13. The coupled mass problem. All masses are 
m, all spring constants are k, and the displacements of 
the masses from equilibrium are x, and x2. 
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The problem is to find x i  (t) and x2(t) given the initial-value data, which in this 
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of zero initial velocities, our problem is to find x i  (t) and x2(t), given x1(0) and x2(0). 	INTRODUCTION 
In what follows, we will formulate the problem in the language of linear vector 

spaces and solve it using the machinery developed in this chapter. As a first step, we 
rewrite Eq. (1.8.24) in matrix form: 

where the elements of the Hermitian 

=n22— 

5e2 
[51 

—2k 

[L1 11 

1-22, 	n22 

matrix SI, are 

/ m, 	I2= 21  

x2 
(1.8.25a) 

= k/m 	(1.8.25b) 

We now view x l  and x2  as components of an abstract vector Ix>, and 11 0  as the matrix 
elements of a Hermitian operator a Since the vector I x> has two real components, it 
is an element of V2(R), and S2 is a Hermitian operator on V2(R). The abstract form 
of Eq. (1.8.25a) is 

iie(t)>= nlx(t)> 	 (1.8.26) 

Equation (1.8.25a) is obtained by projecting Eq. (1.8.26) on the basis vectors II>, 
12), which have the following physical significance: 

1 	[1] [first mass displaced by unity] 
(1 .8.27a) 

0 4-4  second mass undisplaced 

[ 	first mass undisplaced 
12> 4-0, 	 (1.8.27b) 

1 	second mass displaced by unity 

An arbitrary state, in which the masses are displaced by x l  and x2 , is given in this 
basis by 

x2 	o 	1 
[x,1 =  [11 x  ± [01 

The abstract counterpart of the above equation is 

(1.8.28) 

lx> = 11>x, +12>x2 	 (1.8.29) 

It is in this II>, 12> basis that fl is represented by the matrix appearing in Eq. 
(1.8.25), with elements —2k / m, k/m, etc. 

The basis II>, 12> is very desirable physically, for the components of  I x>  in this 
basis (x i  and x2) have the simple interpretation as displacements of the masses. 
However, from the standpoint of finding a mathematical solution to the initial-value 
problem, it is not so desirable, for the components x l  and x2  obey the coupled 



[ .Ri I [- CO? 	0 1 [ XI] = 
.RII 	 0 - CO?' XII 

[ __, (0 21  xi ] = 
2 

- 0011 XII 
(1.8.33) 
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differential equations (1.8.24a) and (1.8.24b). The coupling is mediated by the off-
diagonal matrix elements K-112 = K-121 = k/m. 

Having identified the problem with the I1>, 12> basis, we can now see how to 
get around it: we must switch to a basis in which 0 is diagonal. The components of 
Ix> in this basis will then obey uncoupled differential equation which may be readily 
solved. Having found the solution, we can return to the physically preferable ID, 
12> basis. This, then, is our broad strategy and we now turn to the details. 

From our study of Hermitian operators we know that the basis that diagonalizes 
0 is the basis of its normalized eigenvectors. Let II> and III> be its eigenvectors 
defined by 

nli>=-Nfli> 	 (1.8.30a) 

nIll>=-coillii> 	 (1.8.30b) 

We are departing here from our usual notation: the eigenvalue of SI is written as 
— o) 2 rather than as co in anticipation of the fact that 0 has eigenvalues of the form 
- CO

2  , with co real. We are also using the symbols II> and III> to denote what should 
be called I— cob and 1— co?i > in our convention. 

It is a simple exercise (which you should perform) to solve the eigenvalue prob-
lem of 0 in the 11>, 12> basis (in which the matrix elements of 0 are known) and 
to obtain 

I /2 
k 	*.. 1  [ii  II>   
m 	2 1 /2 [1] 

1 
(3k\ 2 	[11 

(0114—m )

R 

 , 	III> 4-+ 	 
2 1 / 2  —1] 

If we now expand the vector I x(t)> in this new basis as 

I x( t)> = l i >xi( t) + 1I I >xii(t) (1.8.32) 

[in analogy with Eq. (1.8.29)], the components x1  and xn  will evolve as follows: 

We obtain this equation by rewriting Eq. (1.8.24) in the II>, III> basis in which 0 
has its eigenvalues as the diagonal entries, and in which Ix> has components x1  and 



	

x11 . Alternately we can apply the operator 	 49 
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d2 	 INTRODUCTION 
-- ç 
dr2  

to both sides of the expansion of Eq. (1.8.32), and get 

10> = D(56 + (?xi) + I 	+ 	x11 ) 
	

(1.8.34) 

Since II> and III> are orthogonal, each coefficient is zero. 
The solution to the decoupled equations 

	

+ ct) xi  = 0, 	i = I, II 	 (1.8.35) 

subject to the condition of vanishing initial velocities, is 

x i(t)=x,(0) cos w it, 	i= I, II 	 (1.8.36) 

As anticipated, the components of Ix> in the II>, III> basis obey decoupled equations 
that can be readily solved. Feeding Eq. (1.8.36) into Eq. (1.8.32) we get 

	

I x(t)> =  I  Dx1(0) cos oh t +  I  II>xii (0) cos oh'  t 	(1.8.37a) 

= I><Ilx(0)> cos co i  t + I II><III x(0)> cos oh '  t (1.8.37b) 

Equation (1.8.37) provides the explicit solution to the initial-value problem. It corre-
sponds to the following algorithm for finding I x(t)> given I x(0)>. 

Step (1). Solve the eigenvalue problem of n. 

Step (2). Find the coefficients xi(0) = <II x(0)> and xll(0) = <III x(0)> in the 
expansion 

lx(0)> = I I>x i (0 ) + I II >xn(0) 

Step (3). Append to each coefficient x, (0) (i = I, II) a time dependence cos co, t 
to get the coefficients in the expansion of I x(t)>. 

Let me now illustrate this algorithm by solving the following (general) initial-
value problem: Find the future state of the system given that at t= 0 the masses are 
displaced by x 1 (0) and x2(0). 

Step (1). We can ignore this step since the eigenvalue problem has been solved 
[Eq. (1.8.31)]. 
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1 	x 1 (0) 	x 1 (0) + x2(0) xi (0)= <II x(0)> - 	 (1, 
[ 

1) 	- 
2 1 /2 	X2(0)

] 
	2 1 /2  

1 
 Xil(0) = <III X( 3)> = 	( 1 , -1) [
x1 (0)] 

-
x l(0)— x2(0) 
 

	

 
21/ 	X2(0) 	2 1/2  

Step (3). 

lx (t)> II> 
x1+ x2

COS CO I t +  III> 
x1(0)- x2(0) 

 COS Nu t = 	
(0) 	(0)  

2" 	 2" 

The explicit solution above can be made even more explicit by projecting Ix(t)> onto 
the I1>, 12> basis to find  x 1 (t) and x2(t), the displacements of the masses. We get 
(feeding in the explicit formulas for co, and colt 

MO= <11x(t)> 

cos 	d+ <1III> = <1II> xi" 4- x2" 	Rk)1/2 	x1(0) - x2(0) 	R3k)I/2  
cos 	t 2 1 /2 	 2 1 /2  

1/2 

cos h1/2t1+ [Xi (0) - x2(0)] cos R-3k) t 	(1.8.38a) 2 	 2 	 rn  

using the fact that 

<1II>= < MI> = 1/2" 

It can likewise be shown that 

k 
X2(t) -

1 
2  [x(0) + x2(0)] cos R

1/2
-) 	

1 
 [xl(0)- x2(0)] cos 

[(
-
3k)1/2

1
] 	

(1.8.38b) 
2 

We can rewrite Eq. (1.8.38) in matrix form as 

-cos  [(k/m) 1 /2t1+ cos [(3k/m) 1 12 t]  cos [(k/m) 1 /2t]  - cos  [(3k/m) 1 /2tj - 
ki(t)1 	 2 	 2 
[x2(t) 	cos[(k/m) 112t] - cos  [(3k/m) 1 /2/  cos [(k/m) 1121+  cos [(3k/m) 1 /21]  

2 	 2 

x 
rx,(0)1 

(1.8.39) 
[x2(0)] 
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The Propagator 

There are two remarkable features in Eq. (1.8.39): 

(1) The final-state vector is obtained from the initial-state vector upon multiplication 
by a matrix. 

(2) This matrix is independent of the initial state. We call this matrix the propagator. 
Finding the propagator is tantamount to finding the complete solution to the 
problem, for given any other initial state with displacements 2 1 (0) and 22(0), we 
get 2 1 (t) and 22(0 by applying the same matrix to the initial-state vector. 

We may view Eq. (1.8.39) as the image in the I1>, 12> basis of the abstract 
relation 

Ix( > = U(t)Ix( 0)> 	 (1.8.40) 

By comparing this equation with Eq. (1.8.37b), we find the abstract representation 
of U: 

U(t)= Pa cos oh t+ III><III cos co n  t 	 (1.8.41a) 
II  

= E 1001 cos cot 
 i=I 

(1.8.41b) 

You may easily convince yourself that if we take the matrix elements of this operator 
in the I 1>, 12> basis, we regain the matrix appearing in Eq. (1.8.39). For example 

U11=01U1 1> 

k 
 =<11{1IXII COSR--) 1/2  ti+IIIXIII cos R-

3/12
/1111> 

m 	 m 

k 1/2 	/2 
= <11»<I11>COS[H ti+<11,»<Inocos[(2_,3)1 ti 

m 	 m 

= 1 { [(0 1/2 1  t  
m

) i+COSR3k
m
ytil – cos2 

  

Notice that U(t) [Eq. (1.8.41)] is determined completely by the eigenvectors 
and eigenvalues of a We may then restate our earlier algorithm as follows. To solve 
the equation 

= nix> 
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(1) Solve the eigenvalue problem of Q. 

CHAPTER 1 
	 (2) Construct the propagator U in terms of the eigenvalues and eigenvectors. 

(3) lx(t)>= U(t)lx(0)>. 

The Normal Modes 

There are two initial states 1x(0)> for which the time evolution is particularly 
simple. Not surprisingly, these are the eigenkets II> and III>. Suppose we have 
Ix(0)>=II>.  Then the state at time t is 

WO> U(t)II> 

= (1»<II cos w i  t + lII><III  cos con t)I I> 

=1 1 > cos w i  t 
	

(1.8.42) 

Thus the system starting off in II> is only modified by an overall factor cos w 1  t. A 
similar remark holds with 1 -41. These two modes of vibration, in which all (two) 
components of a vector oscillate in step are called normal modes. 

The physics of the normal modes is clear in the 11>, 12> basis. In this basis 

1 	[11  
21/2 Ld 

and corresponds to a state in which both masses are displaced by equal amounts. 
The middle spring is then a mere spectator and each mass oscillates with a frequency 
w i = (k/rn)" in response to the end spring nearest to it. Consequently 

[ 

cos[(k/m)1/21]

cos [(k/m)1/211 
I I (t) 	=

2'
1

/2 

On the other hand, if we start with 

III> 	1 	 [ 1 1 
2 1/2  —1 

the masses are displaced by equal and opposite amounts. In this case the middle 
spring is distorted by twice the displacement of each mass. If the masses are adjusted 
by A and —A, respectively, each mass feels a restoring force of 3kA (2kA from the 
middle spring and kA from the end spring nearest to it). Since the effective force 
constant is keff = 3kA/A = 3k, the vibrational frequency is (3k/m)" and 

1  [ cos [(3k/m)"tfl 
IMO» — 2 1/2 _cos [(3k/m)1/20 

If the system starts off in a linear combination of II> and III> it evolves into 
the corresponding linear combination of the normal modes II(t)> and III(t)>. This 



is the content of the propagator equation 

I x(0> = u(t)lx (0)> 
=1»<I1x(0)> cos co i t+ I II><H I x(0)> cos w il t 

= II(t)> • <II x(0)> + III(0><H1x(0)> 

Another way to see the simple evolution of the initial states II> and III> is to 
determine the matrix representing U in the II>, III> basis: 
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COS COI t 	0 
U 

1,11[ 	0 	cos co il  t 
basis 

(1.8.43) 

You should verify this result by taking the appropriate matrix elements of U(t) in 
Eq. (1.8.41b). Since each column above is the image of the corresponding basis 
vectors (II> or III>) after the action of U(t), (which is to say, after time evolution), 
we see that the initial states II> and III> evolve simply in time. 

The central problem in quantum mechanics is very similar to the simple example 
that we have just discussed. The state of the system is described in quantum theory 
by a ket I v> which obeys the Schrbdinger equation 

tk> =111w> 

where h is a constant related to Planck's constant h by h= h/2r, and H is a Hermitian 
operator called the Hamiltonian. The problem is to find I tif(t)> given I v(0)>. [Since 
the equation is first order in t, no assumptions need be made about I yi(0)>, which 
is determined by the Schrbdinger equation to be ( — i/h)Hiv (0)>.] 

In most cases, H is a time-independent operator and the algorithm one follows 
in solving this initial-value problem is completely analogous to the one we have just 
seen: 

Step (1). Solve the eigenvalue problem of H. 

Step (2). Find the propagator U(t) in terms of the eigenvectors and eigenvalues 
of H. 

Step (3). I u(t)> = U(t)I y/(0)>. 
You must of course wait till Chapter 4 to find out the physical interpretation 

of I tit>, the actual form of the operator H, and the precise relation between U(t) 
and the eigenvalues and eigenvectors of H. El 

Exercise 1.8.11. Consider the coupled mass problem discussed above. 
(1) Given that the initial state is 11>, in which the first mass is displaced by unity and 

the second is left alone, calculate 11(0> by following the algorithm. 
(2) Compare your result with that following from Eq. (1.8.39). 
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Exercise 1.8.12. Consider once again the problem discussed in the previous example. (1) 

CHAPTER 1 
	 Assuming that 

IR> = fll x> 

has a solution 

I x(t)> = u(t)I x(0)> 

find the differential equation satisfied by U(t). Use the fact that I x(0)> is arbitrary. 
(2) Assuming (as is the case) that f2 and U can be simultaneously diagonalized, solve 

for the elements of the matrix U in this common basis and regain Eq. (1.8.43). Assume 

1.9. Functions of Operators and Related Concepts 

We have encountered two types of objects that act on vectors: scalars, which 
commute with each other and with all operators; and operators, which do not 
generally commute with each other. It is customary to refer to the former as c 
numbers and the latter as g numbers. Now, we are accustomed to functions of c 
numbers such as sin(x), log(x), etc. We wish to examine the question whether 
functions of g numbers can be given a sensible meaning. We will restrict ourselves 
to those functions that can be written as a power series. Consider a series 

f(x)= E axn 
	

(1.9.1) 
n = 0 

where x is a c number. We define the same function of an operator or g number to 
be 

f(fl ) = E a n iln 
	

(1.9.2) 
n = 0 

This definition makes sense only if the sum converges to a definite limit. To see what 
this means, consider a common example: 

00 iln 

en= E — 
n=1 n! 

(1.9.3) 

Let us restrict ourselves to Hermitian n. By going to the eigenbasis of SI we can 
readily perform the sum of Eq. (1.9.3). Since 

 

- 

 

(02 

  

(1.9.4) 
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cor 
(1.9.5) 

   

— 	m co, 
E 

m=0 m. 
(1.9.6) 

Since each sum converges to the familiar limit 	the operator en  is indeed well 
defined by the power series in this basis (and therefore in any other). 

Exercise 1.9.1. *  We know that the series 

f(x)= E x" 
—0 

may be equated to the function f(x)= (1 —  x) ' if 1x1  <1. By going to the eigenbasis, examine 
when the g number power series 

„=0 

of a Hermitian operator Ll may be identified with (1 — 

Exercise 1.9.2.* If H is a Hermitian operator, show that U=elli  is unitary. (Notice the 
analogy with c numbers: if 19 is real, u = e‘ e  is a number of unit modulus.) 

Exercise 1.9.3. For the case above, show that det U=1 11. 

Derivatives of Operators with Respect to Parameters 

Consider next an operator O(X) that depends on a parameter X. Its derivative 
with respect to L is defined to be 

OdO(X) 	[  
— 

ca 	AA —.0 

If O ( .) is written as a matrix in some basis, then the matrix representing dO(X)/c1X 
is obtained by differentiating the matrix elements of 0(2.). A special case of 00.) we 

en = 
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where SI is Hermitian. We can show, by going to the eigenbasis of SI, that 

dt9(;.) 
 — 	= 	(A) )  

dA, 
(1.9.7) 

The same result may be obtained, even if SI is not Hermitian, by working with the 
power series, provided it exists:  

d  cc, A, run 	n  — 1 gy 	An— 1 gy — 	1 	cc  xmgr 
	— E 	- f2e1Q  

cti n = 0  n! 	n = 1 	n! 	n = 1  (n— 1)! 	m0  m! 

Conversely, we can say that if we are confronted with the differential Eq. (1.9.7), 
its solution is given by 

A 

0(A)= c exp(1 dX)= c exp(M) 

(It is assumed here that the exponential exists.) In the above, c is a constant (opera-
tor) of integration. The solution  O  = eQA  corresponds to the choice c= I. 

In all the above operations, we see that S2 behaves as if it were just a c number. 
Now, the real difference between c numbrs and g numbers is that the latter do not 
generally commute. However, if only one g number (or powers of it) enter the 
picture, everything commutes and we can treat them as c numbers. If one remembers 
this mnemonic, one can save a lot of time. 

If, on the other hand, more than one g number is involved, the order of the 
factors is all important. For example, it is true that 

efin  = e(a + fig)  

as may be verified by a power-series expansion, while it is not true that 

eane" = ea ° ±130  

or that 

eane"e'n = es°  

unless [SI, 0 ] = O. Likewise, in differentiating a product, the chain rule is 

—
d 

em)e'l°  = neeA°  + evu'e'l°  0 
dL  

(1.9.8) 
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but not as 

em)e"SI 

unless [SI, 0]= 0. 

1.10. Generalization to Infinite Dimensions 

In all of the preceding discussions, the dimensionality (n) of the space was 
unspecified but assumed to be some finite number. We now consider the generaliza-
tion of the preceding concepts to infinite dimensions. 

Let us begin by getting acquainted with an infinite-dimensional vector. Consider 
a function defined in some interval, say, a <x <b. A concrete example is provided 
by the displacement f (x, t) of a string clamped at x = 0 and x = L (Fig. 1.6). 

Suppose we want to communicate to a person on the moon the string's displace-
ment f (x), at some time t.  One simple way is to divide the interval 0—  L into 20 equal 
parts, measure the displacement f (x,) at the 19 points x = L/20, 2L/20, . . . , 19L/20, 
and transmit the 19 values on the wireless. Given these f (x,), our friend on the moon 
will be able to reconstruct the approximate picture of the string shown in Fig. 1.7. 

If we wish to be more accurate, we can specify the values of f (x) at a larger 
number of points. Let us denote by fn(x) the discrete approximation to f (x) that 
coincides with it at n points and vanishes in between. Let us now interpret the ordered 
n-tuple { fn(x1), f,(x2), • • • , fn(xn)} as components of a ket  I  fn > in a vector space 

(R): 

I fn> (1.10.1) 

  

     

flx 

   

Figure 1.6. The string is clamped at x = 0 
and x= L. It is free to oscillate in the plane 
of the paper. 

    

    

.. 	• 

X.0, 1  I I I 	  
X1X 2  I • L 	Figure 1.7. The string as reconstructed by the 

xig cr.  

person on the moon. 



58 	 The basis vectors in this space are 

CHAPTER 1 

 

0 - 

 

 

0 

1 
o 

 

ith place 	 (1.10.2) 

 

0_ 

  

   

corresponding to the discrete function which is unity at x = x, and zero elsewhere. 
The basis vectors satisfy 

<xi  I xi>I  = S u  (orthogonality) 	 (1.10.3) 

E ixi><xi i = I (completeness) 
i= 

(1.10.4) 

Try to imagine a space containing n mutually perpendicular axes, one for each 
point x,. Along each axis is a unit vector  Ix,>. The function fn(x) is represented by 
a vector whose projection along the ith direction is fn(x,): 

Ifn>= E f(x)Ix> (1.10.5) 

To every possible discrete approximation gn(x), h n (x), etc., there is a corresponding 
ket Ign>, Ih>, etc., and vice versa. You should convince yourself that if we define 
vector addition as the addition of the components, and scalar multiplication as the 
multiplication of each component by the scalar, then the set of all kets representing 
discrete functions that vanish at x = 0, L and that are specified at n points in between, 
forms a vector space. 

We next define the inner product in this space: 

< fn ign > = E fn (x i )g n(x i ) 
- 

(1.10.6) 

Two functions fn (x) and  g(x) will be said to be orthogonal if < fn ign > = 0. 
Let us now forget the man on the moon and consider the maximal specification 

of the string's displacement, by giving its value at every point in the interval 0—  L. 
In this case  f(x) (x) is specified by an ordered infinity of numbers: an f (x) for 
each point x. Each function is now represented by a ket I foo > in an infinite-dimen-
sional vector space and vice versa. Vector addition and scalar multiplication are 
defined just as before. Consider, however, the inner product. For finite n it was 
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in particular 

<fnl fn> = E EfAxi)1 2  

If we now let n go to infinity, so does the sum, for practically any function. What 
we need is the redefinition of the inner product for finite n in such a way that as n 
tends to infinity, a smooth limit obtains. The natural choice is of course 

< fn ign > =  E fn(x i )gn(x i )A, 	A = L (n + 1) 	(1.10.6') 
i= 

If we now let n go to infinity, we get, by the usual definition of the integral, 

<f  ig> =  I  f (x)g(x) dx 
J o  

<fl 	f 2(x) dx 
J o  

(1.10.7) 

(1.10.8) 

If we wish to go beyond the instance of the string and consider complex functions 
of x as well, in some interval a < x <b, the only modification we need is in the inner 
product: 

< f ig> = 	f*(x)g(x) dx 
	

(1.10.9) 
a 

What are the basis vectors in this space and how are they normalized? We know 
that each point x gets a basis vector Ix>.  The orthogonality of two different axes 
requires that 

<xi x'> = 0, 	x 	 (1.10.10) 

What if x = x'? Should we require, as in the finite-dimensional case, <xl x> = 1? The 
answer is no, and the best way to see it is to deduce the correct normalization. We 
start with the natural generalization of the completeness relation Eq. (1.10.4) to the 
case where the kets are labeled by a continuous index x' : 

*b  

Ix'><x'l  
a J   (1.10.11) 
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sides of Eq. (1.10.11) with some arbitrary ket  i f>  from the right and the basis bra 
<xi from the left, 
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<xl x > 	I f>  dx — <x1 1 1  f>  = <xl  f> 	(1.10.12) 
a 

Now, <xi f>, the projection of  if>  along the basis ket x>, is just f (x). Likewise 
<x'l f> = f (x'). Let the inner product <xi x'> be some unknown function 8(x, x'). 
Since 8(x, x') vanishes if x x' we can restrict the integral to an infinitesimal region 
near x' = x in Eq. (1.10.2): 

x±.

8(x, x') f (x) dx' =f (x) 
E 

(1.10.13) 

In this infinitesimal region, f (x') (for any reasonably smooth f ) can be approximated 
by its value at x' = x, and pulled out of the integral: 

so that 

x+. 
f (x)  J 	S(x, x') dx' = f (x) 

X E 

x+. 

1.X- E 

(1.10.14) 

(1.10.15) 

Clearly 8(x, x') cannot be finite at x' = x, for then its integral over an infinitesimal 
region would also be infinitesimal. In fact S(x, x') should be infinite in such a way 
that its integral is unity. Since S(x, x') depends only on the difference x — x', let us 
write it as (5(x — x'). The "function," 8(x — x'), with the properties 

(5(x—x')=0, 	x0x' 

fa S(x—x') dx' =1, 	a<x<b 

	 (1.10.16) 

is called the Dirac delta function and fixes the normalization of the basis vectors: 

<xix'> = (5(x — x') 	 (1.10.17) 

It will be needed any time the basis kets are labeled by a continuous index such as 
x. Note that it is defined only in the context of an integration : the integral of the 
delta function 8(x — x') with any smooth function f (x') is f (x). One sometimes calls 



(a) 
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Figure 1.8. (a) The Gaussian g6, approaches the delta function as  A—>0. (b) Its derivative (dg/dx)(x — x') 
approaches 8 '(x — x) as  

the delta function the sampling function, since it samples the value of the function 
f(x) at one points 

f (5(x — x') f (x') dx= f (x) 	 (1.10.18) 

The delta function does not look like any function we have seen before, its 
values being either infinite or zero. It is therefore useful to view it as the limit of a 
more conventional function. Consider a Gaussian 

1
2 	1 2 exp 	

(x — x') 21 
g A (x — x') = 

(rA ) 	 A2  
(1.10.19) 

as shown in Fig. 1.8a. The Gaussian is centered at x'=x, has wdith A, maximum 
height (rA2) 1 / 2 , and unit area, independent of A. As A approaches zero, g A  becomes 
a better and better approximation to the delta  function.§ 

It is obvious from the Gaussian model that the delta function is even. This may 
be verified as follows: 

8(x— x') = <xi x'> = <x'lx>* = 8(x' — x)* = 8(x'  —x)  

since the delta function is real. 
Consider next an object that is even more peculiar than the delta function: its 

derivative with respect to the first argument x: 

8(x — x') = — —
d 

(5(x — x') 
dx 	 dx' 

(1.10.20) 

What is the action of this function under the integral? The clue comes from the 
Gaussian model. Consider dgA (x— x')/ dx= —dg A (x — x')/ dx' as a function of x'. As 

We will often omit the limits of integration if they are unimportant. 
§ A fine point that will not concern you till Chapter 8: This formula for the delta function is valid even 

if A2  is pure imaginary, say, equal to 0 2 . First we see from Eq. (A.2.5) that g has unit area. Consider 
next the integral of g times f(x') over a region in x' that includes x. For the most part, we get zero 
because f is smooth and g is wildly oscillating as )3-4 However, at x = x', the derivative of the phase 
of g vanishes and the oscillations are suspended. Pulling f(x' = x) out of the integral, we get the desired 
result. 
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first one will sample — f (x — E) and the second one +f (x + E), again up to a scale, 
so that 
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J 
 6 '(x — x') f (x') dx' ocf (x + e) —f(x —  e)=2  

dx' 

The constant of proportionality happens to be 1/2E so that 

'(x— f dx= —df  
dx' 

df(x) 

= „ dx 
(1.10.21) 

  

This result may be verified as follows: 

6 '(x — x') f (x) dx' = 	
 
f(x

,
) dx

, 
=

d 
8(x— f 	dx' 

dx 	 dx 

=—
d 

 J(x) 
dx 

Note that 6 '(x — x') is an odd function. This should be clear from Fig. 1.8b or Eq. 
(1.10.20). An equivalent way to describe the action of the  6'  function is by the 
equation 

'(x — = 6(x — x') —
d 	

(1.10.22) 

where it is understood that both sides appear in an integral over x' and that the 
differential operator acts on any function that accompanies the  o' function in the 
integrand. In this notation we can describe the action of higher derivatives of the 
delta function: 

d"6(x — x') 
= 6(x — 	 

dx" 	 dx'" 
(1.10.23) 

We will now develop an alternate representation of the delta function. We know 
from basic Fourier analysis that, given a function f(x), we may define its transform 

f(k)— 
(27r 

1 	1/2  r e -ikx  f(x) dx 
) 	.1_ 00  

(1.10.24) 



and its inverse 
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INTRODUCTION f(x') — 	1 	r e lkx'  f(k) dk 	 (1.10.25) 

Feeding Eq. (1.10.24) into Eq. (1.10.25), we get 

fl  

(

2 
I 	dk e' k( x — x ))f(x) dx 

2r 

Comparing this result with Eq. (1.10.18), we see that 

212r 
	dk e ik(x'-x) = 6(x' — x) 	 (1.10.26) 

Exercise 1.10.1.* Show that  ö(ax) = 8(x)lial. [Consider J  8(ax) d(ax). Remember that 
8(x)= 8(—x).] 

Exercise 1.10.2.* Show that 

(x)) — E 	
 

ldfldxil 

where x• 	the zeros of f(x). Hint: Where does 8(f (x)) blow up? Expand f(x) near such 
points in a Taylor series, keeping the first nonzero term. 

Exercise 1.10.3.* Consider the theta function 0(x— x') which vanishes if x — x' is negative 
and equals 1 if x — x' is positive. Show that 8(x — x')= dl dx 0(x— x'). 

Operators in Infinite Dimensions 

Having acquainted ourselves with the elements of this function space, namely, 
the kets If> and the basis vectors lx>, let us turn to the (linear) operators that act 
on them. Consider the equation 

Qlf >= 

Since the kets are in correspondence with the functions, SI takes the function f(x) 
into another, 7(x). Now, one operator that does such a thing is the familiar differen-
tial operator, which, acting on f(x), gives j(x)=df(x)/dx. In the function space we 
can describe the action of this operator as 

DI f>=Idf/ dx> 

where Idf/dx> is the ket corresponding to the function df/dx. What are the matrix 
elements of D in the l x> basis? To find out, we dot both sides of the above equation 
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<xl DI f>=(x 
df) df(x) 

 dx 	dx 

 

and insert the resolution of identity at the right place 

J 
 <xl DI x'> <x' I f > dx' = —df  

dx 

Comparing this to Eq. (1.10.21), we deduce that 

<xi DIx'>= D=6'(x— x')= 6(x— x')—
d 

dx' 

(1.10.27) 

(1.10.28) 

It is worth remembering that Dxx ,  = 6 '(x — x') is to be integrated over the second index 
(x') and pulls out the derivative off at the first index (x). Some people prefer to 
integrate 6 '(x — x') over the first index, in which case it pulls out —df/dx'. Our 
convention is more natural if one views D x„,  as a matrix acting to the right on the 
components fx , -,f(x') of a vector I f>.  Thus the familiar differential operator is an 
infinite-dimensional matrix with the elements given above. Normally one doesn't 
think of D as a matrix for the following reason. Usually when a matrix acts on a 
vector, there is a sum over a common index. In fact, Eq. (1.10.27) contains such a 
sum over the index x'. If, however, we feed into this equation the value of Dxx , , the 
delta function renders the integration trivial: 

J 
 6(x — x') —d  fix') dx' = —df 

 dx' 	dx' 

df 

x'=  x  dx 

Thus the action of D is simply to apply d/dx to f(x) with no sum over a common 
index in sight. Although we too will drop the integral over the common index 
ultimately, we will continue to use it for a while to remind us that D, like all linear 
operators, is a matrix. 

Let us now ask if D is Hermitian and examine its eigenvalue problem. If D were 
Hermitian, we would have 

D xx , = D,!,x  

But this is not the case: 

Dxx ,= 8 '(x — x') 

while 

Mx = 6 '(x' — x)* = 6 '(x' — x)=  —O  '(x — x') 
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which satisfies 

10„=[—i6'(x' — x)]* = +i6 '(x' — x)= —i6 '(x— x')= Kxx , 

It turns out that despite the above, the operator K is not guaranteed to be Hermitian, 
as the following analysis will indicate. Let  If >  and I g> be two kets in the function 
space, whose images in the X basis are two functions f(x) and g(x) in the interval 
a— b. If K is Hermitian, it must also satisfy 

f>=<g1Kf>=<Kflg>*=<flICIg>* =<fliclg>* 

So we ask 

"'bib 

<g I X> <XI C > <X' lf > dx dx' 
a a 

/ 	b /.1) 

(fa i a
<fixXxIKIx ' ><xlg> dxdx') 

b  g* (x) 	df(x)1  dx ,  d'b j, *(x) F i dg(X)1  dx *  _ 	dg*
f(x) dx 

L dx 	u 	L dx 	 dx 
—a 	 a 

Integrating the left-hand side by parts gives 

—ig*(x)f(x) 
f b de ( 

+ 	'xi 	f(x) dx 
a 	a  dx 

 

So K is Hermitian only if the surface term vanishes:  

=0  
a 

(1.10.29) —ig*(x)f(x) 

In contrast to the finite-dimensional case, Kxx ,  = IC5x  is not a sufficient condition for 
K to be Hermitian. One also needs to look at the behavior of the functions at the 
end points a and b. Thus K is Hermitian in the space consists of functions that 
obey Eq. (1.10.29). One set of functions that obey this condition are the possible 
configurations f(x) of the string clamped at x = 0, L, since f(x) vanishes at the end 
points. But condition (1.10.29) can also be fulfilled in another way. Consider 
functions in our own three-dimensional space, parametrized by r, 0, and  Ø  (0 is the 
angle measured around the z axis). Let us require that these functions be single 



66 	 valued. In particular, if we start at a certain point and go once around the z axis, 
returning to the original point, the function must take on its original value, i.e., 
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f(0)=f(0+22r) 

In the space of such periodic functions, K= d/ dO is a Hermitian operator. The 
surface term vanishes because the contribution from one extremity cancels that from 
the other: 

2n. 

—ig*(0)f (0) = —i[g* (22r) f (27r) — g* (0) f (0) 1  = 0 
o  

In the study of quantum mechanics, we will be interested in functions defined 
over the full interval — <x< +oo. They fall into two classes, those that vanish as 
1x1 cc,  and those that do not, the latter behaving as e",  k being a real parameter 
that labels these functions. It is clear that K= d/dx is Hermitian when sandwiched 
between two functions of the first class or a function from each, since in either case 
the surface term vanishes. When sandwiched between two functions of the second 
class, the Hermiticity hinges on whether 

e ikx o 
- CO 

If k= k', the contribution from one end cancels that from the other. If k  k',  the 
answer is unclear since ei(k-"x  oscillates, rather than approaching a limit as 1x1 cc.  
Now, there exists a way of defining a limit for such functions that cannot make up 
their minds: the limit as 1x1 oo is defined to be the average over a large interval. 
According to this prescription, we have, say as x---*(x), 

lim e C ikx 	ik'x  = liM 	e i(lc-k')x dx  = 0  
L  

if k Ok' 

 

and so K is Hermitian in this space. 
We now turn to the eigenvalue problem of K. The task seems very formidable 

indeed, for we have now to find the roots of an infinite-order characteristic poly-
nomial and get the corresponding eigenvectors. It turns out to be quite simple and 
you might have done it a few times in the past without giving yourself due credit. 
Let us begin with 

Klk>=k1k> 	 (1.10.30) 
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INTRODUCTION 

J<xi Kix'> <x' I k> 
	

(1.10.31) 

d 
—i —dx 

V k(x)= k IV k(x) 

where by definition tv k(x)= <x I k>. This equation could have been written directly 
had we made the immediate substitution  K=  —i  d/dx in the X basis. From now on 
we shall resort to this shortcut unless there are good reasons for not doing so. 

The solution to the above equation is simply 

(if k(x)= A e ikx 	 (1.10.32) 

where A, the overall scale, is a free parameter, unspecified by the eigenvalue problem. 
So the eigenvalue problem of K is fully solved: any real number k is an eigenvalue, 
and the corresponding eigenfunction is given by A ed". As usual, the freedom in 
scale will be used to normalize the solution. We choose A to be (1/270 -1 /2  so that 

1  
lk> 4-- 	e ikx 

(270 112  

and 

<kl k'> = f <kl x> <xl k'> dx =____i  r- e -i(k-k')x  dx — 6(k-10 (1.10.33) 
27r j --. 

(Since <kl k> is infinite, no choice of A can normalize 1k> to unity. The delta function 
normalization is the natural one when the eigenvalue spectrum is continuous.) 

The attentive reader may have a question at this point. 
"Why was it assumed that the eigenvalue k was real? It is clear that the function 

A e`k x with k= k l + ik2  also satisfies Eq. (1.10.31)." 
The answer is, yes, there are eigenfunctions of K with complex eigenvalues. If, 

however, our space includes such functions, K must be classified a non-Hermitian 
operator. (The surface term no longer vanishes since eikx  blows up exponentially as 
x tends to either + co — co, depending on the sign of the imaginary part k2 .) In 
restricting ourselves to real k we have restricted ourselves to what we will call the 
physical Hilbert space, which is of interest in quantum mechanics. This space is 
defined as the siiace of functions that can be either normalized to unity or to the 
Dirac delta function and plays a central role in quantum mechanics. (We use the 
qualifier "physical" to distinguish it from the Hilbert space as defined by mathemat-
icians, which contain only proper vectors, i.e., vectors normalizable to unity. The 
role of the improper vectors in quantum theory will be clear later.) 

—oo 



We will assume that the theorem proved for finite dimensions, namely, that the 
eigenfunctions of a Hermitian operator form a complete basis, holds in the Hilbertt 
space. (The trouble with infinite-dimensional spaces is that even if you have an 
infinite number of orthonormal eigenvectors, you can never be sure you have them 
all, since adding or subtracting a few still leaves you with an infinite number of 
them.) 

Since K is a Hermitian operator, functions that were expanded in the X basis 
with components f(x)= <x I f > must also have an expansion in the K basis. To find 
the components, we start with a ket 1 f >, and do the following: 

—co 

 1 
	

e -lkx  f (x) dx (1.10.34) 
(27r) 	_ 00  

The passage back to the X basis is done as follows: 

f (x)= <xl f > = 	<klk> <kl f > dk 	1 	fc  etkx f (k) dk (1.10.35) 
(270 1 /2  _00  

Thus the familiar Fourier transform is just the passage from one complete basis 1x> 
to another, 1k>. Either basis may be used to expand functions that belong to the 
Hilbert space. 

The matrix elements of K are trivial in the K basis: 

<klKik'>= k'<kl k'> = k' 6(k — k') 	 (1.10.36) 

Now, we know where the K basis came from: it was generated by the Hermitian 
operator K. Which operator is responsible for the orthonormal X basis? Let us call 
it the operator X. The kets 1x> are its eigenvectors with eigenvalue x: 
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Xlx> = xlx> 

Its matrix elements in the X basis are 

<x' 1 X1 x> = x6(x' — x) 

To find its action on functions, let us begin with 

xlf>=11> 

and follow the routine: 

<xlx1  f>  = <xlx1 x'> <x'  If>   dx' = xf(x)= <x I .7> =7(x) 

Ax) = xf(x) 

Hereafter we will omit the qualifier "physical." 

(1.10.37) 

(1.10.38) 



Thus the effect of X is to multiply f(x) by x. As in the case of the K operator, one 
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generally suppresses the integral over the common index since it is rendered trivial 	MATHEMATICAL 
by the delta function. We can summarize the action of X in Hilbert space as 	INTRODUCTION 

XI f(x)>=Ixf(x)> 	 (1.10.39) 

where as usual I xf( x)> is the ket corresponding to the function xf(x). 
There is a nice reciprocity between the X and K operators which manifests itself 

if we compute the matrix elements of X in the K basis: 

	

<kIXIk'> = —
1 	c° e -lkx  X e ik'x  dx 

21r 

d 

	

 = +i 	(1 f e.,oe-ox dx)= lb '(k — 101 
dk 21r 

Thus if Ig(k)> is a ket whose image in the k basis is g(k), then 

Xlg(k)> —  
i dg(k)) 

dk 
(1.10.40) 

  

In summary then, in the X basis, X acts as x and K as —id/dx [on the functions 
f(x)], while in the K basis, K acts like k and X like i d/dk [on f(k)]. Operators with 
such an interrelationship are said to be conjugate to each other. 

The conjugate operators X and K do not commute. Their commutator may be 
calculated as follows. Let us operate X and K in both possible orders on some ket 
I f> and follow the action in the X basis: 

xl f> -> xf(x) 

i
df(x) 

dx 

So 

XK1 f> 	ix 
df(x) 

dx 

KXI f> 	—
d 

xf(x) 
dx 

Therefore 

df 	df . . 
[X, K]l f> —> —ix —+ ix -- F If= 	

. 
—> f> 

dx dx 

In the last step we have used the fact that 8(k' — k)= 5(k — 
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[X, K]= il 	 (1.10.41) 

This brings us to the end of our discussion on Hilbert space, except for a final 
example. Although there are many other operators one can study in this space, we 
restricted ourselves to X and K since almost all the operators we will need for 
quantum mechanics are functions of X and  P= hK, where h is a constant to be 
defined later. 

Example 1.10.1: A Normal Mode Problem in Hilbert Space. Consider a string 
of length L clamped at its two ends x = 0 and L. The displacement tg(x, t) obeys the 
differential equation 

a2 tv  _ a2 v  

at2  8X2  
(1.10.42) 

Given that at t=0  the displacement is v(x, 0) and the velocity tli(x, 0) = 0, we wish 
to determine the time evolution of the string. 

But for the change in dimensionality, the problem is identical to that of the 
two coupled masses encountered at the end of Section 1.8 [see Eq. (1.8.26)]. It is 
recommended that you go over that example once to refresh your memory before 
proceeding further. 

We first identify v(x, t) as components of a vector I tg(t)> in a Hilbert space, 
the elements of which are in correspondence with possible displacements 1,v, i.e., 
functions that are continuous in the interval 0 <x <L and vanish at the end points. 
You may verify that these functions do form a vector space. 

The analog of the operator f2 in Eq. (1.8.26) is the operator 02/ax2 . We recognize 
this to be minus the square of the operator IC4--i0/0x. Since K acts on a space in 
which vi(0) = iv(L) 0, it is Hermitian, and so is K2. Equation (1.10.42) has the 
abstract counterpart 

I (P(0> = — K 2 1 tP(t)> 
	

(1.10.43) 

We solve the initial-value problem by following the algorithm developed in Example 
1.8.6: 

Step (1). Solve the eigenvalue problem of —K 2 . 

Step (2). Construct the propagator U(t) in terms of the eigenvectors and 
eigenvalues. 

Step (3). 

I tP(t)> = U(t)I'( 0)> 	 (1.10.44) 



The equation to solve is 

K2 1 Iv > = k2 I iv> 
In the X basis, this becomes 

d2  
— 

d
—

x2 
tPk(x)= k 2 w k (x) 

the general solution to which is 
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(1.10.46) 

yik (x)= A cos kx+ B sin kx 	 (1.10.47) 

where A and B are arbitrary. However, not all these solutions lie in the Hilbert space 
we are considering. We want only those that vanish at x  =0  and x = L. At x = 0 we 
find 

W k( 0) = 0 = A 	 (1.10.48a) 

while at x = L we find 

0= B sin kL 	 (1.10.48b)  

If we do not want a trivial solution (A = B = 0) we must demand 

sin kL =0, kL= MT C , 	 171= 1, 2, 3, ... 	(1.10.49) 

We do not consider negative m since it doesn't lead to any further LI solutions 
[sin(—x)= —sin x]. The allowed eigenvectors thus form a discrete set labeled by an 
integer m: 

1  1 /2 

tv„,(x)= (i' ) sink  mgx ) 
L 	L 

where we have chosen B= (2/L) 1 /2  so that 

f yin,(x) tif,,,(x) dx= 6,,„,, 
 : 

(1.10.50) 

(1.10.51) 

Let us associate with each solution labeled by the integer m an abstract ket  1m>:  

(mrx)  
1m> --> (2/L)" 2  sin 

x basis 	 L 
(1.10.52) 



or 

lin><ml vf(t)> 
,n=1 

.0 	 mg 
= E Im><ini vi(c)> cos co n,t,  

L m = I 

(1.10.55) 

Mir 
U(t)== E i mxm i cos tong, 	to m  — — 

m= i 	 L 

00 

(1.10.56) 
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d2 	 in2 K 2 

d
—

t2 
<ml V (0> --= ( 	

L2 
 )<ml V OD , 	m=  1, 2, ... 	(1.10.53) 

in analogy with Eq. (1.8.33). These equations may be readily solved (subject to the 
condition of vanishing initial velocities) as 

<ml V (0> = <MI VP> COS 
(mg t) 

L 
(1.10.54) 

Consequently 

CO 

The propagator equation 

I v(t)>= u( t) I v/( 0)> 

becomes in the l x> basis 

<X I V(t)> = ig(x, t) 

--= <XI U(01 VP> 

= f 
 A  

<XI U(t)IX' > <X'  I V f (0)> dx' 
J o  

It follows from Eq. (1.10.56) that 

(1.10.57) 

<xi u(t)ix'>=E <xi in> <MI x'> cos co m t 

E  ( 
L  2 
	

L 

) sin  ( mrx)  sin  (Lm7rx'
)  cos ow 
	

(1.10.58) 
n,  



Thus, given any f(x', 0), we can get y(x, t) by performing the integral in Eq. 	 73 
(1.10.57), using <xl U(t)Ix'> from Eq. (1.10.58). If the propagator language seems 	MATHEMATICAL 
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oo 

w(x, t) = E <x I m> <m l ty(0)> cos com t 
m=1 

1/2 
(
-
2 ) 

sin 
 (mrx) 

 cos OW <MI I y (0)> 

Given It/J(0)X one must then compute 

(1.10.59) 

2 
\ 1/2 f L 	(mirx) 

sin 	 vi(x, 0) dx 
L ) 0 	L 

Usually we will find that the coefficients <m I tg(0)> fall rapidly with m so that a few 
leading terms may suffice to get a good approximation. 	 0 

Exercise 1.10.4. A string is displaced as follows at t = 0: 

2xh 	 L 
2 

2h 	 L 
=—(L—x), —<x<L 

L 	 2 

Show that 

0.  ( mirx)  ( 	 8h 	) . (ron) 
ty(x, t)= E sin 	cos co„,t r2m2 SM 

m=1 	L 

<ml vi(0)> = (- 


