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Expansion of plane waves in spherical harmonics

Consider a free particle of mass p in three dimension. The time-independent Schrodinger
equation for the energy eigenstates in the coordinate representation is given by

(V2 4+ 12)g() = 0, (1)
corresponding to an energy E = h?k?/(2u). The solution to eq. (1) is a plane wave,
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where the wave function is conventionally normalized such that
/d% UL(@) Ui (7) = 3k — k).

One can also solve eq. (1) in spherical coordinates. If we look for simultaneous eigenstates
of the free particle Hamiltonian, and the angular momentum operators L, and L2, we obtain
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where the normalization factor has been chosen such that (E"¢'m/| E4m) = 0pp 0y d(E — E'),
and the factor of ¢ is conventional. In particular, since the free particle Hamiltonian commutes
with the angular momentum operators L, and L2, it follows that any choice of ¢/ and m in
eq. (3) yields an energy eigenstate of energy E = h?k?/(2u).

Hence, it must be possible to express the plane wave given in eq. (2) as a sum over spherical
harmonics,!
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The object of these notes is to determine the coefficients cem(E).

It is always possible to choose the z-axis of our problem to lie along k. For k = kZz,
k-7 = krcos (where r = |7]) and 6 is the polar angle of the vector # with respect to the
z-axis. Hence, the double sum in eq. (4) must be independent of the azimuthal angle ¢. This
is possible only if ¢y, (k2) = 0 for all m # 0. That is, only the m = 0 term of eq. (4) survives
and it follows that
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where Ay(k) = cp(k2), and we have employed the relation between Yy (6, ¢) and the Legendre
polynomial, Py(cos#).
1

since # = &sin 6 cos ¢ + gsinfsin ¢ + £ cos b, it is convenient to write Yz, (#) in place of Yo, (6, ¢).
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We can extract the coefficient A,(k) by using the orthogonality relation of the Legendre
polynomials,
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Multiplying both sides of eq. (5) by Py(cos ) and then integrating over cos @ with the help of
eq. (6), we end up with

A(k)je(kr) = /(20 4+ 1) /_1 Py(w)e*™ dw | (7)

where w = cos .

There are a number of different ways to obtain Ay(k). One technique, which involves a
direct evaluation of the integral on the right hand side of eq. (7), is given in Appendix A. The
end result is obtained in eq. (19), which we repeat here,

/_1 Py(w)e*™ dw = 2i%j,(kr) (8)

Comparing eqs. (7) and (8), we conclude that

Ay(k) =i'\/4ar (20 +1). (9)

However, one can obtain the same result by employing the following trick. Since A,(k) is
independent of r, we can evaluate Ay(k) by examining the r — oo behavior of both sides of
eq. (7). The large r behavior of the left hand side is determined by the leading term of the
asymptotic expansion of j,(kr),
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We can determine the leading asymptotic behavior of the integral on the right hand side of
eq. (7) by a repeated integration by parts,
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where we have used Py(1) = 1 and Py(—1) = (—1)" = €. Finally, in light of egs. (10) and
(11), it follows from eq. (7) that Ay(k) = i*y/4m(2¢ + 1), in agreement with eq. (9).
Inserting eq. (9) back into eq. (5), we end up with
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Finally, we can relax the assumption that k=k2 by employing the addition theorem,
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Py(cos ) = Z Yo (7) Yo (k)*,  where cosf = k-7.
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Inserting the addition theorem for P(cosf) into eq. (12) yields our final result,
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That is, we have identified ¢y, (k) = 47i’Yyn (k)" in eq. (4).
Egs. (12) and (13) are both called the partial wave expansion of the plane wave. It is
interesting to note that in light of eq. (10), which we can rewrite as
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it follows from eq. (13) that a plane wave moving in the direction k can be decomposed into
a linear combination of incoming and outgoing spherical waves.

APPENDIX A: Evaluation of the integral appearing in eq. (7)

The spherical Bessel function is given by the following formula,

i) = 0 i)g (2r). (14)

p dp p

Thus, we can write
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Next, we note that by an integration by parts,
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Repeating this process ¢-times yields
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Applying eq. (16) to eq. (15), it then follows from eq. (14) that
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after integration by parts ¢ times. Finally, we employ the Rodrigues formula for the Legendre

polynomials,
1 d

l
Then, eq. (17) yields
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We have thus succeeded in evaluating the integral that appears in eq. (7),
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