Physics 215 Winter 2018

Expansion of plane waves in spherical harmonics

Consider a free particle of mass μ in three dimension. The time-independent Schrodinger equation for the energy eigenstates in the coordinate representation is given by

$$(\vec{\nabla}^2 + k^2)\psi_{\vec{k}}(\vec{r}) = 0, \qquad (1)$$

corresponding to an energy $E = \hbar^2 k^2/(2\mu)$. The solution to eq. (1) is a plane wave,

$$\psi_{\vec{k}}(\vec{r}) = \frac{1}{(2\pi)^{3/2}} e^{i\vec{k}\cdot\vec{r}}, \qquad (2)$$

where the wave function is conventionally normalized such that

$$\int d^3x \, \psi_{\vec{k}}^*(\vec{x}) \, \psi_{\vec{k}'}(\vec{x}) = \delta^3(\vec{k} - \vec{k}') \,.$$

One can also solve eq. (1) in spherical coordinates. If we look for simultaneous eigenstates of the free particle Hamiltonian, and the angular momentum operators L_z and \vec{L}^2 , we obtain

$$\psi_{\vec{k}}(r,\theta,\phi) = \langle r,\theta,\phi | E\ell m \rangle = i^{\ell} \left(\frac{2\mu k}{\pi \hbar^2} \right)^{1/2} j_{\ell}(kr) Y_{\ell m}(\theta,\phi) , \qquad (3)$$

where the normalization factor has been chosen such that $\langle E'\ell'm'|E\ell m\rangle = \delta_{\ell\ell'}\delta_{mm'}\delta(E-E')$, and the factor of i^{ℓ} is conventional. In particular, since the free particle Hamiltonian commutes with the angular momentum operators L_z and \vec{L}^2 , it follows that any choice of ℓ and m in eq. (3) yields an energy eigenstate of energy $E = \hbar^2 k^2/(2\mu)$.

Hence, it must be possible to express the plane wave given in eq. (2) as a sum over spherical harmonics,¹

$$e^{i\vec{\boldsymbol{k}}\cdot\vec{\boldsymbol{r}}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell m}(\vec{\boldsymbol{k}}) j_{\ell}(kr) Y_{\ell m}(\hat{\boldsymbol{r}}).$$

$$(4)$$

The object of these notes is to determine the coefficients $c_{\ell m}(\vec{k})$.

It is always possible to choose the z-axis of our problem to lie along \vec{k} . For $\vec{k} = k\hat{z}$, $\vec{k} \cdot \vec{r} = kr \cos \theta$ (where $r \equiv |\vec{r}|$) and θ is the polar angle of the vector \vec{r} with respect to the z-axis. Hence, the double sum in eq. (4) must be independent of the azimuthal angle ϕ . This is possible only if $c_{\ell m}(k\hat{z}) = 0$ for all $m \neq 0$. That is, only the m = 0 term of eq. (4) survives and it follows that

$$e^{ikr\cos\theta} = \sum_{\ell=0}^{\infty} \left(\frac{2\ell+1}{4\pi}\right)^{1/2} A_{\ell}(k) j_{\ell}(kr) P_{\ell}(\cos\theta), \qquad (5)$$

where $A_{\ell}(k) \equiv c_{\ell 0}(k\hat{z})$, and we have employed the relation between $Y_{\ell 0}(\theta, \phi)$ and the Legendre polynomial, $P_{\ell}(\cos \theta)$.

¹since $\hat{r} \equiv \hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$, it is convenient to write $Y_{\ell m}(\hat{r})$ in place of $Y_{\ell m}(\theta, \phi)$.

We can extract the coefficient $A_{\ell}(k)$ by using the orthogonality relation of the Legendre polynomials,

$$\int_{-1}^{1} P_{\ell}(\cos \theta) P_{\ell'}(\cos \theta) d\cos \theta = \frac{2}{2\ell + 1} \delta_{\ell\ell'}. \tag{6}$$

Multiplying both sides of eq. (5) by $P_{\ell'}(\cos \theta)$ and then integrating over $\cos \theta$ with the help of eq. (6), we end up with

$$A_{\ell}(k)j_{\ell}(kr) = \sqrt{\pi(2\ell+1)} \int_{-1}^{1} P_{\ell}(w)e^{ikrw} dw, \qquad (7)$$

where $w \equiv \cos \theta$.

There are a number of different ways to obtain $A_{\ell}(k)$. One technique, which involves a direct evaluation of the integral on the right hand side of eq. (7), is given in Appendix A. The end result is obtained in eq. (19), which we repeat here,

$$\int_{-1}^{1} P_{\ell}(w)e^{ikrw} dw = 2i^{\ell}j_{\ell}(kr)$$
 (8)

Comparing eqs. (7) and (8), we conclude that

$$A_{\ell}(k) = i^{\ell} \sqrt{4\pi(2\ell+1)} \,. \tag{9}$$

However, one can obtain the same result by employing the following trick. Since $A_{\ell}(k)$ is independent of r, we can evaluate $A_{\ell}(k)$ by examining the $r \to \infty$ behavior of both sides of eq. (7). The large r behavior of the left hand side is determined by the leading term of the asymptotic expansion of $j_{\ell}(kr)$,

$$j_{\ell}(kr) \sim \frac{1}{kr} \sin\left(kr - \frac{1}{2}\ell\pi\right) + \mathcal{O}\left(\frac{1}{(kr)^2}\right), \quad \text{as } r \to \infty.$$
 (10)

We can determine the leading asymptotic behavior of the integral on the right hand side of eq. (7) by a repeated integration by parts,

$$\int_{-1}^{1} P_{\ell}(w) e^{ikrw} dw = \frac{1}{ikr} e^{ikrw} P_{\ell}(w) \Big|_{-1}^{1} - \frac{1}{ikr} \int_{-1}^{1} e^{ikrw} P'_{\ell}(w)
= \frac{1}{ikr} \left[e^{ikr} - e^{-ikr} e^{i\pi\ell} \right] + \frac{1}{(kr)^{2}} e^{ikrw} P'_{\ell}(w) \Big|_{-1}^{1} - \frac{1}{(kr)^{2}} \int_{-1}^{1} e^{ikrw} P''_{\ell}(w)
= \frac{2i^{\ell}}{kr} \sin(kr - \frac{1}{2}\pi\ell) + \mathcal{O}\left(\frac{1}{(kr)^{2}}\right),$$
(11)

where we have used $P_{\ell}(1) = 1$ and $P_{\ell}(-1) = (-1)^{\ell} = e^{i\pi\ell}$. Finally, in light of eqs. (10) and (11), it follows from eq. (7) that $A_{\ell}(k) = i^{\ell} \sqrt{4\pi(2\ell+1)}$, in agreement with eq. (9).

Inserting eq. (9) back into eq. (5), we end up with

$$e^{ikr\cos\theta} = \sum_{\ell=0}^{\infty} i^{\ell} (2\ell+1) j_{\ell}(kr) P_{\ell}(\cos\theta).$$
(12)

Finally, we can relax the assumption that $\vec{k} = k\hat{z}$ by employing the addition theorem,

$$P_{\ell}(\cos \theta) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\hat{\boldsymbol{r}}) Y_{\ell m}(\hat{\boldsymbol{k}})^*, \text{ where } \cos \theta = \hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{r}}.$$

Inserting the addition theorem for $P_{\ell}(\cos \theta)$ into eq. (12) yields our final result,

$$e^{i\vec{\boldsymbol{k}}\cdot\vec{\boldsymbol{r}}} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} i^{\ell} j_{\ell}(kr) Y_{\ell m}(\hat{\boldsymbol{k}})^* Y_{\ell m}(\hat{\boldsymbol{r}}).$$
(13)

That is, we have identified $c_{\ell m}(\vec{k}) = 4\pi i^{\ell} Y_{\ell m}(\hat{k})^*$ in eq. (4).

Eqs. (12) and (13) are both called the *partial wave expansion* of the plane wave. It is interesting to note that in light of eq. (10), which we can rewrite as

$$j_{\ell}(kr) \sim \frac{1}{2i^{\ell+1}} \left[\frac{e^{ikr}}{kr} - \left(\frac{e^{-ikr}}{kr} \right) e^{i\pi\ell} \right] + \mathcal{O}\left(\frac{1}{(kr)^2} \right), \quad \text{as } r \to \infty,$$

it follows from eq. (13) that a plane wave moving in the direction \vec{k} can be decomposed into a linear combination of incoming and outgoing spherical waves.

APPENDIX A: Evaluation of the integral appearing in eq. (7)

The spherical Bessel function is given by the following formula,

$$j_{\ell}(\rho) = (-\rho)^{\ell} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \left(\frac{\sin \rho}{\rho}\right). \tag{14}$$

Thus, we can write

$$j_0(\rho) = \frac{\sin \rho}{\rho} = \frac{1}{2} \int_{-1}^1 e^{i\rho w} dw$$
 (15)

Next, we note that by an integration by parts.

$$\frac{1}{\rho} \frac{d}{d\rho} \int_{-1}^{1} e^{i\rho w} dw = \frac{i}{\rho} \int_{-1}^{1} w e^{i\rho w} dw = \frac{i}{2\rho} \int_{-1}^{1} e^{i\rho w} d(w^{2} - 1)$$

$$= -\frac{i}{2\rho} \int_{-1}^{1} (w^{2} - 1) d(e^{i\rho w}) = \frac{1}{2} \int_{-1}^{1} (w^{2} - 1) e^{i\rho w} dw.$$

Repeating this process ℓ -times yields

$$\left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \int_{-1}^{1} e^{i\rho w} dw = \frac{1}{2^{\ell} \ell!} \int_{-1}^{1} (w^2 - 1)^{\ell} e^{i\rho w} dw.$$
 (16)

Applying eq. (16) to eq. (15), it then follows from eq. (14) that

$$j_{\ell}(\rho) = (-\rho)^{\ell} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \frac{1}{2} \int_{-1}^{1} e^{i\rho w} dw = \frac{(-\rho)^{\ell}}{2^{\ell+1} \ell!} \int_{-1}^{1} (w^{2} - 1)^{\ell} e^{i\rho w} dw$$

$$= \frac{i^{\ell}}{2^{\ell+1} \ell!} \int_{-1}^{1} (w^{2} - 1)^{\ell} \frac{d^{\ell}}{dw^{\ell}} (e^{i\rho w}) dw = \frac{(-i)^{\ell}}{2^{\ell+1} \ell!} \int_{-1}^{1} e^{i\rho w} \frac{d^{\ell}}{dw^{\ell}} (w^{2} - 1)^{\ell} dw, \qquad (17)$$

after integration by parts ℓ times. Finally, we employ the Rodrigues formula for the Legendre polynomials,

$$P_{\ell}(w) = \frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{dw^{\ell}} (w^2 - 1)^{\ell}.$$

Then, eq. (17) yields

$$j_{\ell}(\rho) = \frac{(-i)^{\ell}}{2} \int_{-1}^{1} P_{\ell}(w) e^{i\rho w} dw.$$
 (18)

We have thus succeeded in evaluating the integral that appears in eq. (7),

$$\int_{-1}^{1} P_{\ell}(w)e^{ikrw} dw = 2i^{\ell}j_{\ell}(kr)$$
 (19)

REFERENCE

Kevin Cahill, Physical Mathematics (Cambridge University Press, Cambridge, UK, 2013)