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Expansion of plane waves in spherical harmonics

Consider a free particle of mass µ in three dimension. The time-independent Schrodinger
equation for the energy eigenstates in the coordinate representation is given by

(~∇2 + k2)ψ~k
(~r) = 0 , (1)

corresponding to an energy E = ~
2k2/(2µ). The solution to eq. (1) is a plane wave,

ψ~k
(~r) =

1

(2π)3/2
ei
~k ·~r , (2)

where the wave function is conventionally normalized such that
∫

d3xψ∗

~k
(~x)ψ~k

′(~x) = δ3(~k −~k
′

) .

One can also solve eq. (1) in spherical coordinates. If we look for simultaneous eigenstates

of the free particle Hamiltonian, and the angular momentum operators Lz and ~L2, we obtain

ψ~k
(r, θ, φ) = 〈r, θ, φ|Eℓm〉 = iℓ

(

2µk

π~2

)1/2

jℓ(kr)Yℓm(θ, φ) , (3)

where the normalization factor has been chosen such that 〈E ′ℓ′m′|Eℓm〉 = δℓℓ′δmm′δ(E−E ′),
and the factor of iℓ is conventional. In particular, since the free particle Hamiltonian commutes
with the angular momentum operators Lz and ~L2, it follows that any choice of ℓ and m in
eq. (3) yields an energy eigenstate of energy E = ~

2k2/(2µ).
Hence, it must be possible to express the plane wave given in eq. (2) as a sum over spherical

harmonics,1

ei
~k ·~r =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

cℓm(~k)jℓ(kr)Yℓm(r̂) . (4)

The object of these notes is to determine the coefficients cℓm(~k).

It is always possible to choose the z-axis of our problem to lie along ~k. For ~k = kẑ,
~k·~r = kr cos θ (where r ≡ |~r|) and θ is the polar angle of the vector ~r with respect to the
z-axis. Hence, the double sum in eq. (4) must be independent of the azimuthal angle φ. This
is possible only if cℓm(kẑ) = 0 for all m 6= 0. That is, only the m = 0 term of eq. (4) survives
and it follows that

eikr cos θ =

∞
∑

ℓ=0

(

2ℓ+ 1

4π

)1/2

Aℓ(k)jℓ(kr)Pℓ(cos θ) , (5)

where Aℓ(k) ≡ cℓ0(kẑ), and we have employed the relation between Yℓ0(θ, φ) and the Legendre
polynomial, Pℓ(cos θ).

1since r̂ ≡ x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ, it is convenient to write Yℓm(r̂) in place of Yℓm(θ, φ).
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We can extract the coefficient Aℓ(k) by using the orthogonality relation of the Legendre
polynomials,

∫

1

−1

Pℓ(cos θ)Pℓ′(cos θ) d cos θ =
2

2ℓ+ 1
δℓℓ′ . (6)

Multiplying both sides of eq. (5) by Pℓ′(cos θ) and then integrating over cos θ with the help of
eq. (6), we end up with

Aℓ(k)jℓ(kr) =
√

π(2ℓ+ 1)

∫

1

−1

Pℓ(w)e
ikrw dw , (7)

where w ≡ cos θ.
There are a number of different ways to obtain Aℓ(k). One technique, which involves a

direct evaluation of the integral on the right hand side of eq. (7), is given in Appendix A. The
end result is obtained in eq. (19), which we repeat here,

∫

1

−1

Pℓ(w)e
ikrw dw = 2iℓjℓ(kr) (8)

Comparing eqs. (7) and (8), we conclude that

Aℓ(k) = iℓ
√

4π(2ℓ+ 1) . (9)

However, one can obtain the same result by employing the following trick. Since Aℓ(k) is
independent of r, we can evaluate Aℓ(k) by examining the r → ∞ behavior of both sides of
eq. (7). The large r behavior of the left hand side is determined by the leading term of the
asymptotic expansion of jℓ(kr),

jℓ(kr) ∼
1

kr
sin

(

kr − 1

2
ℓπ

)

+O

(

1

(kr)2

)

, as r → ∞. (10)

We can determine the leading asymptotic behavior of the integral on the right hand side of
eq. (7) by a repeated integration by parts,

∫

1

−1

Pℓ(w)e
ikrw dw =

1

ikr
eikrwPℓ(w)

∣

∣

∣

∣

1

−1

−
1

ikr

∫

1

−1

eikrwP ′

ℓ(w)

=
1

ikr

[

eikr − e−ikreiπℓ
]

+
1

(kr)2
eikrwP ′

ℓ(w)

∣

∣

∣

∣

1

−1

−
1

(kr)2

∫

1

−1

eikrwP ′′

ℓ (w)

=
2iℓ

kr
sin

(

kr − 1

2
πℓ

)

+O

(

1

(kr)2

)

, (11)

where we have used Pℓ(1) = 1 and Pℓ(−1) = (−1)ℓ = eiπℓ. Finally, in light of eqs. (10) and
(11), it follows from eq. (7) that Aℓ(k) = iℓ

√

4π(2ℓ+ 1), in agreement with eq. (9).
Inserting eq. (9) back into eq. (5), we end up with

eikr cos θ =
∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr)Pℓ(cos θ) . (12)

2



Finally, we can relax the assumption that ~k = kẑ by employing the addition theorem,

Pℓ(cos θ) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Yℓm(r̂)Yℓm(k̂)
∗ , where cos θ = k̂·r̂.

Inserting the addition theorem for Pℓ(cos θ) into eq. (12) yields our final result,

ei
~k ·~r = 4π

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

iℓjℓ(kr)Yℓm(k̂)
∗Yℓm(r̂) . (13)

That is, we have identified cℓm(~k) = 4πiℓYℓm(k̂)
∗ in eq. (4).

Eqs. (12) and (13) are both called the partial wave expansion of the plane wave. It is
interesting to note that in light of eq. (10), which we can rewrite as

jℓ(kr) ∼
1

2iℓ+1

[

eikr

kr
−

(

e−ikr

kr

)

eiπℓ
]

+O

(

1

(kr)2

)

, as r → ∞,

it follows from eq. (13) that a plane wave moving in the direction ~k can be decomposed into
a linear combination of incoming and outgoing spherical waves.

APPENDIX A: Evaluation of the integral appearing in eq. (7)

The spherical Bessel function is given by the following formula,

jℓ(ρ) = (−ρ)ℓ
(

1

ρ

d

dρ

)ℓ(
sin ρ

ρ

)

. (14)

Thus, we can write

j0(ρ) =
sin ρ

ρ
=

1

2

∫

1

−1

eiρw dw . (15)

Next, we note that by an integration by parts,

1

ρ

d

dρ

∫

1

−1

eiρw dw =
i

ρ

∫

1

−1

w eiρw dw =
i

2ρ

∫

1

−1

eiρw d(w2 − 1)

= −
i

2ρ

∫

1

−1

(w2 − 1)d(eiρw) =
1

2

∫

1

−1

(w2 − 1)eiρw dw .

Repeating this process ℓ-times yields

(

1

ρ

d

dρ

)ℓ ∫ 1

−1

eiρw dw =
1

2ℓ ℓ!

∫

1

−1

(w2 − 1)ℓeiρw dw . (16)
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Applying eq. (16) to eq. (15), it then follows from eq. (14) that

jℓ(ρ) = (−ρ)ℓ
(

1

ρ

d

dρ

)ℓ
1

2

∫

1

−1

eiρw dw =
(−ρ)ℓ

2ℓ+1 ℓ!

∫

1

−1

(w2 − 1)ℓeiρw dw

=
iℓ

2ℓ+1 ℓ!

∫

1

−1

(w2 − 1)ℓ
dℓ

dwℓ

(

eiρw
)

dw =
(−i)ℓ

2ℓ+1 ℓ!

∫

1

−1

eiρw
dℓ

dwℓ

(

w2 − 1
)ℓ
dw , (17)

after integration by parts ℓ times. Finally, we employ the Rodrigues formula for the Legendre
polynomials,

Pℓ(w) =
1

2ℓ ℓ!

dℓ

dwℓ

(

w2 − 1
)ℓ
.

Then, eq. (17) yields

jℓ(ρ) =
(−i)ℓ

2

∫

1

−1

Pℓ(w)e
iρw dw . (18)

We have thus succeeded in evaluating the integral that appears in eq. (7),

∫

1

−1

Pℓ(w)e
ikrw dw = 2iℓjℓ(kr) (19)
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