
Physics 215 Problem Set 3 Winter 2018

DUE: THURSDAY, FEBRUARY 15, 2018

MIDTERM EXAM ALERT: The midterm exam is a take-home exam that will be posted
on the class website on Tuesday February 20. The completed exam must returned no later
than 7 pm on Thursday February 22 to my physics department mailbox.

While working on the exam, you may refer to Sakurai and Napolitano and any second
quantum mechanics textbook of your choosing. (If you do consult a second text, please
indicate which one you used.) Any reference for integrals or other mathematical facts, and
any personal handwritten notes are also OK. You are also free to consult any of the class
handouts, including the solution sets that appear on the class website. However, you may
not collaborate with anyone else. The exam will the first six topics of the course syllabus
(and the material covered on first three problem sets of this course).

1. Consider the one-dimensional problem of a particle moving in a delta-function potential:

V (x) = −Aδ(x) .

(a) Solve for the bound state energies and wave functions. Consider the cases A > 0 and
A < 0 separately.

HINT: Integrate the Schrodinger equation between −ǫ and ǫ. Let ǫ → 0 and note that the
derivative of the wave function is discontinuous at x = 0.

(b) In the case of A > 0, consider a scattering process where the incident wave enters
from the left with E = ~

2k2/(2m) > 0 (where E is the energy eigenvalue of the Hamiltonian).
Determine the corresponding reflection coefficient R and the transmission coefficient T as
a function of k. Write the coefficients in terms of the dimensionless parameter b ≡ E/Eg

where −Eg is the ground state energy obtained in part (a), in the case of A > 0. What is
the behavior of T (b) as b→ −1?

(c) In the case of A < 0, consider a scattering process where the incident wave enters from
the left with E = ~

2k2/(2m) > 0. Investigate the location of any poles of the transmission
amplitude in the complex k plane and the complex E plane, respectively. Explain your result
in light of the fact that the repulsive delta function potential possesses no bound states.
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2. A one-dimensional potential has the following form:

V (x) =











+∞ , for x < 0,

−V0 , for 0 < x < b,

0 , for x > b,

where V0 and b are positive constants.

(a) Find V0 as a function of b such that there is just one bound state, of about zero
binding energy, for a particle of mass M .

(b) Applying this crude model to the deuteron (a bound state of a proton and a neutron),
evaluate V0 in MeV, assuming b = 1.3 × 10−13 cm and M = 1

2
mp (where mp is the proton

mass).

(c) Why did I set M = 1

2
mp rather than M = mp in part (b)?

3. Consider a one-dimensional quantum mechanical problem with a time-independent Hamil-
tonian, H . The time evolution operator, evaluated in the coordinate basis, also known as
the propagator, is given by,

G(x, t ; x′, 0) = 〈x| e−iHt/~ |x′〉 =

∫

∞

−∞

dp 〈x |p〉 〈p| e−iHt/~ |x′〉 , (1)

where we have taken the initial time to be t0 = 0.

(a) The free particle Hamiltonian is given by H = P 2/(2m). Evaluate the free particle
propagator by explicitly performing the p-integration using eq. (1).

(b) For the one-dimensional harmonic oscillator, where H = P 2/(2m) + 1

2
mω2X2, can

you evaluate the propagator by explicitly performing the p-integration in eq. (1)? Why is
this calculation doomed to failure?

(c) Show that G(x, t; x′, 0) = 〈x, t | x′, 0〉, where the |x, t〉 are basis states in the Heisenberg
representation. Deduce the following differential equation for G,

i~
∂G

∂t
= 〈x, t|H |x′, 0〉 ,

where the boundary condition at t = 0 is G(x, 0; x′, 0) = δ(x− x′).

(d) Evaluate the propagator for the one-dimensional harmonic oscillator by employing
the following steps. First, by using the Heisenberg equations of motion, express P ≡ P (0)
in terms of X(t) and X ≡ X(0). Then solve the differential equation obtained in part (c),
subject to the boundary condition at t = 0.

HINT: In order to impose the boundary condition at t = 0, consider the limit of G(x, t; x′, 0)
as t→ 0 from the positive side.

(e) Check that in the limit of ω → 0, the result of part (d) reduces to the free particle
propagator obtained in part (a).
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4. The partition function is defined by,

Z(β) ≡ Tr e−βH ,

where H is a time-independent Hamiltonian operator and β is a real positive parameter.

(a) In the case of a one-dimensional quantum mechanical problem, show that

Z(β) =

∫

G(x,−i~β ; x, 0) dx ,

where the propagator is defined by,

G(x, t; x′, 0) ≡ 〈x| e−iHt/~ |x′〉 . (2)

(b) Show that the ground state energy E0 is given by:

E0 = lim
β→∞

−
1

Z

∂Z

∂β
.

HINT: Insert a complete set of energy eigenstates into eq. (2).

(c) Using the results of part (b) of this problem and part (d) of Problem 3, compute the
ground state energy of the one-dimensional harmonic oscillator.

(d) Consider the the propagator for a one-dimensional quantum system governed by
a time-independent Hamiltonian with only discrete (bound state) energy levels, {En}, for
n = 0, 1, 2, 3, . . .. Using eq. (2), show that the full energy spectrum of H can be determined
from1

Tr e−iHt/~ =

∫

∞

−∞

G(x, t ; x, 0) dx =
∑

n

〈En| e
−iHt/~ |En〉 =

∞
∑

n=0

e−iEnt/~ . (3)

Strictly speaking, the sums on the right-hand side of eq. (3) are not convergent. However,
one can give mathematical meaning to these sums by extending the time parameter to the
complex plane.

In particular, let t = −i~β (where β is a positive real parameter). Using eq. (3), obtain
all the energy eigenvalues of the one-dimensional harmonic oscillator.

5. Consider a particle in one dimension trapped between two impenetrable walls at x = 0
and x = L.

(a) Determine the bound state energy levels, En, of the particle. (Here, n labels the
possible energy eigenvalues: n = 1 is the ground state, n = 2 is the first excited state, etc.).

1In eq. (3), the trace is expressed as a diagonal sum of matrix elements by employing two different basis
choices (the coordinate basis and the energy basis, respectively). Of course, the trace is a basis-independent
quantity, so one may choose any orthonormal basis to compute it.
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(b) Suppose that at time t = 0, the state of the particle is given by the wave function

ψ(x, t = 0) = Ax(L− x) [Θ(x)−Θ(x− L)] , (4)

where Θ(x) is the Heavyside step function and A is a normalization constant.
If an energy measurement is performed at time t = 0, what is the probability that

the particle will be observed to be in the ground state? Find an exact expression for the
probability that the particle will be observed to be in a state of energy En (for any positive
integer n).

HINT: The following integral may be of use:
∫ π

0

yp sin(ny) dy =
p!

np+1
cos

(pπ

2

)

−

p
∑

k=0

p! πp−k

(p− k)!nk+1
(−1)n cos

(

kπ

2

)

,

where p is a non-negative integer.

(c) Evaluate the expectation value of the Hamiltonian with respect to the wave function
given in eq. (4). What is the average value of the energy at time t = 0?

(d) The expectation value of H can be computed by a different method than the one
used in part (c). First, expand ψ(x, 0) as a linear combination of energy eigenstates, and
then show that the expectation value of H can be expressed as an infinite sum. Using this
technique, obtain an expression for the average value of the energy at time t = 0, and then
employ the result obtained in part (c) to determine the value of the sum,

∞
∑

n=0

1

(2n+ 1)4
.

(e) After preparing the state given by eq. (4) at time t = 0, suppose that instead of
performing an energy measurement at time t = 0, I wait a while and then make the first
energy measurement at a later time t > 0. Do any of the results obtained in parts (b) and (c)
change? Explain.

6. Consider a periodic potential in one-dimension that satisfies V (x+ ℓ) = V (x).

(a) Show that the translation operator T = exp(−iℓP/~) commutes with the Hamilto-
nian:

H =
P 2

2m
+ V (x) .

(b) We may choose the energy eigenstates to be simultaneous eigenstates of the transla-
tion operator T . Show that the general form of such eigenfunctions is:

ψ(x) = exp(ipx/~)up(x) .

where up(x+ℓ) = up(x). That is, the eigenfunctions are plane waves modulated by a function
with the periodicity of the potential.
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