
Physics 215 Problem Set 4 Winter 2018

DUE: TUESDAY, MARCH 6, 2018

CLASS SCHEDULE ALERT: No classes will be held on Tuesday February 20 and Thursday
February 22. There will be a a make-up class on Monday February 26 starting at 5 pm in
ISB 165.

1. Here is a clever operator method for solving the two-dimensional harmonic oscillator.
Consider the Hamiltonian of the two-dimensional harmonic oscillator:

H =
1

2m
(P 2

x + P 2
y ) +

1
2
mω2(X2 + Y 2) .

Define the operators:

K1 =
1

4mω
(P 2

x − P 2
y ) +

1
4
mω(X2 − Y 2) ,

K2 =
1

2mω
PxPy +

1
2
mωXY ,

K3 =
1
2
(XPy − Y Px)

Note that K3 =
1
2
Lz.

(a) Compute the commutation relations [Ki , Kj] and [Ki , H ].

(b) Obtain an expression for H in terms of ~K
2 = K2

1 +K2
2 +K2

3 .

(c) What are the possible eigenvalues of ~K
2 and K3?

(d) Using the results of parts (b) and (c), determine the possible energy eigenvalues for
the Hamiltonian and compute the degeneracy of each level. Explain the degeneracy in terms
of the symmetries of the problem.

2. In this problem, we use algebraic methods to deduce that the eigenvalues of Lz are
integers. Hence, the orbital angular momentum quantum number ℓ must be a non-negative
integer (i.e., half-integer values must be rejected).

(a) Taking inspiration from the algebraic solution to the harmonic oscillator, introduce
creation and annihilation operators a†j and aj respectively, where j labels the three possible
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directions in three-dimensional space. The position and momentum operators are defined
via

Xj ≡
√

~

2

(

aj + a
†
j

)

, Pj ≡ −i
√

~

2

(

aj − a
†
j

)

.

Compute the operator Lz in terms of these creation and annihilation operators.

(b) Show that by means of a linear transformation on aj and a
†
j , Lz can be expressed in

terms of new annihilation and creation operators b1, b2 and their hermitian conjugates as
follows:

Lz = ~(b†2b2 − b
†
1b1) .

(c) Show that the eigenvalues of Lz must be integers.

3. (a) Generalize the result of problem 6(a) of Problem Set 1. Prove that eABe−A can be
expressed as an infinite series,

eABe−A = B + [A,B] +
1

2!

[

A , [A,B]
]

+
1

3!

[

A ,
[

A , [A,B]
]

]

+ . . . ,

without making any assumptions about the commutation properties of
[

A,B
]

and A.

(b) Using the result of part (a), verify that:

e−iθJy/~Jz e
iθJy/~ = Jz cos θ + Jx sin θ .

(c) Using the result of part (b), prove that

(Jx ± iJy)e
−iθJy/~ =

1

sin θ
e−iθJy/~Jz − cot θJz e

−iθJy/~ ∓ ~
∂

∂θ
e−iθJy/~

(d) Define:

d
(j)
mm′(θ) ≡ 〈j m| e−iθJy/~ |j m′〉 ,

where j is a non-negative half-integer and m,m′ = −j,−j+1, . . . , j− 1 , j. Using the result
of part (c), obtain the following recursion relation,

d
(j)
m±1,m′(θ) = [(j ±m+ 1)(j ∓m)]−1/2

(

m′

sin θ
−m cot θ ± ∂

∂θ

)

d
(j)
mm′(θ) . (1)

(e) The spherical harmonics are related to the d
(j)
mm′(θ) by the following relation,

Yℓm(θ, φ) =

(

2ℓ+ 1

4π

)1/2

d
(ℓ)
m0 (θ)e

imφ , (2)

where ℓ is a non-negative integer and m = −ℓ,−ℓ + 1, . . . , ℓ − 1 , ℓ. To see that eq. (2) is
plausible, consider eq. (1) after setting m′ = 0 and taking j = ℓ to be an integer. Then,
derive a similar relation for the spherical harmonics Yℓm(θ, φ). Interpret the resulting relation
in terms of the raising and lowering operators L±.
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4. The wave function of a particle subjected to a spherically symmetric potential V (r) is
given by:

ψ(~x) = (x+ y + 3z)f(r) ,

where r ≡ |~x|.
(a) Show that ψ(~x), when expressed as a function of spherical coordinates, can be written

as a linear combination of spherical harmonics.

(b) Is ψ an eigenfunction of ~L 2? If so, what is the ℓ-value? If not, what are the possible

values of ℓ that can be obtained when ~L
2 is measured?

(c) What are the probabilities for the particle to be found in various m states? Consider
all allowed values of m and check that the probabilities adds up to one.

(d) Suppose it is known somehow that ψ(~x) is an energy eigenfunction with eigenvalue E.
Indicate how we may find V (r).

5. Suppose a half integer ℓ-value, say 1
2
, were allowed for orbital angular momentum. From,

L+Y1/2,1/2(θ, φ) = 0 ,

we may deduce, as usual, that

Y1/2,1/2(θ, φ) ∝ eiφ/2
√
sin θ .

Now try to construct Y1/2,−1/2(θ, φ) by (i) applying L− to Y1/2,1/2(θ, φ); and (ii) using
L−Y1/2,−1/2(θ, φ) = 0. Show that the two procedures lead to contradictory results.1

6. Solve for the lowest energy state in a square well in two and three dimensions with zero
angular momentum (i.e., ℓ = 0):

V (r) =

{

−V0 , if r < a,

0 , if r > a,

where V0 is positive. In the case of three dimensions, find the minimum value of V0 which is
necessary in order that there be at least one bound state. This is in contrast to the situation
in one dimension where there is always binding no matter how small V0 is. In two dimensions,
is the situation analogous to the three dimensional case or to the one dimensional case?

1The results of problem 2 and problem 5 provide independent arguments against half-integer ℓ-values for

orbital angular momentum.
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