APPENDIX A

STATIONARY PHASE AND SADDLE POINT METHODS

A. 1 INTRODUCTION

The intent of this appendix is to provide a simple approximate solution for the integral

$$
\begin{equation*}
\int_{A}^{B} g(x) e^{i k f(x)} d x \tag{A.1}
\end{equation*}
$$

A. 2 THE METHOD OF STATIONARY PHASE

In one dimension, the solution can be found by reducing the Eq. (A.1) to the Fresnel Integral

$$
\begin{equation*}
F=\int_{-\infty}^{\infty} e^{i a x^{2}} d x=\sqrt{\frac{\pi}{2 a}}(1+i) . \tag{A.2}
\end{equation*}
$$

To understand the solution to come, let us look at the real and imaginary parts of the integrand of

$$
F=\sqrt{\frac{\pi}{2 a}}(1+i)
$$

The main contribution to the real part of F

$$
\begin{equation*}
F=\int_{-\infty}^{\infty} \cos \left(a x^{2}\right) d x=\sqrt{\frac{\pi}{2 a}} \tag{A.3}
\end{equation*}
$$

comes from the interval, $-\sqrt{\frac{\pi}{2 a}}<x<\sqrt{\frac{\pi}{2 a}}$, and the rest cancels out because of the oscillations of the cosine function (see Figure A.1a).

[^0]

FIGURE A. 1 Oscillatory nature of the (a) Cosine function and (b) Sine function.

Referring to Figure A. 1 b , it is plausible that the imaginary part of F is given by

$$
\begin{equation*}
F=\int_{-\infty}^{\infty} \sin \left(a x^{2}\right) d x \approx \sqrt{\frac{\pi}{2 a}} \tag{A.4}
\end{equation*}
$$

over the same interval $-\sqrt{\frac{\pi}{2 a}}<x<\sqrt{\frac{\pi}{2 a}}$, with the rest canceling out because of the oscillations of the sine function.

Looking again at Eq. (A.1), let us see how it will assume the form of a Fresnel Integral. The exponent $k f(x)$ might vary rapidly over most of the x-regime, but let us assume that it is "stationary" around $x=x_{0}$. This means that the first derivate $\frac{\partial f}{\partial x}$ equals 0 at $x=x_{0}$ and that we can approximate function $f(x)$ by the equation

$$
\begin{equation*}
f(x) \approx f\left(x_{0}\right)+\frac{1}{2!} \frac{\partial^{2} f\left(x_{0}\right)}{\partial x^{2}} \tag{A.5}
\end{equation*}
$$

Given the above, the result of the integration will depend on
(a) $g(x)$
(b) $\cos [k f(x)]$
(c) the width of the unusually wide maximum of $\cos [k f(x)]$ at $x=x_{0}$.

Item (c) in the above list will be narrow if the bend of $f(x)$ at $x=x_{0}$ is sharp, which depends on $\frac{\partial^{2} f\left(x_{0}\right)}{\partial x^{2}}$. The function $g(x)$ should change only a little during one oscillation, which is achieved by a large k (see Figure A.2). If $f(x)$ is stationary only once within an interval $A<x<B$, then we will have a contribution only from there. If so, it does not make a difference to the answer if we extend the integration limits from (A, B) to $(-\infty, \infty)$ as long as $k f(x)$ does not have another stationary point outside the interval (A, B).

Given the above is true, we have

$$
\begin{equation*}
\int_{A}^{B} g(x) e^{i k f(x)} d x \approx \int_{-\infty}^{\infty} g(x) e^{i k f(x)} d x \approx \int_{-\infty}^{\infty} g(x) e^{i k\left[f\left(x_{0}\right)+\frac{1}{2!} \frac{\partial^{2} f\left(x_{0}\right)}{\partial x^{2}}\right]} d x . \tag{A.6}
\end{equation*}
$$

FIGURE A. 2 Notional plot of $g(x) \cos [k f(x)]$.

Expanding $g(x)$ into a Taylor Series and integrating, we have

$$
\begin{equation*}
\int_{A}^{B} g(x) e^{i k f(x)} d x \approx \sqrt{\frac{2 \pi}{\left(\frac{\partial^{2} f\left(x_{0}\right)}{\partial x^{2}}\right)}} g\left(x_{0}\right) e^{i k f\left(x_{0}\right)+\frac{\pi}{4}} . \tag{A.7}
\end{equation*}
$$

If $\frac{\partial f}{\partial x}$ has more than one zero, then

$$
\begin{equation*}
\int_{A}^{B} g(x) e^{i k f(x)} d x \approx \sum_{n} \sqrt{\frac{2 \pi}{\left(\frac{\partial^{2} f\left(x_{n}\right)}{\partial x^{2}}\right)}} g\left(x_{n}\right) e^{i k f\left(x_{n}\right)+\frac{\pi}{4}} \tag{A.8}
\end{equation*}
$$

A. 3 SADDLE POINT METHOD

This method is essentially the same as the method of stationary phase, except it applies to the two-dimensional version of the previous integral. That is, we are interested in the approximate solution to the integral

$$
\begin{equation*}
\int_{A_{x}}^{B_{x}} \int_{A_{y}}^{B_{y}} g(x, y) e^{i k f(x, y)} d x d y \tag{A.9}
\end{equation*}
$$

Following in essence the same development as above, we can show that

$$
\begin{equation*}
\int_{A_{x}}^{B_{x}} \int_{A_{y}}^{B_{y}} g(x, y) e^{i k f(x, y)} d x d y \approx \frac{2 \pi g\left(x_{0}, y_{0}\right) e^{i k f\left(x_{0}, y_{0}\right)+\frac{i \pi}{2}}}{k \sqrt{\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}}\right)\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial y^{2}}\right)-\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y}\right)}}, \tag{A.10}
\end{equation*}
$$

where x_{0} and y_{0} are solutions to the equations $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$, respectively.

[^0]: Free Space Optical Systems Engineering: Design and Analysis, First Edition. Larry B. Stotts. © 2017 John Wiley \& Sons, Inc. Published 2017 by John Wiley \& Sons, Inc.
 Companion website: www.wiley.com \backslash go \backslash stotts \backslash free_space_optical_systems_engineering

