APPENDIX A

STATIONARY PHASE AND SADDLE
POINT METHODS

A1 INTRODUCTION

The intent of this appendix is to provide a simple approximate solution for the integral

B
/ g(x) e dx. (A1)

A

A.2 THE METHOD OF STATIONARY PHASE

In one dimension, the solution can be found by reducing the Eq. (A.1) to the Fresnel

Integral
F=/ dCdr = [ Z (1 +0). (A.2)
oo 2a

To understand the solution to come, let us look at the real and imaginary parts of the

integrand of
T
F=4/—04+.
\V gD

The main contribution to the real part of F

F= / ” cos(ax?)dx = 1/ 2= (A3)
o 2a

comes from the interval, —y/£ < x < 4/Z, and the rest cancels out because of the

2a”

oscillations of the cosine function (see Figure A.la).

Free Space Optical Systems Engineering: Design and Analysis, First Edition. Larry B. Stotts.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\stotts\free_space_optical_systems_engineering



486 STATIONARY PHASE AND SADDLE POINT METHODS

4 cos (@x) Asin (@®)

Anm
I e\ ] \ |

IV Lo\ ] \[ o] ]
VY A

_ | = z _| = z
2a 2a 2a 2a

FIGURE A.1 Oscillatory nature of the (a) Cosine function and (b) Sine function.
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Referring to Figure A.1b, it is plausible that the imaginary part of F is given by

F = / sin(axz)dxm Z (A4)
o \/ 2a

over the same interval —\/g <x< \/g , with the rest canceling out because of the
oscillations of the sine function.

Looking again at Eq. (A.1), let us see how it will assume the form of a Fresnel
Integral. The exponent kf(x) might vary rapidly over most of the x-regime, but let
us assume that it is “stationary” around x = x,. This means that the first derivate £
equals O at x = x;, and that we can approximate function f(x) by the equation

2f (xo)

—a (A.5)

F@) = f0) + 55
Given the above, the result of the integration will depend on

(a) g(x)
(b) cos[kf(x)]

(c) the width of the unusually wide maximum of cos[kf(x)] at x = x.

Item (c) in the above list will be narrow if the bend of f(x) at x = x is sharp, which

depends on 2 (: %) The function g(x) should change only a little during one oscillation,
which is achieved by a large k (see Figure A.2). If f(x) is stationary only once within
an interval A < x < B, then we will have a contribution only from there. If so, it does
not make a difference to the answer if we extend the integration limits from (A, B) to
(—o0, 00) as long as kf (x) does not have another stationary point outside the interval
(A,B).

Given the above is true, we have

B . Rl . o tk[f(x )+ 1, 2 f(xo)]
/ g(x) eV ax » / 2(x) e Wix ~ / gx)e TR0 gy, (A.6)
A -0 -

(S




SADDLE POINT METHOD 487

4 9(x) coslk f(x)]

I

I
—

I

\ AWy
Vi

Xo

FIGURE A.2 Notional plot of g(x) cos[kf(x)].

Expanding g(x) into a Taylor Series and integrating, we have

B
/ ()M O dx ~ ikio)+7 (A7)
A

If g_)fc has more than one zero, then

B
()M D dx ~
/ z

g(x,)e (A8)

2r
<62f(xn> )

ox2
A.3 SADDLE POINT METHOD

This method is essentially the same as the method of stationary phase, except it
applies to the two-dimensional version of the previous integral. That is, we are inter-
ested in the approximate solution to the integral

By By .
/ / g(x, y) &MV dx dy. (A.9)
Ay A'v

Following in essence the same development as above, we can show that

B, B, ‘ 2ra(x. oMo+ 5
/ / g(x, y)elkf(x’y) dxdy ~ 8(xps Yo) ,
Av Sy k 0% (x0, ¥0)\ { 9°f (X0-Yo) 3 0% (x> o)
0x? 0y? dxa)EA .

where x, and y, are solutions to the equations £ = 0 and gi; = 0, respectively.



