VOLUME TWO
CHAPTER 6

ELEMENTS AND APPLICATIONS OF THE
THEORY OF ANALYTIC FUNCTIONS

INTRODUCTION

The role played by the theory of analytic functions in physics has changed
considerably over the past few decades. It no longer suffices to be able to work
out residue integrals; a deeper understanding of the mathematical ideas has
become essential if one wants to follow current applications to physical theory.
Therefore the emphasis here will be on introducing the mathematical concepts
and the logical structure of the theory of analytic functions. Assuming only
that the reader is familiar with the properties of complex numbers, we aim to
present a self-contained account of this theory in a way that prepares one to
cope with modern applications of the theory as well as those of the past.

“Imaginary” numbers were discovered in the Middle Ages in the search for
a general solution of quadratic equations. It isclear from the name given them
that they were regarded with suspicion. Gauss, in his doctoral thesis of 1799,
gave the now familiar geometrical representation of complex numbers, and thus
helped to dispel some of the mystery about them. In this century, the trend
has been toward defining complex numbers as abstract symbols subject to certain
formal rules of manipulation. Thus complex numbers never have taken on the
“earthy” qualities of real numbers. In fact, more nearly the opposite has
occurred: we have come to view real numbers abstractly as symbols obeying
their own set of axioms, just like complex numbers. We now speak of number
fields: the real field and the complex field. The axioms which define a field
were stated in Chapter 3 on vector spaces.

The theory of complex numbers can be developed by viewing them as ordered
pairs of real numbers, written (x, y). Let (a, b) and (c, d) be two different com-
plex numbers, and let K be a real number. Then we define addition, multiplica-
tion of a real and a complex number, and multiplication of two complex
numbers by the following rules:

1. (a.b) + (c,d) = (a+ b, c+ d),

2. K-(a,b) = (Ka, Kb),

3. (a,b):(c,d) = (ac — bd, bc + ad) .

From these definitions, we see that the set of all complex numbers—the complex

plane—has the same mathematical structure as the set of all vectors in a plane.
This approach is followed in Landau’s Foundations of Analysis, in which

the various number systems are built up logically from Peano’s five axioms; the
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306 THEORY OF ANALYTIC FUNCTIONS 6.1

imaginary number i is never mentioned. However, if we write the ordered pair
(a, b) as a + ib, where i* = —1, then the above rule of complex-number multi-
plication is obeyed if we simply multiply out the product (a + ib)(c + id)
according to the usual rules of multiplication of reals. The introduction of the
symbol i subsumes the ordering aspect of the ordered pair of real numbers,
while extending the formal rules of arithmetic from real to complex numbers.

From the complex numbers constructed as ordered pairs of reals, where
(a, b) = a + ib, it is possible to generalize to hypercomplex numbers of three
or more components, forexample (a, b, ¢) = a + ib + kc. The four-component
quaternions, a type of hypercomplex number which satisfies all the rules of
arithmetic except the commutative law of multiplication, are useful in dealing
with rotations of a rigid body. The four 4 X 4 Dirac matrices, y;(i = 1, 2, 3, 4),
form a set of hypercomplex numbers which satisfy the anticommutative relations

vivitorivi = 20, .

It can be shown that no matter how we define addition and multiplication
for these hypercomplex numbers, it is impossible to retain all the usual rules of
arithmetic. As Weyl points out, the complex numbers form a natural boundary
for the extension of the number concept in this respect.

6.1 ANALYTIC FUNCTIONS—THE CAUCHY-RIEMANN CONDITIONS

If to each complex number z in a certain domain there corresponds another
complex number w, then w is a function of the complex variable z: w = f(2).
If the correspondence is one to one, we can view this as a mapping from one
plane (or part of it), the z-plane, to another, the w-plane. The complex func-
tions thus defined are equivalent to ordered pairs of real functions of two varia-
bles, because w is a complex number depending on z = x + iy and therefore
can be written in the form

w(z) = ulx,y) + iv(x,y) .

However, this class of functions is too general for our purposes. We are interested
only in functions which are differentiable with respect to the complex variable
z—a restriction which is much stronger than the condition that u and v be
differentiable with respect to x and y. Therefore one of our first tasks in the
study of complex function theory will be to determine the necessary and suffi-
cient conditions for a complex function to have a derivative with respect to the
complex variable z. Single-valued functions of a complex variable which have
derivatives throughout a region of the complex plane are called analytic func-
tions. We shall restrict our attention to this special class of complex functions.

Two examples of complex functions (both written in the form w = u + iv)
are

l.w=17z*¥=x—1iy,
2. w=2"= (x4 iy)P=x?— y* + i2xp.
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Presently, we shall show that (I) is not an analytic function, but that (2) is
analytic everywhere in the complex plane; i.e., its derivative exists at all points.
Before stating exactly what is meant by the derivative of a function of a
complex variable, we must have a notion of continuity for these functions.
In the definition that follows, mention is made of the absolute value of a
complex number, denoted by |z|]. The reader will recall that |z| = (zz*)"?
= (x* 4+ y*)"2. The absolute value is sometimes called the modulus.

Definition. A complex function w = f(z) is continuous at the point z,
if, given any € > 0, there exists a ¢ such that |f(z) — f(z)]| < €, when
|z — 2| < @, or f(z) is continuous at z, if

lim f(2) = f(z) -

=20

This definition is formally exactly like the definition of continuity for real
functions of a real variable. However, here the absolute value signs mean that
whenever z lies within a circle of radius ¢ centered at z in the complex z-plane,
then f(z) lies within a circle of radius e centered at f(z,) in the complex w-plane.
If f(z) = u(x,y) + iv(x,y), then f(z) is continuous at z, = x, + iy, if ¥ and v
are continuous at (xo, o).

From the class of single-valued, continuous complex functions, we now
want to select those that can be differentiated. Patterning the definition of a
derivative after that of real analysis, we have

Definition. f(z) is differentiable at the point z, if the limit

limf(z) — flz) Af

= lim =~
-2 zZ— 2 A0 AZ

exists. We shall denote this limit, the derivative of f(z) at z, by f”(z).

A very important feature of the limits that occur in the definitions of
continuity and the derivative is that z may approach z, from any direction-on
the plane. When we say the limit exists, we therefore mean that the same
number must result from the limiting process regardless of how the limit is taken.
This is also true in real analysis, but in that case there are only two possible
directions of approach in taking the limit: from the left or the right on the real
line. In real analysis, the limiting process is one-dimensional; in complex
analysis, it is two-dimensional.

The equation that defines the derivative means that given any € > 0, there
exists a d such that

f’(z) _f(z) - f(Zo) < €
z — 2z,
provided |z — z| < 8. The requirement that the ratio [f(z) — f(z0)]/(z — z0)
always tends to the same limiting value, no matter along what path z approaches
Zo, is an extremely exacting condition. The theory of analytic functions contains
a number of amazing theorems, and they all result from this stringent initial
requirement that the functions possess “isotropic” derivatives.
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A single-valued function of z is said to be analytic (or regular) at a point
z, if it has a derivative at z, and at all points in some neighborhood z,. Thus
a slight distinction is drawn between differentiability and analyticity. It pays
to do this, because although there exist functions which have derivativesat certain
points, or even along certain curves, no interesting results can be obtained unless
functions are differentiable throughout a region, i.e., unless they are analytic.
Thus if we say a function is analytic on a curve, we mean that it has a derivative
at all points in a two-dimensional strip containing the curve. If a function is
not analytic at a point or on a curve, we say it is singular there.

We shall now examine the two complex functions mentioned earlier for
differentiability and analyticity. We write the derivative at z, in the form

fz) = “mf(zo + Az) — flz) )

Az—0 Az

by letting z =z, + Az in the original definition. For f(z) = z?, we have

Fla) = lim B E 8D =2 _ i 00 4 Ag) = 25,
Az—0 V4 AzZ—0

a result which is clearly independent of the path along which Az — 0, so f(z) = z?
is differentiable and analytic everywhere. The result parallels exactly the result
for the derivative of the real function f(x) = x%.

On the other hand, if f(z) = z*, we have

fl(z) = lim 2t B2% — 2z _ ;A%
Az-0 Az a0 Az

Now if Az — 0 along the real x-axis, then Az = Axand Az*¥ = Ax* = Ax, so
f'(z0) = +1. However, if Az approaches zero along the imaginary y-axis, then
Az = iAyso Az¥ = —iAy = — Az, so f'(z) = — 1. Since at any point z, the
limit as z — z, depends on the direction of approach, the function is not differ-
entiable or analytic anywhere. [As a general rule, Az*/Az = e %, where
0 = tan~' (Ay/Ax), which manifestly involves the direction of approach () in
taking the limit.]

Many of the theorems on differentiability in real analysis have analogs in
complex analysis. For example:

1. A constant function is analytic.

2. f(z) =2"(n=1,2, ---) is analytic.

3. The sum, product, or quotient of two analytic functions is analytic, provided,
in the case of the quotient, that the denominator does not vanish anywhere
in the region under consideration.

4. An analytic function of an analytic function is analytic.

The proofs go through exactly as in the real case.

We now determine the necessary and sufficient conditions for a function
w(z) = u(x, y) + iv(x,y) to be differentiable at a point. First, we assume that
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w(z) is in fact differentiable for some z = z. Then

Aw Au Av)
w’ lim 2Y¥ =
() = Ai—’mo Az Pz—omo (Az ti Az

Since w’(zo) exists, it is independent of how Az — 0; that is, it is independent
of the ratio Ay/Ax. If the limit is taken along the real axis, Ay = 0, and
Az = Ax. Then

w!(z)) = ,lalmo
X

<Au .Av> ou
+i—)=—+i—.

Ax Ax ox Ox

On the other hand, if we approach the origin along the imaginary axis, Ax = 0

and Az = jAy. Now

w/(z9) = }‘1m0
o

<Av Au) oy _ au
Ay Ay oy ay

But by the assumption of differentiability, these two limits must be equal.
Therefore, equating real and imaginary parts, we have

Ou = dv and — .

ox Oy ox oy
Equations (6.1) are known as the Cauchy-Riemann equations. They give a
necessary condition for differentiability. We have determined this condition
from special cases of the requirement of differentiability; therefore it is not
surprising that these conditions alone are not sufficient.

The sufficient conditions for the differentiability of w(z) at z, are, first, that
the Cauchy-Riemann equations hold there, and second, that the first partial
derivatives of u(x, y) and v(x, y) exist and be continuous at z,.

The proof is straightforward. To begin, u is continuous at (x,, o) because
it is differentiable there; the partial derivatives of u are continuous by hypothesis.
Under these assumptions, it follows from the calculus of functions of several
variables* that

(6.1)

Au = u(Xo + Ax.J’o + Ay) - u(xﬂr yo)
= Ay + Ay + 6Ax + 6by,
Ox oy
where 0u/dx and du/0y are the partial derivatives evaluated at the point (xy, yo)

and where €, and ¢, go to zero as both Ax and Ay go to zero. Using a similar
formula for v(x, y), we have

Aw = w(zo + Az) — w(z) = Au + iAv

a U Ax + % “Ay + 6Ax + &Ay + i (av Ax + o Ay + eAx + aAy)

* See, for example, G.B. Thomas, Jr. Calculus and Analytic Geometry, 4th Ed.,
Addison-Wesley Publishing Co., 1968, Section 15-4, p. 503 Eq. 4, or W. Kaplan, 4d-
vanced Calculus, Addison-Wesley Publishing Co., 1953, Section 2-6, p. 84.
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Now using the Cauchy-Riemann equations, which by assumption hold at the
point (xo,y). we have

Aw = 6_ “(Ax + iAy) + I— (Ax + iAy) + Ax(e; + ie;) + Aple, + ieq) .

Therefore

A ] A

Z;—£+ —+ (e.+te;)—+ (Q‘*"&)A_)Z]-
Since |Az| = [ (Ax)* + (Ay)’]"%, |Ax| < [Az| and |Ay| < |Az], and so |Ax[Az|
< 1 and |Ay/Az| < 1. Since these factors are bounded, the last two terms in
the above equation tend to zero with Az because ¢, €;, €;, and € go to zero as
Az goes to zero. Therefore at z,

ou 0V
w'(zy) = — 6.2
(z0) PPN (6.2)
the limit is independent of the path followed, so the derivative exists. Using

the Cauchy-Riemann conditions, we also have
wiz) = = —i—. (6.3)

Example. Consider the function z*. We have

3

2= =3 +iBxy —)y)=u+iv.
Thus

a—u:3x2-3yz=a—v, and a—v:=6xy=——.
0x oy 0x oy
Thus the Cauchy-Riemann equations hold everywhere. Since the partial deri-
vatives are continuous, the function z*is, in fact, analyticeverywhere. A function
which is analytic in the entire complex plane is said to be an entire function.
The derivative of z* may be found using Eq. (6.2) or (6.3). We obtain
3

Qi:a_“-}- ; v =3[ (x* — y}) + 2ixy] = 3%,

0z 0x dx
a satisfying result. As a second example, we leave it to the reader to show that
the function |z|? = zz* is differentiable only at the origin, and therefore is
analytic nowhere.

One remarkable result which points to connections with physics follows
immediately from the Cauchy-Riemann equations. Assuming that they hold
in a region, we have

ou ) o™ 0%u 0u | 0u
=2V -9V - M K Iy = 6.4
ox*  ox oy 0yox 0y* ox*  0)? (6.4)

if the second partial derivatives are continuous, so we can interchange the orders
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of differentiation in the mixed partial derivative. It follows in the same way
that the function v also satisfies the two-dimensional Laplace equation. Thus
both the real and imaginary parts of an analytic function with continuous second
partial derivatives satisfy the two-dimensional Laplace equation. We shall later
prove, using integration theory, that the second partial derivatives of an analytic
function are necessarily continuous, so this qualification can be dropped. (It is
interesting that these theorems about derivatives can be proved only by integra-
tion.) Any function ¢ satisfying V¢ = 0 is called a harmonic function. If
f = u + ivis an analytic function, then V2u = V?*» = 0, and u and v are called
conjugate harmonic functions.

Given one of two conjugate harmonic functions, the Cauchy-Riemann
equations can be used to find the other, up to a constant. For example, the
function u(x,y) = 2x — x* + 3x)? is easily seen to be harmonic. To find its
harmonic conjugate, we proceed as follows:

Ou _ 0v _ 2 — 3y 2 _ 2 3
M= -3+ 3P =—=0=2 — 3y + y + d(x) ,
ox 0y
where ¢(x) is some function of x. Now, using the other Cauchy-Riemann
equation, we obtain
ov _

W ey xy ot px) = —6xy = ¢ = 0.
0x Oy

Thus ¢(x) must be a constant, and the harmonic conjugate of u is
v = 2y — 3x% + »* + const.

Note that the function w = u + iv = 2z — z* + C is an analytic function, as
we know it must be.

Before leaving the Cauchy-Riemann conditions, let us take advantage of
being physicists to present another, shorter derivation of these conditions, based
on the use of infinitesimals. Letw = u 4 ivand w/ = p + iq. Then dw = w'0z,
or, taking real and imaginary parts,

ou = pdx — qdy , 0v = pdy + qox .
It follows immediately that

ou _ 0v _ ov _ _Ou _

x o T ey 1

These equations are identical to the Cauchy-Riemann equations (6.1).
Continuing in this informal spirit, we may derive another closely related

result which provides some insight into the meaning of analyticity. Again, let

w(z) = w(x, y) = u(x, y) + iv(x, ). We now show thatdw/0z* = 0 if and only

if the Cauchy-Riemann equations hold. We shall not worry about the meaning

of this derivative with respect to z*, but just differentiate formally, treating the
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derivative as symbolic. Using the expressions
x=(z+4 z%)2 and y=(z2— z¥) /2
we have

w _owox | w

0z% ~ 9x 0z* dy oz*

S (34 2)y 4 (24 2 L)
(6x+lax bt 6y+16y 2i

_ () (0

ox 0Oy 2\ox 0y

If the Cauchy-Riemann equations hold, this last expression vanishes. If, on the
other hand, ow/0z* = 0, then both the real and imaginary parts of the last
expression must vanish, so the Cauchy-Riemann equations hold.

This purely formal result, which can be made rigorous, is trying to tell us
that analytic functions are independent of z*: they are functions of z alone.
Thus analytic functions are true functions of a complex variable, not just complex
functions of two real variables (see, for example, Problem 1), which will in
general depend on z* as well as z according to

6.2 SOME BASIC ANALYTIC FUNCTIONS

One of the most useful functions in the complex domain is the exponential
function which we define for z = x + iy by

et = e (cosy + isiny) . (6.5)

It follows easily from this definition and our earlier work that e* is an entire
function and that

—e = e,

dz
The other familiar properties of exponentials, in particular, etz = e*te®,
follow readily from Eq. (6.5). We note that e* is a periodic function of period
2mi:

et = g?e®™ = ¢ (cos 27 + isin 27) = €.
From Eq. (6.5) we see that
e’ =cosy+ isiny,

so it follows that

e’ + e~ .
COS Y = ——m——— | sin y = —————n,
Y 2 Y 2
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These relations suggest that for an arbitrary complex z we define

1£4 —iz
cosz=¢ Tt~ , (6.6)
2
iz __ iz
sinz=¢ .e (6.7)
2i
Since
ie‘ = e*,
dz
it is a simple matter to calculate the derivatives of cos z and sin z. We find that
ol . oIz
4 oosz =" Gnz,
dz 2
1ol io—iz
isinz:l_e_:*_.l—e_:cosz,
dz 2i

as we might expect from experience with the real variable case. Using Egs. (6.6)
and (6.7), it is a simple matter to verify that all the familiar trigonometric
identities, such as

cos (2, + z;) = cos z;cos z, — sin z,sin z, ,

continue to be valid for complex variables.
The complex functions sine and cosine may, of course, be put in the form
u(x, y) + iv(x, y). For example,

. 1 . .
sin z = 5_ [e"”"’ — e—r(X+I,v)]
1

= -l—e“’(cosx + isinx) — le’(cosx — isin x)
2i 2i

= sin x(e” + e7’)/2 + icos x(e”? — e7?)[2.
Therefore
sin z = cosh ysin x + ¢ sinh y cos x . (6.8)
Similarly,
cos z = cosh y cos x — i sinh y sin x . (6.9)

Setting x = 0, we obtain the useful relations sin (iy) = isinh y and cos (iy)
= cosh y. We also see that the Cauchy-Riemann conditions are satisfied every-
where, as we know they must be. Other properties which follow directly from
Eqs. (6.8) and (6.9) are

(sin z)* = sin (z*) ,
sin (—z) = — sin (2) ,

sin (z + 2z) = sin (2) .
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Using the sine and cosine functions, we can define the other familiar
trigonometric functions. For example,

tan z = sin z/cos z ;

similar extensions of the real case are defined for the cotangent, secant, and
cosecant. These functions differ from the sine and cosine in that they are not
analytic everywhere. The tangent, being the ratio of two analytic functions, will
be analytic everywhere except at points where cos z = 0. Using the real and
imaginary parts of the cosine, we can rewrite this condition as

coshycosx =0, sinhysinx = 0.

Now cosh y > 1 for all real y, so the first equation has a solution whenever

cosx=0,orx= (2n+ )m/2,n =10, =1, £2, ---. At these points, sinx
= =+1, so the second equation requires that sinh y = 0, that is, y = 0. Thus
the tangent function is singular at the points (2n + 1)z/2, (n = 0, =1, ---) on

the real axis, and only at these points. Therefore tan z becomes infinite at
precisely those points where tan x (real x) becomes infinite and only at those
points.

On the basis of the above discussion, one might be tempted to think that
the complex trigonometric functions are “just the same thing” as their real
counterparts. However, the reader can easily show that

[sin z|* = sin®* x + sinh?y,

and this expression increases without limit as y tends to infinity. This is in marked
contrast with the real case, where |sin x| <1 for all real x.

The functions which we have discussed thus far all have the property that
if we pick any point z, in the complex plane and follow any path from z, through
the plane back to z, then the value of the function changes continuously along
the path, returning to its original value at z,. For example, suppose that we
consider the function w(z) = e* and start at the point z, = 1, encircling the origin
in the z-plane counterclockwise along the unit circle. Figure 6.1(a) shows the
circular path in the z-plane, and Fig. 6.1(b) shows the corresponding path in
the w-plane. [The use of two complex planes to “graph” the function w(z) is often
employed in complex variable theory.] We note that both paths are closed,
which is just the geometrical statement of the fact that if we start at a point z,,
where the function has the value w(z,), then when we move along a closed curve
back to zj, the functional values also follow a smooth path back to w(z).

Now for e* this result is hardly surprising since we have defined € in such
a way as to ensure this behavior, letting ourselves be guided by the properties
of the real exponential function. Now if we look at another simple function,
namely, the square root, we see that things do not always go so smoothly. Let
us write formally

wi2) =vVzi=vVx+iy.
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z-plane

_1\\ . -

w-plane (a) w-plane
w(z) = e% w(z)=V">

) w(zy) w(zy)

—i4 -~

(b) (©

Fig. 6.1(a) A circular contour in the z-plane about the origin. 6.1(b) The mapping
of the contour of Figure 6.1(a) by the function e*. Fig. 1{c) The mapping of the
contour of Figure 6.1(a) by the function 4/Z.

We observe that this definition is empty, since there is no set of operations
presently at our disposal which will enable us to find w(z) for some given x and
y (unless y = 0). This is in contrast with the situation in Eq. (6.5) where all
problems of evaluation can be handled by familiar real-variable operations.
Fortunately, in the case of the square root there is another possibility,
namely, we can write z in polar form' as z = re”’. In thisform, a logical exten-
sion of the square root to the complex domain is contained in the definition

w(z) = vz = Vre®* = 4/F[cos (0/2) + isin (6/2) ].

tIf we write z = x + iy and make the familiar change to polar coordinates (x = r cos®,
y = rsin @) we obtain z = r(cos § + isinf) = re'’, where r = (x? + y*)'/2 and 6 = tan™!

(y/x).
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Clearly, this function satisfies w* = z, which is certainly a minimum require-
ment for any sensible square root. Using this definition, let us vary z along the
same path chosen in Fig. 6.1(a), startingatr = 1,6 = 0. Figure 6.1(c) shows the
corresponding path in the w-plane. Note that it is not a closed path; after making
a complete circle around the origin in the z-plane, we arrive at the pointw = —1
in the w-plane, not at w = +1. In order to get back to w = +1, we must let
6 go from 2z to 4x; that is, make the circular trip in the z-plane one more time
[see the dotted curve in Fig. 6.1(c)]. Actually this is not quite the best way to
describe the situation; we do not want to think of tracing the circular path in
the original z-plane a second time, but rather of tracing an identical circular path
in a different z-plane. This corresponds to the fact that in the first circuit, § went
from 0 to 27w, whereas in the second circuit, it went from 2x to 4.

This is not so different from the case of functions like e* as one might
imagine at first glance. We can write in polar variables

e’ = e [cos (rsin @) + isin (rsind) ],

and then trace out a circular path as many times as we please (§ = 0 — 6 = 2=,
0 = 2r — 6 = 4x, etc.). In this case we get the same values of ¢* for each
circuit. Therefore no information about e is lost if we identify the z-planes
corresponding to § = 0 — 0 = 2, § = 2r — 0 = 4r, etc., with each other.
However, in the case of w(z) = 4/z we need two planes, usually referred to as
Riemann sheets, to characterize the values of w(z) in a single-valued manner.
Two planes are clearly sufficient: when we let 8 range from 4z to 67 we obtain
the same values as we did when we let 6 range from 0 to 27.

It is important to remember that the path of Fig. 6.1(a) encloses the origin.
If we choose a closed path which neither encloses the origin nor intersects the
positive real axis, then we also obtain a closed path in the w-plane. Fig. 6.2(a)
and (b) illustrates the situation for w(z) = 4/z, starting from the z, = /5 e'%,
where ¢, = tan~'2 (we adopt the usual trigonometric convention that tan~'x
takes on values between 0 and #/2). In Fig. 6.2(a) we may say that we start at
zy =1 + 2i on the first Riemann sheet and return to that point without encir-
cling the origin. If we do the same thing for z,= 1 + 2i on the second Riemann
sheet (that is, ¢, = tan™'2 + 2x), we obtain the corresponding closed curve
traced out in the w-plane (Fig. 6.2(c)).

It is readily seen that the difficulties described above for w(z) = 4/z will
persist for any path beginning on the positive real axis and returning to the
original point along a path enclosing the origin. Thus if we wish to consider
w(z) = 4/z in the simple fashion that we used for e, then we conclude that v/z
is not continuous along the positive real axis and is not analytic there. However,
to avoid this dilemma, we can say that when we come back to the real axis after
a circuit of 2z radians, we transfer continuously onto the second Riemann sheet.
If we go around z = 0 once more on the second sheet, when we return toward
the positive real axis, we transfer continuously back to the first Riemann sheet.
Thus the two sheets can be imagined to be cut along the positive real axis and
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z-plane
2+ zo=1+2i
i
~—+— +
-1 1
(a)
w-plane .
w(z)=Vz T!
i T
W(ZO) 1 —
L T
. . -2 -1
I 2 w(zo)
w-plane -
—it+ w(z)=Vz
(b) ©

Fig. 6.2(a) A closed contour in the z-plane which does not enclose the origin. 6.2(b)
The mapping of the contour of Figure 6.2(a) by the function 4/Z, if the contour of
Figure 6.2(a) is imagined to lie on the first Riemann sheet. 6.2(c) The mapping of
the contour of Figure 6.2(a) by the function 4/z, if the contour of Figure 6.2(a) is
imagined to lie on the second Riemann sheet.

joined in the manner illustrated in Fig. 6.3. With this construction, the function
w(z) = 4/zisseen to be single valued everywhere [on both sheets we set w(0) = 0]
and analytic everywhere except at the origin, where 4/ z suffers from the same
difficulty as does 4/x in the real variable case. Thus the origin is a singular
point for w(z) = 4/z.

In general, suppose that we have a singular point, z, of some function w(z),
and a path starting at z;, which encircles z,. If we must sweep through an angle

>< Sheet 1

Sheet 2
Fig. 6.3 A side view. of the two Riemann sheets, looking down the real axis towards
the origin, for the function w(z) = 4/Z.
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greater than 2z in order to return to the original value at z,, then z, is called a
branch point of w(z). The cut which emanates from this point is called a branch
cut. In the simple case discussed above [w(z) = 4/z], the value of w(z) with z,
on the second sheet is just the negative of w(z,) with z, on the first sheet. Note
that it is possible for a point z, on the first sheet to be a point at which some
function w(z) is analytic, whereas the point z, on the second sheet is a singular
point. The function

1
i+ vz
is an example of such a function; w(z) is a single-valued function over a two-
sheeted Riemann surface cut along the positive real axis and joined as in Fig.
6.3. It is analytic at z = —1(¢ = =) on the first Riemann sheet and is singular
at z = —1(¢ = 3x) on the second Riemann sheet.

In the above discussions we could, of course, have insisted that 6, the
argument of z, range only through 27 radians. Then we could say that

wi(z) = Ve, 0<60<L2r,

defines a single-valued function, analytic everywhere in the complex z-plane
except along the positive real axis (including z = 0), and that

wy(z) = A rel0tmiz — 4/ ot , 0<6<2r,

also defines such a function. Both w,(z) and w,(z) satisfy w} = wi = z and are
referred to as single-valued branches of 4/z. Clearly, if we defined

wy(z) = A/ rel@tmiz, 0<6< 2,

we would find wi(z) = w,(z), so we do not obtain a new branch in this manner.
We leave it as an exercise to show that one can define three single-valued branches
of w(z) =4/z and that, in this case, if one wants to define w(z) as a single-valued
function, analytic everywhere except at z = 0, a three-sheeted Riemann surface
is necessary.

It should be noted that the choice of the real axis as the branch cut for
w(z) = +/z was entirely arbitrary. Any other ray, say 8 = 6,, will serve equally
well. The only thing which is nor arbitrary is the choice of z = 0 as a branch
point; z = 0 is a bona fide singular point for w(z) = 4/z, and this cannot be
changed. However, in the functions w,(z) and w,(z) defined above, the singular
line # = 0 is, apart from z = 0, a line of “man-made” singularities; we could
equally well choose the line § = 6, to be the singular line. For example, we
could define

w(z) =

wi(z) = Vre??, 6, <6< 6, + 2r,
and, similarly,
wi(z) = Vel = /e’ g <0< G+ 21 .

If we want a single-valued function which is analyticeverywhere exceptat z = 0,
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then we can construct a two-sheeted Riemann surface, cut and joined along the
line # = 6,. On the counterclockwise edge of the cut, 4z = A/r e After
going through a circuit of 2z radians, we do not return to this value, but to
—4/re®'? and we pass onto the second sheet. Note that, in this case, some of
the values of w(z) = 4/z which were on the firsr Riemann sheet when the cut
was made along § = 0 now find themselves on the second Riemann sheet and vice
versa. This brings home the fact that the Riemann construction is merely a way
to write a collection of values of a function in a single-valued manner. Distinc-
tions between the first sheet and the second sheet are purely matters of convention.
In fact, it should not be difficult for the reader to imagine that any reasonable
curve from the origin to infinity could serve as an acceptable cut along which
the two Riemann sheets of w(z) = 4/z can be joined.

Before leaving this example, let us first propose an argument which might
appear at first sight to contradict what we have been saying. Consider any point
X, 2 0 on the positive real axis. We should imagine that there exists a neigh-
borhood of x, in which we can write z = x, + p, where p is some complex
number, and then define +/z by the power series

— — 2
Visva(1432 42+,
Xo Xo

whenever the series converges (we will see later that the series converges when-
ever |o| < x,). This is a single-valued function which defines 4z continuously
across a part of the positive real axis. However, this definition does not apply
to the whole complex plane since the series does not converge everywhere. It
turns out that it is impossible to extend (or “continue”) this function to all points
of the z-plane in such a way that 4/z is single-valued and analytic. We will return
to this point when we discuss the principle of analytic continuation later in this
chapter. The continuity of the series definition across the positive real axis does
not contradict our original positioning of a cut along the positive real axis,
because, as we have seen above, the cut could be positioned anywhere so long
as it begins at z = 0. In particular, the cut can be chosen so that it lies com-
pletely outside the domain of convergence of the series used to define vz (for
example, the cut could be chosen to lie along the negative real axis). We may
remark in passing that we could successfully define e* in this manner. The
function e* possesses an everywhere convergent power series for real x, and it is
not hard to believe that a complex power series with the same coefficients (1/n!)
will converge everywhere in the complex plane.

As another example of a multivalued function, we consider the logarithm.
Again using z = re’, we define

logz=1Inr+if,

where In denotes the usual natural logarithm of a positive real number. Note
that

elogz — eln r+ié — eln relﬁ — relﬂ =z
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and also that
10g (lez) =In (rlrz) + 1(01 + 02) =In r + 101 + In ry + 102 = 10g Z) + 10g22,

so the logarithm has the main properties that one would expect by analogy with
the real variable case. With the logarithm, the multivaluedness difficulties
described above are more striking, since no matter how many times one encircles
the origin, starting, say, at some point on the positive real axis, one never returns
to the original value of the logarithm. The logarithm increases by 2zi on each
circuit (or decreases by 2xi if one moves in the direction of decreasing 6). Thus
an infinite number of Riemann sheets, each one joined to the one below it via
a cut along the positive real axis, is necessary to turn log z into a single-valued
function. When this is done, log z is analytic everywhere except at z = 0, where
we assign the value log (z = 0) = —oo on all sheets. We can also form an
infinite number of single-valued branches of the logarithm:

w,(z) = Inr + i@ + 2zni, 0<6<2m,

where n =0, £1, £2, .-+, and w,(z) is a single-valued function, analytic
everywhere except at z = 0 and along the positive real axis. Just as before,

ew,,(l) =z,
but
wo(z122) = w,(2)) + w,(z)) — 2mni .
The branch
we(z) =1Inr 4+ i, 0<£0< 2r,

is called the principal value or principal branch of the logarithm and is usually
denoted by Log z. We have
eLogz =z,
Log (z,2z;) = Log z, + Log z, .
As before, the choice of the ray § = 0 as the line of singularities is entirely
arbitrary.

From the preceding examples, it is a simple matter to build up to more
complicated cases. For example, the function

w(z) =z —a

is a single-valued function on the two-sheeted Riemann surface cut from a to
infinity. The point z = a is a branch point singularity; if we choose the branch
cut to lie parallel to the real axis, we obtain the picture of Fig. 6.4. We thus
may define, using the notation of Fig. 6.4,

w(z) = |z — a|'"%'?.
A more challenging problem is provided by the function

w(z) = A/ (z —a)(z — b) .
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)
0=+r 9, 02=0

P p Pl

Cut Cut

Fig. 6.4 The appropriate cut for the func- Fig. 6.5 The appropriate cuts for the func-
tion w(z) = vz — a. tion w(z) = v/ (z — a)(z — b).

To simplify the geometry, we will consider the special case when a and b are
real. The most obvious way to proceed is simply to put in two cuts from the
branch points z = a and z = b as shown in Fig. 6.5. We have chosen these two
simple directions for the cuts because of pictorial convenience. The left-hand
cut corresponds to what we would have for the function 4z — a, the right-hand
cut to what we would have for 4z — b. Here we take 6, to begin on the “bottom”
of the left-hand cut at —x and go to +x on the “top” of the cut. At 7z we
transfer to the second sheet and @, continues to 37, where we return to the first
sheet. As we look down the negative real axis toward the origin, the two sheets
are joined as shown in Fig. 6.3. Similarly, for the right-hand cut, we start at
the “top” of the cut at §, = 0 and move counterclockwise, passing to the second
sheet at 8, = 2z, and finally return to the first sheet when 6, = 4x. Along the
positive real axis, the two sheets are joined as shown in Fig. 6.3. Using the
above conventions, we define

w(z) = |z — a|"?|z — b|"%e"11%"2?
As shown in Fig. 6.6, any point z, on the second sheet can be reached from the
point z, on the first sheet either by going via the left-hand cut or the right-hand

cut. These two options differ only in the sense that in the first case 6, increases
by 2z, whereas in the second case 6, increases by 2z. In both cases, the value

Cut

Fig. 6.6 Two different paths by which one can go from z = zo on the first sheet to
Z = 2o on the second sheet. The function in question is w(z) = v/ {z — a)(z — b).
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of w(z) is the same (the negative of what it would be for the corresponding point
on the first sheet), as it must be if we are to have a single-valued function. With
this construction, w(z) = 4/(z — a)(z — b) becomes a single-valued function,
analytic everywhere except at z = g and z = b.

Note that in the above example, if we go through 27 radians in both 6, and
0,, starting for example on the “top” of the right-hand cut, then we go down
to the second sheet via the left-hand cut and return to our starting point on the
first sheet via the right-hand cut. This suggests that it should equally well be
possible to cut and join the two sheets along the real axis from a to b. The reader may find
it interesting to show that this is indeed the case.

Using the above ideas, we can also obtain sensible expressions for the inverse
trigonometric functions. For example, consider

w=tan"'z.

Writing this as
_ 1 elw _ e—l’w
z=tanw = - —88——,
ielw + e—lW
we obtain readily
(1 —iz)e™ = (1 + iz)e ™,

and hence

Taking the logarithms of both sides, we find that
1 1 + iz) 1 (i — z)
w=—lo ( =—lo .
2 BT =i/ T

tan~'z = -é log <i + z> .

i — z/

Thus

Just as we did in discussing the logarithm, we can speak of single-valued
branches of tan™' z corresponding to single-valued branches of log z. The princi-
pal branch of the inverse tangent is defined in the obvious manner:

Tan™'z = -[Log (i+ z) — Log (i — 2)].

!
2

Similar considerations apply to the functions sin~' z and cos ~! z.

6.3 COMPLEX INTEGRATION—THE CAUCHY-GOURSAT THEOREM

We now come to integration of complex functions, the part of the theory that
makes the subject really interesting to both mathematicians and physicists.
Because of the correspondence between complex numbers and two-dimensional
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vectors, we might expect to be able to define the line integral of a complex
function along a curve in the z-plane.

Let t be a real parameter ranging from ¢, to #,, and let z = z(1) be a curve,
or contour C, in the complex plane, with endpoints 4 = z(¢,) and B = z{t,).
(See Fig. 6.7.) Now we mark off a number of points 7, between ¢, and ¢,, and
approximate the curve by a series of straight lines drawn from each z(,;) to z(¢,;,).

340}

z-plane

X(/) Fig. 6.7

To define the integral of a function w of a complex variable, we form the quantity

n

lim 3 wiz)az = Scw(z)dz ,
where Az; = z(t;4,) — z(t;), and w(z,) is the function evaluated at a point z on
C between z(t;;,) and z(t;). The sum is evaluated in the limit of an arbitrarily
fine partition of the range through which the real parameter # moves as it generates
the contour from A to Bj; that is, as n — oo, or, what is the same thing, in the
limit of arbitrarily small |Az]| for all i.

Writing w(z) = u(x, y) + iv(x, y) and dz = dx + idy, we have

Kmawzjww—v@yujm@+vuy (6.10)
C c c
We can also write this in parametric form. Then
dx=%a,  ay=Pa
dt dt

and so

=[G oD [ F D)
Scw(z) dz—su< — % dr + i +vdt dt.

For a given contour C running from 4 to B we define the opposite contour,
written as —C, to be the same curve but traversed from B to 4. The integral
of w(z) along —C is clearly given by the above equation but with z, and t,
interchanged. Thus,

S:_j. (6.11)
c -C
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Also it follows that

ot 1=l (6.12)

If C is a closed curve that does not intersect itself, we shall always interpret §
to mean the integral taken counterclockwise along the closed contour C.
Another property of the integral that we shall need very often is

0

< SC 1f(2)| |dz| < ML, (6.13)

where M is the maximum value of |f(z)| on C, and the length of C is L. The
first inequality in Eq. (6.13) is a generalization of |z, + z,| < |z| + |z, the
triangle inequality; both inequalities are derived exactly as in the real case.

AA B=14i

Fig. 6.8

Before presenting the general theorems on the integration of functions of a
complex variable, we work out two examples of such integrals using only the
results obtained so far. First, we evaluate the integral

I= S sin zdz
c
over the two paths shown in Fig. 6.8: (1) C, = 0B, (2) C; = 04 + AB. Since
sin z = cosh y sin x + i sinh y cos x,

we have, using Eq. (6.10),

I= Lsin zdz = SC [cosh y sin x dx — sinh y cos x dy]

+i SC [cosh y sin x dy + sinh y cos x dx] .

Along the curve Cy, x = y. Therefore

L=+ g;cosh xsinxdx — (1 — i) S:sinh x cos x dx

= (1 — cosh 1 cos 1) + i(sinh 1sin 1) .
Now we compute [ along C,. Along the path from O to 4, x = 0 and dx = 0,
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and al~ng the path from Ato B,y = 1 and dy = 0. Therefore

1 1 1
IZ::S sinzdz = — S sinh y dy + g cosh 1sin xdx + iS sinh 1 cos x dx
c, 0 0 0
=1—coshlcosl+ isinhlsinl =1,.

The integral from O to B is the same for both paths. In fact, we shall prove
later that it is the same for any path whatsoever—it depends only on the two
endpoints. Also, the definite integral around the closed contour consisting of
C, and —C, (that is, C, traveled backward) is zero. We shall show that this
result holds for any function which is analytic on and inside the closed contour.

Note that if we evaluate formally, according to the rule of real calculus,

1+i

0 0

14i .
]1=IZ=S smzdz:—coszil
=1—coshlcosl 4+ isinhlsinl,

where we have used Eq. (6.9). We shall also prove this “fundamental theorem
of complex calculus,” which holds in any region in which the integrand is
analytic.

As a second example, let us integrate the function f(z) = z* counterclock-
wise around the unit circle centered at the origin. The values of z on this curve
are given by z = €, § = 0 to 2z. Therefore

2x
I = § z2¥dz = S e e’ df = 2xi .
[oy 0
Since zz* = 1 on C, we also obtain the result

§ ldz=27ri.

cz

Neither integral around the closed contour is zero. The reason, as we shall see,
is that z* is not analytic anywhere, and therefore not within and on C, and z~!
is not analytic at z = 0, which is within C.

Both these examples are explained by

Cauchy’s Theorem. If a function f(z) is analytic within and on a closed
contour C, and f'(z) is continuous throughout this region, then

§Cf(z) dz=0.

We shall give two proofs of this theorem.
Proof 1.

§Cf(z) dz =§C (udx — vdy) + i§c fudy + vdx) .

To evaluate the two line integrals on the right, we use Green’s theorem for line
integrals. It states that if the derivatives of P and Q are continuous functions
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within and on a closed contour C, then

§C (Pdx + Qdy) = S«S(% _ g—i)dxdy,

where R is the surface bounded by C. By hypothesis, f(z) is continuous, so
the first partial derivatives of ¥ and v are also continuous; then Green’s theorem
yields

§ (udx — vdy) +i§ (udy + v dx)
C C

_ ou 61)) S §<6u av>
I AP, Ju _ 99 yxay .
SRS<6y+6x ) s T )Y

But since the Cauchy-Riemann equations hold, the integrands above all vanish.
Therefore

§C fz)dz=0. QED

Proof 2. Cauchy’s theorem may also be proved if we use Stokes’s theorem,
which is closely related to Green’s theorem and is perhaps more familiar. We
write

§ f(z) dz :& F-dl +i§ G-dl,
(& (o C
where
F = ui — vj, G = + uj, and dl = dxi + dyj .

Let S be the region interior to and including C. Since the Cauchy-Riemann
conditions hold throughout S, it follows that (V X F), = 0 and (V X G), = 0
throughout S, where the subscript z identifies the k component of the curl; for
example,

0(—v) _ Ou

(VXF), =
Ox oy

by virtue of the Cauchy-Riemann equations. Now, using Stokes’s theorem, the
validity of which depends on the continuity of the four first partials of u and v,

§Cf(z) dz = &CF-dl + i&CGdl: L(v X F)-dS + ,'S (V X G)-dS

S
:L(VxF)ldsMS (VX G),dS =0,
S

where dS = k dS. QED

It is possible to prove Cauchy’s theorem without assuming the continuity
of f’(z). This is because any function which is analytic in a region necessarily
has a continuous derivative. In fact, we shall prove that an analytic function
has derivatives of all orders, and therefore all its derivatives are continuous, the
continuity of the nth derivative being a consequence of the existence of the deriva-
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tive of order n + 1. But we shall only be able to establish this result on higher
derivatives after we have shown that the continuity of f7(z) is not needed in the
proof of Cauchy’s theorem.

This relaxation or weakening of the hypotheses under which

§Cf(z) dz=0

is therefore of the utmost importance—it is, in fact, the centerpiece of the theory
of analytic functions. Some authors (never mathematicians) define an analytic
function as a differentiable function with a continuous derivative. Then the central
result of the theory follows trivially, as we have seen in the previous theorem.
But this is a mathematical fraud of cosmic proportions. It was Goursat who
first proved that the condition that f’(z) be continuous is superfluous. It is
Goursat’s result that really distinguishes the theory of integration of a function
of a complex variable from the theory of line integrals in the real plane. Al-
though the theorem is often simply called Cauchy’s theorem, it is the “-Goursat”
half that gives it real mathematical power. In our proof we follow the presenta-
tions of Franklin and of Knopp.

Fig. 6.9

Cauchy-Goursat Theorem. If a function f(z) is analytic within and on a

closed contour C, then § f(2z) dz = 0.
C

Proof. We shall first prove the theorem for a triangular region; then it is very
easily extended to an arbitrary region. Let R denote the closed region consisting
of the points interior to and on the triangle bounded by the closed contour T
of total length L. Since f(z) is analytic in R, f/(z) exists throughout R, and
therefore, f(z) is continuous in R. We now begin subdividing R into smaller
triangles as shown in Fig. 6.9. Each subtriangle is similar to the original
triangle but its sides (and perimeter) are only one-half as long. The boundaries
of the subtriangles are denoted by T, (i = 1, 2, 3, 4). Clearly

4

§reraz =34 s ez,

i=1 JTi

where all contours are traversed in a counterclockwise direction. All three of
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the boundaries of triangle 3 in Fig. 6.9 are traversed in both directions and
therefore cancel out. Applying the triangle inequality to thisequation, we obtain

1§, re) dz < Z ‘§Tif(2) dz

The object of the proof is to show that the quantity on the left is arbitrarily

small.
Now let C; denote the triangle which contributes the largest term to the
above sum. Then we have

§ s az| <4 ]§le(z> dz

where the length of C, = L, = L/2. We now repeat this process on the subtri-
angle bounded by C,. That is, we find a contour C,, bounding a “sub-subtri-
angle,” such that

§le(z) dz| < 4 [§sz(z) dz

where the length of C, = L, = L,/2 = L[2% If the subdivision is repeated n
times, we obtain a nested sequence of triangular contours C,, such that

\fg,f(z) dz| < 4" |§cnf(2) dzy : (6.14)

where the length of C, = L, = L/2". In order to finish the proof, we have to
show that

is decreasing with n more rapidly than 4" is increasing.

We let R, denote the closed region consisting of C, and the interior points
of the (sub)"’-triangle bounded by C,. Clearly, each point of the region R,
is a point of R,, and as n goes to infinity this nested sequence of closed sets
closes down on a single point z, which is in each R,, and R itself. (If R is the
continent of Africa and we select R, as that subregion which contains the biggest
lion in Africa, we have an algorithm for capturing a big lion—we simply build
a cage about the point z,.)

Since f7(z) exists, it follows by definition that for any € > 0, there exists a
8, such that when 0 < |z — z| < 0,

o) = Sla) gy <.

z— z4

Now consider the function g(z) defined by

flz) — flz) _ f(z0) forz # z,,
g(z) et Z — Z
0 forz = z,.

Note that |g(z)] < € if |z — z| < d; g(z) is therefore continuous at z = z,
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Now f{(z) is given for all z in R by
flz) = flzo) + (z — 20)f"(z0) + (z — 20)g(2) ;

we use this relation to evaluate § f(z) dz. The first two terms are entire func-
CII

tions of z (z, is constant) with derivatives that are continuous everywhere. There-
fore we may apply the earlier version of Cauchy’s theorem to deduce that

§ Ul +~ 2/ 1dz=0. foralli.
Therefore
§C flz)dz = §C (z —z,)g(z) dz .

We now subdivide enough times (i.e., we choose # large enough) so that 2" > L/6.
Then L, = L/2" < §. Furthermore, for any point zon C,, |z — z| < L, < 6,
since z, is inside R,, and the distance from any interior point to any point on
the boundary of a triangle is clearly less than the perimeter of the triangle.
Therefore, since |z — z| < d, |g(z)| < €, and |(z — z5)g(z)| < L,e. Consequently,

§Cl.f(z) dz §C" (z — z)g(2) dz

< L% = €(L[2")* = eL*/4",

where we have used Eq. (6.13). It now follows from Eq. (6.14) that
§ f(2) dz! < el?.
T

Since L is the fixed finite perimeter of the triangular region R, and € is arbitrary,
we can make the quantity eL? smaller than any preassigned number €¢’. Thus

§ fie) az

This proves the Cauchy-Goursat theorem for triangular contours.

We shall not give a formal proof of the extension of this result to arbitrary
regions, because the method and result are simple and clear. Given an arbitrary
C, we inscribe a polygon in C. Any polygon may be decomposed into a sum of
triangles, so we know the theorem holds for polygons of any number of sides.
It is clear that the difference

1§ rte) dz — § 1t az

where P is the perimeter of the polygon inscribed in C, can be made arbitrarily
small by simply choosing a polygon with a sufficiently large number of sides.
This establishes the Cauchy-Goursat theorem for a region of arbitrary shape.
Throughout the proof we have tacitly assumed that the region R is a simply-
connected region. This means that any closed contour in R encloses only points
belonging to R. Suppose, however, that R were a region with one or more
subregions “punched out.” Then it would be possible to construct curves around

=0, and hence § fl2)dz=0.
T
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these holes in such a way that the curves would lie entirely in R, but enclose
points not belonging to R. Such regions are called multiply-connected. Cauchy’s
theorem does not hold for arbitrary contours in multiply-connected regions.

6.4 CONSEQUENCES OF CAUCHY’S THEOREM

The hardest work is behind us; we turn now to an examination of some of the
main consequences of Cauchy’s theorem.

Path Independence

We first prove that if f(z) is analytic in the region R and C, and G, lie in R
and have the same endpoints, then

Sledz = Sczfdz .

The proof follows immediately by applying Cauchy’s theorem to the closed
contour consisting of C, and —C, as shown in Fig. 6.10;

ot Lomo=l ==L
by Eq. (6.11).

Fundamental Theorem of Calculus
From our discussion of path independence it follows that the equation

F(z) = Sl f(z') dz’

20
defines a unique function of z if f(z’) is analytic throughout the region containing
the path between z, and z.

Theorem. F(z) is analytic and F’(z) = f(z).
Proof.

F(z + Az) — F{z) = SZ+Mf(z’) dz’,

where the path from z to (z + Az) may be taken to be a straight line. Wecan
write

s =L gy = L™

and it follows that

— 2+ Az

et 80 = B _ rp) = L™ [f(er) — flo) 1"
Az Az 2z

Now f(z) is continuous because it is analytic; therefore, foralle > 0, there exists

a 0 > Osuch thatif |2/ — z| < 8, then | f(z') — f(z)| < e. Now take 0 < |Az]

< 0. Then

F(z + Az) — F(z) _ ,
As f(2)

1 z+Az
<e—§ |dz’| = €.
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That is,

so F(z) is analytic and its derivative is f(z).

Thus the integral F(z) of an analytic function f(z) is an analytic function
of its upper limit, provided the path of integration is confined to a region R
within which the integrand is analytic. The fundamental theorem of calculus
follows immediately from this result.

j:f(Z) dz = S;f(z) dz — r flz) dz = F(b) — Fla),

20
where a and b are points in R, and F’(z) = f{(z), that is, F(z) is an antideriva-
tive of f(z). We have already noticed that this method of evaluating integrals

worked in a special case: the integral of sin z froma = Oto b = 1 + i (Section
6.3).

N
R (e~

Fig. 6.10 Fig. 6.11

Cauchy’s Integral Formula
We now prove one of the most useful results in all mathematical physics.

Theorem. If f(z) is analytic within and on a closed contour C, then for
any point z,, interior to C,

Flz) = _‘.§ S g, (6.15)
2riJcz — z,

Proof. Inside the contour C, draw a circle C, of radius » about z,, and consider

the contour shown in Fig. 6.11. It consists of the circle Cy and the contour C

joined by two straight line segments, L, and L,, which lie arbitrarily close to

each other. Let us call this entire contour C’. Now consider

L= § S gy [ Ly f Ly [ S g,

Jo z — zy Cz— 1z Ly z — z, Coz — 2z, Lyz — z4
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Inside C’, f(z)/(z — 2z,) is analytic, so by the Cauchy-Goursat theorem,
§ ’ M dz e 0 .
¢ z— gz
Now, as we bring the line segments L, and L, arbitrarily close together,
S f(z) dz_,__s f(z) dz
Lyz — z Lyz — zy
since the lines are traversed in opposite directions. Thus in this limit we have

§C,——f-(—zl—dz=0=§ L(g—)—dz+§ —f—(f)—dz,

z— z, cz— z Gz — z4

so that
§ f(z) dz::——§ f(z) dz .
€z~ z ¢z — 2

At this point we note that considered as a contour in its own right, i.e., not
just as a part of C’, G, is traversed in a clockwise direction. Let us therefore
define C, = —C, so that C; is a counterclockwise contour (as is C). Then we

may write
§Mdz:§ @) 4,

cz— z CoZ — 2,

(Note that for the purposes of what we have just done, C, need not be a circle;
it could equally well be any closed contour lying completely inside C and oriented
in the same sense as C.) We may rewrite the last equation as

§|_[.(i)_dz::f(zo)§ dz +§ f(z)_f(z")dz.

cz— z, €z — 2 zZ— 2

We now use the fact that C; is a circle to write z — z; = re® on C,. Thus the
first integral on the right becomes
§ dz S“ ire'df

i0

= 2mi , for all » > 0 within C .

CoZ — 2 0 re

Cauchy’s formula will therefore be established if we can show that the second
integral vanishes for some choice of the contour C,. The continuity of f(z) at
z, tells us that for all € > 0 there exists a d such that if |z — z,| < 0, then
| f(z2) — flzo)| < €. So by taking r = &, we satisfy the equation |z — z| = 4,
which in turn implies that

j L= g,

zZ — 2y

< §C [f(e) = flz)| |dz| < ; (2wd) = 2me .

|z — z
Thus by taking r small enough, but still greater than zero, the absolute value
of the integral can be made smaller than any preassigned number. Thus

§ M—dz = 27mi flz,) .

cz— z,
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This result gives us another hint of the amazingly strong inner structure of
analytic functions. It means that if a function is analytic within and on a contour
C, its value at every point inside C is determined by its values on the bounding
curve C. There is a familiar equivalent result from electrostatics: If a real-
valued function u(x, y) is fixed on some boundary, and if V% = 0, then u is
determined everywhere inside the boundary. An analytic function is built out
of a pair of such harmonic functions. We could, if we liked, study the “theory
of harmonic functions” instead of “analytic function theory”.

Derivatives of Analytic Functions

Using Cauchy’s integral formula, we can prove that all the derivatives of an
analytic function are analytic. The corresponding result for real variables fails:
a function which is once differentiable in some region is not necessarily infinitely
differentiable in that region. The function f(x) = x|x|, for example, has as its
derivative f7(x) = 2|x|, which is continuous everywhere; f’(x) is not differentia-
ble at the origin, however.

If we differentiate both sides of Cauchy’s integral formula, interchanging
the orders of integration and differentiation, we get

fl(zo) :_1_§ _-f_()—_dz (616)
2mi Je (z — z)?

Since z, is any point inside C, we may take it as a variable. To establish this

formula in a rigorous manner, note that by using Cauchy’s integral formula, we

may write

S (z) = limf(z_‘)_—f(zi’l:i lim §C[ flz) _  flz) J dz

72y Z) — 2o 2mi 7~y zZ — 2, Z — Zgd 2y — 2y

:—1-— lim§ (——fﬂ———-dz.

2mi ym Je (2 — z)) (2 — zy)

’ _ _1_ f(Z) — L 1 z 1 — 1
f (e 2mi §C (z — zc)zdz 2mi zlll—g:) §Cf( )’:(2 —z)(z—z) (z— Zc)J %
=L fim (g — zo)§ (——-f—(z)————dz.

2ri 71— Cc iz — Zl) (Z —_ Zc)z

Calling z, — z, = €€®, we have

f’(Zo)——L§ (f(z dz . < — llme§ T |/(z)l1dz]

2ri Je (2 — z)? 21 e0 z — z)) — €€”||z — z|*’

Replacing |z — z| by its minimum value, say g, and |f(z)]| by its maximum
value M, we obtain

f’(zo)—i§ _Ld ‘ < 1juLllm € =0,
2miJe (z — z))? 2r pF 0 p— €

where L is the length of the contour. Thus we have proved Eq. (6.16). Repeat-
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ing the process, we obtain
2! § _fla)
zp) = — dz,
f7la) 2miJe (z — z)?
and, in general, for the nth derivative,
!
e =L§ S g, 6.17
S e 2miJe (z — zp)"*! ‘ ( )

This result is readily established by induction in the same manner we used to
prove Eq. (6.16). Thus f(z) has derivatives of all orders within C. The kth
derivative of f{z) is continuous within C because the (k + 1) derivative exists.
Thus if we write f(z) = u(x, y) + iv(x, p), the partial derivatives of u and v of
all orders are continuous whenever f is analytic. We can therefore drop in our
derivation of Eq. (6.4) the requirement that the second partial derivatives be
continuous: they are guaranteed to be continuous because f is analytic.

Liouville’s Theorem

Theorem. If f(z) is entire and | f(z)| is bounded for all values of z, then
f(z) is a constant.

Proof. From Cauchy’s integral formula, we have found that
/ — _1_ § f(z) dz
f (Zo) 2ri e ——(Z — Zo)z .
If we take C to be the circle |z — z| = ro, then

If’(zo)|s|2iﬂ}§ I(VH \dz]|

z — zy)?

M2ary =M,

27rr0 ro
where | f(z)| < M within and on C,. Therefore |f’(zo)| < M/r,, and we may
take ry as large as we like because f(z) is entire. So taking r, large enough, we
can make |f’(zo)| < €, for any preassigned e. That is, |f’(z)| = 0. which
implies that f/(z) = 0 for all z,, so f(z) = constant. QED

Example. The entire functions sin z and cos z must not be bounded. It isclear
from Eqs. (6.8) and (6.9) that they are not.

<

Fundamental Theorem of Algebra

This theorem, which is difficult to prove algebraically, follows easily from
Liouville's theorem, and provides a remarkable tie-up between analysis and
algebra. We include the proof because of its great simplicity and beauty.

Theorem. If P(z) = ay + a,z + -+ + a,z™ is a polynomial in z of degree
one or greater, then the equation P(z) = 0 has at least one root.

Proof. Assume the contrary, namely that P(z) # Oforany z. Then the function
1/P(z) is entire. Furthermore |1/P(z)] — 0 as |z| — oo so |1/P(z)| is bounded
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for all z. Therefore, by Liouville’s theorem, 1/P(z) = const, a contradiction,
since P(z) is of degree one or greater. Hence P(z) = 0, for at least one value
of z. QED

6.5 HILBERT TRANSFORMS AND THE CAUCHY PRINCIPAL VALUE

It is often the case that in the study of some physical system one has to deal
with complex-valued functions—indices of refraction, susceptibilities, scattering
amplitudes, impedances, etc.—which have a physical meaning only when the
argument of the function (which might, forexample, be a frequency oran energy)
takes on real values. In many cases it is possible to obtain, from the laws
governing the system, information about the general properties of such functions
when the argument is complex; for example, it may be that the function is
analytic in some region of the complex plane. Since experimental data can only
be obtained for real values of the argument, it is of interest to see whether we
can use general properties such as analyticity to deduce relations between real
quantities of direct physical significance. The key to such a program can be
found in the study of Hilbert transform pairs, which we shall investigate in this
section.

, o

-R a—b «a a+5'+R

Fig. 6.12 The contour, C, used to obtain Eq. (6.18). The radius, R, of the semi-
circle, S,, may be made as large as necessary, and the radius, S, of the semi-circle, Ss,
may be made as small as we please.

Let us begin by considering a function f(z), which is analytic in the upper
half of the complex plane, and which is such that | f(z)| — 0 as |z] — oo in the
upper half-plane. (Note that the only function which can satisfy these condi-
tions in the entire plane is f = 0). Now consider the contour integral

§sz_(_;)adz.

where C is the contour shown in Fig. 6.12 and « is real. By assumption, f(z)
is analytic within and on C; so is 1/(z — a). Thus

§-ﬂ-z—)—dz:0.

cz—a
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Let us break this up as follows:

§ Mdz:—: Sa_a—ﬂ.dx+§ —f(idz

cz—a -R X —«a S5z —
+§R Lo gy 4 | LD g0,
atd X — SRZ — a

Here ¢ is the radius of the small semicircle S,, centered at x = «, and R is the
radius of the large semicircle Si, centered at the origin, as shown in Fig. 6.12.
The radius ¢ can be chosen as small as we please, and R can be chosen as large
as we please. In the limit of arbitrarily small d, the quantity

Sa_a (x) dx + SR Sf(x) dx
-RX—a ats X —
is called the principal-value integral of f(x)/(x — a) and is denoted by
P SR Lx) dx
-RX —a

We will say more about this integral below. Now, along the large semicircle
Sz, we set z = Re', so that

X i0
S f(Z) dz:IS f(Re ) Re"’dﬂ,
SRz — @ o Re’ —
and hence
R S” i0
< — Re)| db ,
< e, /R
since |Re® — a| = [R? + a* — 2Ra cos 0]'* > [R* + a* — 2Ra]'"* = |R — a].
But as R — oo, | f(z)| — 0 and R/|R — a| — 1. Therefore the integral over the

semicircle of radius R can be made arbitrarily small by choosing R sufficiently
large. Thus we may write

1imP§Rl("_)dx=—j _&)_dzz_f(a)s dz _Ss,f(Z)_f(a)dz'

R0 -RX — « S8z — Sez — Z —

S LZ)dz

SRZ —

where we have added and subtracted the term [g[f(a)/(z — a)]dz. Setting
z — a = 0e” in the first integral on the right-hand side of this equation, we
find that

dz

S8z — «

—fla) S = —if(a) 5:: dé = infl(a) .

Thus
lim PSR f—(x)-—dx: infla) — g f(z)—_f(a—)dz.

R0 ~-RX — S8 Z—a

Since f(z) is continuous at z = a, the argument used in deriving Cauchy’s
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integral formula tells us that this last integral over S, vanishes. Hence

R
lim P S M-dx = irfla) .
R—oo “-RX —
For the sake of brevity, we write this simply as
P r SO gy = infla) (6.18)
—m X —
where f(x) is a complex-valued function of a real variable. We may write it as
fx) = folx) + ifi(x) .
Equating real and imaginary parts in Eq. (6.18), we get

frla) = 1Pr L) gy (6.19a)
T J-ox —a
file) = =1 Pr L2 gy (6.19b)
T - X —

Any pair of functions which satisfy Eqs. (6.19a) and (6.19b) is called a Hilbert
transform pair. Note that these equations tell us that if f;(x) = 0, then f(x) = 0.
The principal-value integral is seen to be a way of avoiding singularities
on a path of integration: one integrates to within ¢ of the singularity in question,
skips over the singularity, and begins integrating again a distance § beyond the
singularity. This prescription enables one to make sense out of integrals like
S“ dx

-R X

One would like this integral to be zero, since we are integrating an odd function
over a symmetric domain. However, unless we insert a Pin front of this integral,
the singularity at the origin makes the integral meaningless. Following the
prescription for principal-value integrals, we can easily evaluate the above

integral. We have
R -8 R
(e 2]
R X 00 R X 0 X
In the first integral on the right-hand side, set x = —y. Then

R ] R
o[ [ %]
-R X 80 Ry 5 X

The sum of the two integrals inside the brackets is zero, since

Thus
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In a similar manner, we may evaluate

p S“ dx

-RX — a

when —R < a < R. As above, we write

R fa—20 R
P_g dx =1imU dx +S dx :'
-RX — a 80 -R X —a a+d X — @

Again setting x = —y in the first integral on the right-hand side, we find that
R 3-a
PS ax ~_-1im[s & +ln(R——a)—ln5J
-RX — a 30 Ry + a
=lim[Ind —In(R+4a) +In(R—a) —Ingd].
30
Thus
R —
PS dx :ln<R “), ~R<a<R. (6.20)
-RX — a R+ a
For the case
P Lo,
-RX —a

the result of Eq. (6.20) leads to
ng f(x) dx:PSR fla) dx+P§R f(x) _f(a)dx,
-RX — a -kx —a -R x—a
or
P[" Lo ax = sl n (%1_9 pp =S (52

It will often happen that the second integral on the right-hand side of Eq. (6.21)
will not be singular at x = a [for example, this will be the case if f(x) is
differentiable at x = a] so the P symbol there can be dropped. We leave it to
the reader to obtain the closely related result:

PS"_fE)_dx — fla) L 1n (R___“> + PSRM dx. (6.22)

0 x? — q° 2a R +a o x*—a*

To illustrate the use of the principal-value method and also the use of Egs.
(6.19a) and (6.19b), we consider the function f(z) = 1/(z + i). This function
satisfies all the hypotheses made in deriving Eqs. (6.19a) and (6.19b). We see
that
1

— X —_—
falx) = i) = =

xt 41
Let us examine Eq. (6.19b). We write it as

lim PSR L,_(x_) dx = —xf(a) .

Row  Jorx —
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We want to see if f(z) = 1/(z + i) satisfies this relation. Using Eq. (6.21), we
have

lim Pr Sel) g = tim [fk(a) In (R_‘_“> + PSR falx) — fal) d,\}.

R—co -RX — a R- R+ «a -R X —a
(6.23)
Now, since fr(x) = x/(x2 + 1), we find that
Sr(x) — fala) _ 1 — ax
X —a @+ )(x2+1)°

so we may drop the principal-value sign on the right-hand side of Eq. (6.23).
Also,

limln(R_a):o_

Rveo R+ a
so Eq. (6.23) becomes

R R _ . R
1imP§ de:—l——lims 1 AX dx = ! llmg de .
-Rx — a @+ 1row )-r x> + 1 ol + 1~ J-rx? 41

R—c0

since x/(x? + 1) is an odd function. Thus

limPSR Jfa(x) dx = 2 limtan' R = — _ = —zfi(a) ,

Rew  J-RX — a a® + 1 R-oo a4+ 1

so Eq. (6.19b) is indeed satisfied. We leave it to the reader to show that Eq.
(6.19a) is also satisfied. Clearly Eq. (6.21) is very useful in conjunction with
Egs. (6.19a) and (6.19b) because under the assumptions made in deriving these
equations, f(z) is differentiable at z = a. Thus

fale) = _lr fitx) = fila) 4 (6.24a)
T J-o X —a
file) = 1 r Lalx) = fal@) 4| (6.24b)
Tl x—a

where, in case of any ambiguity,

o . R
S = lim 5 .
—oo R—o0 J—R

These methods can sometimes be used to evaluate real definite integrals.
For example, consider the function f(z) = e*. This function is analytic every-
where, and if we write z = Re®, then | f(z)| — 0 as R — oo for all # such that
0 < @ < =. This is not quite what we used above to show that the integral
around a large semicircle of f(z)/(z — @) vanishes (although it would be the
same if we had 0 < @ < n). However, the reader can show for f(z) = e”
that the contribution from the large semicircle vanishes and Eqgs. (6.19a) and
(6.19b) are satisfied. In this case, fz(x) = cos x and f,(x) = sin x, so using Eq.
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(6.24a), we obtain

1{*® sinx —sina
cosa = = -  dx.

Tl x—a
Since sin x — sina = 2sin 4 (x — a) cos % (x + a), we see that indeed there is

no singularity of the integrand at x = a. For the special case @« = 0, we find
that

that is,

From this result, we also obtain by symmetry

s sinx , _ 7T
0o x 2
Here we see that the oscillations of sin x, when x is large, make the integral
converge, even though

S ldx

X

diverges. This is analogous to the fact that the alternating series

©o

> (1) (=102

n=1

converges, whereas >.._, (1/n) diverges.

6.6 AN INTRODUCTION TO DISPERSION RELATIONS

As mathematical results, the equations derived in the previous section are
interesting in their own right. However, a scientist naturally wants to know if
there are any physical systems to which these results can be applied. What we
shall now show is that under fairly broad physically motivated assumptions,
one can find physical quantities which possess the analytic properties necessary
for them to satisfy a Hilbert transform relation. In our detailed applications,
we will focus our attention on electromagnetic theory, but many of our results
will be more general than this.

We begin by considering a physical system for which an input, I(z), is related
to a response, R(f), in the following linear manner:

o

7=

For example, I(t') might be the electric field at a time ¢/, and R(z) might be the
resulting polarization field at time ¢, We have assumed that G depends only on

R(1) G(t — ) I(¢') dr’ . (6.25)
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t — t’ because we want the system to respond to a sharp input at t, I(t’)
= Id(t" — &), in the same way it would respond to a sharp input at £, + 7,
that is, at a time 7 later. For the first case, we have

1 (= 1
Ri(1) = _5‘ Gt —)Io(t) —t)dt! = —=I1,G(t — 1) .
1() '\/27T e ( )0( 0) '\/271' 0 ( 0)
For the second case, we have
1 r 1
R,(f) = —— Gt — 1ot — ty —7)dt' = IG(t — t, —
2(1) wora i ( ) 1o ( o —T) '\/2; G ( b 7),

or, in other words,

1
Rz(t + T) == 75—; IoG(t - to) = Rl(t) .
Thus if we shift the input by ¢, then we shift the response by r.

Now, what can we say about G(r) on general physical grounds ? First we
see that an input at ¢ should not give rise to a response at times prior to ¢, that
is, G(r) = 0 for ¢ < 0, so

3
R() :5 Gt — )¢y dt’
which shows that the response at ¢ is the weighted linear superposition of all
inputs prior to t. This is the causality requirement. The possibility that G(r) is

singular for any finite t is excluded since the response from a sharp input,
I(t') = I,o(Y — &), is

R(t) = —

V2

and since on physical grounds we require that this response always be finite,
G(7) is finite for all r. Furthermore, we make the physically reasonable assump-
tion that the effect of an input in the remote past does not appreciably influence
the present. This may be stated as the requirement that G(r) >0 as r — oo
since, from the previous equation, it amounts to the assumption that the re-
sponse to any impulse dies down after a sufficiently long time (i.e., any system
has some dissipative mechanism).

Now consider the Fourier transform of Eq. (6.25). Using the convolution
theorem (see Section 5.7), we find that

IoG(’ - fo) ’ t> 1,

rlw) = glw)i(w) ,

where
— 1 ® iot — 1 = iot
rfo) = —= LR(z)e d, gl) = L, Glie dt
. — 1 < lwt
ilw) = Wors g_w I(r)e'* dt .

In electromagnetic theory, where I is the applied electric field E, and R is the
polarization field P, it is customary to denote g(w) by x(w), which is referred
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to as the electric susceptibility. Thus
Plo) = y(w) E(w) .
By assuming that G(r) satisfies

S: |G(z)] dT < oo,

we can guarantee the existence of a bounded g(w) for all . We may now
summarize our physically motivated assumptions on G(z):

a) G(r) is bounded for all z;

b) |G(z)| is integrable, so G(r) — 0 faster than 1/r as ¢ — oo;

c) G(r) =0forr <O0.

We may remark that (a) and (b) taken together imply that G(z) is square inte-
grable and hence (see Section 9.6) g(w) is square integrable.

We now want to show that we can extend g(w) into the complex z-plane
in such a way that g(z) satisfies the conditions under which we derived the
Hilbert transform pair [Egs. (6.19a) and (6.19b)] of the previous section. First,
since G(r) = 0 for ¢ < 0, we write

glw) = «/IE f G(ne“' dr.

We extend this relation into the complex plane by using the definition

U U et
g(2) ::‘—/'2=n_s G(ne dt

0

1 r ; .

- G([ erwle-—w t df ,
V21 Jo )

where we have written z = w + iw’. We now restrict our attention to the upper

half-plane (@’ > 0) where, because of the causality requirement given in as-

sumption (c) above, (r > 0 in the above integral), the term e~*"' is a decaying

exponential. For 0 < 6 < m, we have

1 o -
glz S o M S e—[izlsmd]r d’ ,
8] < —= 0 |,
where we have replaced G(f) by its maximum value, M, [assumption (a) above].
Thus
M,
lg(z)| < =2—
) V/2r |z| sin @
which tends to zero when |z|] = co. For § = 0 or 7, we have

oo

glw, o =0) = __l._g Glt)e™ dr .

Since G(r) is square integrable, so is g(w, w’ = 0) as a function of w (see Section
9.6), and hence |g(w, w’ = 0)] tends to zero as w — co. Thus in any direction
in the upper half-plane, |g(z)| — 0 as |z] — 0.
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Now we want to show that g(z) is analytic in the upper half-plane. Using

1 jm izt 1 j.m fwt j—~w’
7)) = —=\| G)e'dt = — | G(1ee“"dt, 6.26
gle) = —= "6l —= |, 6l (6.26)
we see that for w’ > 0,
dng 1 j‘m dn . ’-n j‘w o
—==—=\ Gt) —e“dt = —= | r"G()e''e"*"dt, 6.27
dz" A2z )o g dz" V2x Jo (fee ( )

since in this case the integrals in both (6.26) and (6.27) are uniformly convergent
because of the term e™*"(w’ > 0,7 > 0). Thus g(z) is analytic in the upper
half-plane (w’ > 0). However, it is clear that our assumptions on G(z) do not
enable us to extend the domain of analyticity to w’ > 0. Nevertheless, we can
say that g(z) is bounded on the real axis, so the only singularities when o’ = 0
will be of the branch point variety, and even then such branch singularities as
1/4/z or log z are excluded by the boundedness requirement. The reader can
see by looking back at the derivation of the original pair of Hilbert transform
equations [Eqgs. (6.19a) and (6.19b)] that it can be modified to include bounded
branch point singularities on the real axis by taking a small semicircular detour
around any such point. Thus Egs. (6.19a) and (6.19b) remain unaltered by the
presence of such singularities (the branches can always be chosen to avoid the
upper half-plane). To eliminate the possibility of these branch singularities,
one would have to assume an exponential type falloff of G(r) as ¢ — co. Hence
for any g(z) arising from a G(7) which satisfies assumptions (a), (b), and (c), we
may write

gr(w) = lPr _i’i‘ldw. (6.28a)
T J-o@ —w
gilw) = =1 Pr 2(®) 45, (6.28b)
T - W — W

Thus by making a few very reasonable assumptions about the system in
question, we can show that the real and imaginary parts of the physical quantity
g(w) are intimately related to each other for real values of the argument by what
is essentially a dispersion relation. The key assumption is the causality require-
ment; we may say that causality implies the existence of dispersion relations in
the case we have considered. In actual practice, one often restricts the term
‘‘dispersion relation’’ to mean an integral relation between two observable
quantities which involves only an integration over values of the argument which
are physically meaningful. Thus in Egs. (6.28a) and (6.28b) only positive
frequencies are accessible to experiment, so they are not directly useful as they
stand. However, G(¢) is real, so we may proceed as follows:

) = —=

r G*(f)e=" df =
0

r Gl)e™ dr ,
0

1
V2

E:G(f)e""’ dt = g(—z%) .
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Thus we have g*(z) = g(—z*), which is often referred to as the reality condition.
If z is real (z = w), we find that
grlw) — ig)(0) = gr(—0) + ig/(~w),
or
gr(w) = gr(—w) , (6.29a)
gilw) = —g(-o), (6.29b)

that is, g is an even function of w and g, is an odd function of w. Note that
if Eqs. (6.29a) and (6.29b) are satisfied, then the function

1 *® i
G(t =—-=S w)e ' dw
(1) Wer g(w)
is a real function.
Now in Eq. (6.28a), let us write
o) = Lo [ B0 gp 4 1p[" 00 g
T Jo@—w T J0®—w

In the first integral, we let @ - —@. Thus

gn(w)=lPS g(— )d‘—i— P_g 8:(@) do .
T © @ + w T 0w — @

Using Eq. (6.29b), we finally obtain

gelw) = 2P Sw 98(@) 45, (6.30a)
T 0w — W
and in an identical manner,
gilw) = — 2_“’115‘” 2@ gz , (6.30b)
T 0 (D —_ Cl)

These expressions involve only positive, experimentally accessible frequencies.
For the electric susceptibility, for example, we have

1) = ZPr o) g, (6.31a)
T Jo 5 — @
xr Jo @t — o

Equations (6.31a) and (6.31b) were first derived by H. A, Kramers and R. de
L. Kronig and are referred to as the Kramers-Kronig dispersion relations.
Now, according to electromagnetic theory, we may write

nw) =1 + dry(o) ,

where n(w) is the (complex) index of refraction. Since x(z) is analytic in the
upper half-z-plane, so is n?(z), and the function

n(z) = v/1 + 4ny(2) (6.32)
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is also analytic in this region if 1 + 4xy(z) has no zeroes in the upper half-plane.
If 1 + 4zy(z) vanishes for some z = z in the upper half-plane, then according
to the reality condition
2*(20) = x(—25),
we find that 1 + 4my(z) also vanishesatz = —z§. Since —z lies in the upper
half-plane with the imaginary part equal to Im z, there will be a cut in the
upper half-plane running from —z§ to z,. In this case, the dispersion relations
of Eqgs. (6.31a) and (6.31b) would have to be modified. We will assume that
n(z) has no zeroes in the upper half-plane and is therefore analytic in this region.
However, because of Eq. (6.32), |n(z)| does not tend to zero as |z| — co. In
fact,
n(z) — 1 as |z]| > oo

in the upper half-plane. This necessitates a modification in the treatment of
the term coming from the large semicircle of Fig. 6.12 in obtaining Eq. (6.18).
We have, in the case of n(z),

S n(z) dz 1Zl=c0 j'-d_z — ln-

SRZ — « 0z

in the notation of the previous section (see Fig. 6.12). Thus, for the case of
n{z), Eq. (6.18) must be replaced by
N _"("_’) do .
o — @

ith(w) = ir + Pj

Separating real and imaginary parts, we obtain

nglw) =1 + —lPr’ _ﬂ@—da, (6.33a)
T ~o @ — W
n(w) = —1PS°° (@) g (6.33b)
T W — @
Making use of the reality condition, we can write these equations as
nelw) =1 + ng‘m—‘—uzn—’(E)—zdc_u, (6.34a)
T 0w — W
20 5 [® ngl@w)
nw) = —=—P| £ do. (6.34Db)
T 0 @ — w?

The quantity p(w) = (2w/c)n,(w), when c is the speed of light in vacuum,
is called the absorption coefficient and is the inverse of the distance a wave

¢(x, 1) = Aexp {iw[i(cw—)x — t}}

travels before its intensity drops to 1/e of its value at x = 0. In terms of g,
we have

nelw) = 1 +9Pr__z’ial-id6. (6.35)
T 0w — @



346 THEORY OF ANALYTIC FUNCTIONS 6.6

Thus the real part of the index of refraction is completely specified by knowing
the absorption coefficient at all frequencies ! It isfrom Eq. (6.35) that dispersion
relations derive their name. Equation (6.35) relates a substance’s absorption to
its dispersive effects, i.e., to the way the real index of refraction varies with
frequency. It is this variation with frequency which produces the well-known
separation (dispersion) of different wavelengths of light by a prism.

In more recent times, the term dispersion relation has continued to be used
to denote any relationship between real and imaginary parts of a physical
quantity (a scattering amplitude in quantum mechanics, for example) which
has the general appearance of a Hilbert transform. Note that since u(w) must
be positive for all frequencies on physical grounds (i.e., we do not expect to
find waves which grow in time as they pass through a substance), Eq. (6.35)
specifies that

£ g5 , (6.36)

0 w

ne(0) =14 PS
T
so we see that ng(0) > 1. Thus the familiar static dielectric constant €, given
by € = n*(0) is always greater than unity. Since y,(0) = 0, we see that the
integral in Eq. (6.36) converges without our using the principal-value technique.
Thus using n(0) = 4/€, we may write Eq. (6.36) as

«/E—lzfrﬂda.

TJo @?

This relation is known as a “sum rule” for the absorption coefficient; it relates
the weighted integral over all values of the absorption coefficient to a simple,
experimentally accessible constant,

The derivation of the dispersion relation for the index of refraction exhibits
certain features which are often encountered in deriving dispersion relations.
Namely, it often happens that the quantity in question does not tend toward
zero as |z| tends toward infinity, and, furthermore, one is not usually fortunate
enough to know the precise behavior of the quantity as |z| tends to infinity,
except, for example, to say that it is bounded for large values of |z|. In this
case, we can proceed as follows. Let a, be some point on the real axis at which
f(z) is analytic. Then the function

flz) — fla) = ¢(2)
Z — O

is not singular at z = a,, and |¢(z)| — 0 as |z| = co. Also, if f(z) is analytic
in the upper half-plane, so is ¢(z), and we can write a dispersion relation for

P(2):
[ fle) = fla) | — p [* _Sflx) — fla)
m[——a:‘u—:‘ =P S-m (x — a)(x — ap) dx
But

1 o L1
(x—-a)(x——ao)_a—ao[x_a x——ao]'
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Therefore, our dispersion relation takes the form
infla) = inflen) + (o — a)P | —LHE— _ payp(” &
- (x — a)(x — ay) —e X — @
= dx

=X — @

+f(ao)P§

According to the work of the previous section, these last two principal-value
integrals vanish, so we have just

infl@) = inflae) + (o — ) P S: G‘%‘) '

Separating the real and imaginary parts, we finally obtain

frla) = falao) + }r (@ — ao) P r ) gy, (6.37a)

—eo (x — a)(x — ay)

(
fila) = fila) =L@ —ap | L __ax. (631
T —o (x — a)(x — ay)

Relations of the type of Eqs. (6.37a) and (6.37b) are referred to as once-sub-
tracted dispersion relations. For them to be of use in a particular physical
problem, one must have a means of determining, say, fz(ao) for some «, in
addition to possessing the usual information required by an ordinary dispersion
relation of the type of Eq. (6.19a). If the properties of f(z) for large |z| are
even “worse” than assumed above [for example, suppose that |f(z)/z| tended
toward a nonzero constant as |z| tended toward infinity], then one could
introduce more subtraction points, a,, a,, etc, in a similar manner.

We have already seen that causality implies certain analyticity properties;
we conclude this section by showing that the converse is also true, namely,
analyticity implies causality ! We will do this by using the analytic properties
of n(z) to show that electromagnetic signals will not propagate in any medium
faster than the speed of light. Consider a wave front traveling in the x-direction
in a dielectric medium with a complex index of refraction, n(z). Assume that at
x = 0 there is no disturbance before r = 0, thatis, ¢(0,7) = 0for7z < 0. Wecan
write a general wave, as ¢(x, 1), a superposition of plane waves of all frequencies:

dlx, 1) = Sm ¢ (w) exp {iw[@x — rj’} dw .

— 00

Note that

©

&0, 1) = g dlw)e ™ do ,

SO -
dlw) = ! r (0, et dr . (6.38)

=5

We may now use Eq. (6.38) to define ¢)(z) for z complex:

o) = 2 r $(0, e re=*" di |

2z Jo
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Fig. 6.13 The contour, C, used in evaluating Eq. (6.39). R may become as large as
we please.

where we have made use of the fact that ¢/(0, ) = 0 for ¢+ < 0 and have written,
as usual, z = w + iw’. By our previous arguments, ¢)(z) is analytic in the upper
half-plane and tends in norm toward zero as |z| tends toward infinity in this
region. Now let us consider

§C¢(Z) exp [iz(fii)x — t)} dz

around the contour shown in Fig. 6.13. Since ¢)(z) and n(z) are analytic in the

upper half-plane,
§ ¢(z) exp [iz(ﬁﬂx — t>}dz =0.
c c
Thus

Siksb(w) exp [iCD('%D—)X - t)tldw + SsR ¢(z) exp [iz(ﬁ(zz—)x - t>:| dz=0.
(6.39)

Calling the second integral in Eq. (6.39) Iz, we have

el < S |¢(2) | exp[—R sin @ (ﬂx — t) — Rcos @ ﬂx} R do ,
0 c c
where R is some arbitrarily large number. Now as R — oo, n; — 0 and nz — 1,
as we have seen above. Thus, under these circumstances,

n/2
0

I} < 2RS 16(2)] exp [—R (f - t> sin o] do .

But sin 8 > 26/r for 0 < 9 < n/2. (To see this, note that g(@) = sin8 — 20/r
vanishes at § = 0 and @ = =/2. It is positive at 8 = r/4, so if it is to become
zero or negative inside [0, 7/2], it must take on a minimum in this region.
However, g’’(6) is always negative in [0, #/2] so the function cannot possibly
take on a minimum value. This can also be seen by drawing a graph of sin 8
and 260/r.) Therefore, if (x/c — 1) is positive,

L] < 2R S:" 16(2)| exp [—2”5 (’;‘ - t> 0} a0 .
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Now [¢(z)| — 0 as R — oo, so let us write for large R, |¢(z)| < aR™*(2 > 0).
Then

x/
1| < 2aR"‘s exp ':~-%R (ff - t) 0] a8 ,
0 T c

or

el < e[ = ew (=R (Z=0)} |

If we assume that x/c > ¢, then as R — oo, we see that [[z] — 0. Note that if
x/c < t, we cannot draw this conclusion because of the growing exponential in
the above inequality. Thus as R — oo, Eq. (6.39) becomes

dlx, 0 = 5 ¢ (w) exp {iw[f'—(cw—)x — t:l}dw =0

for x/c > t. Thus we reach the satisfying conclusion that if no signal is present
at x = 0 when ¢ = 0, then there will be no signal at x = x, > 0 before ¢t = x,/c,
that is, a signal can propagate with at most the speed of light, ¢, even though
¢/n(w) may be greater than ¢, since n(w) is known experimentally to become
less than 1 at high frequencies [it clearly cannot do so at very low frequencies,
since we have already shown that n(0) > 1].

o

—oo

6.7 THE EXPANSION OF AN ANALYTIC FUNCTION IN A POWER SERIES

We now come to one of the most important applications of the Cauchy-Goursat
theorem, namely, the possibility of expanding an analytic function in a power
series. The main result may be stated as follows:

Laurent’s theorem. Let f(z) be analytic throughout the closed annular re-
gion between the two circles C; and C, with common center z,. Then at
each point in this annulus

fla) =) Az — )", (6.40)
with the series converging uniformly in any closed region, R, lying wholly
within the annulus. Here

/7

4, = i§ _SE) gy, (6.41)
2miJe(z/ — zg)"*!

forn=10, £1, £2, .-+, and Cis any closed contour in the annulus which

encircles z,.

Proof. Consider the contour K enclosing the region R as shown in Fig. (6.14);
it may be written symbolically as K = C, + L, — C, + L,. Here we adhere to
the convention that simple circular contours are always traversed in a counter-
clockwise direction. Since the inner circle is traversed in a clockwise direction
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e

A

G

Fig. 6.14

when considered as a part of K, we write it is —C,, where C, is a convention-
ally oriented curve. Since f(z) is analytic within and on X,

2rif(z) = § S&) g4y = S S gy

kzl — 2z ¢z — 2z

+S lELm+S 4ELﬁUbSl£lﬁﬁ

Lz —z ~cyz! — z Lyzl — 2z

where z€ R. By the same argument used in deriving Cauchy’s integral formula
we see that if L, and L, are taken to be arbitrarily close together the integrals
along L, and L, cancel, and

flz) = _1_§ i(ﬂ_dz’ - l§ _f_(_z’_)dz,, (6.42)

2ridecyz/ — 2 2ride, 2! — 2

where we have used Eq. (6.11). Equation (6.42) is the starting point for the
proof of Laurent’s theorem. To proceed further we make use of the identity
(for a # 0)

1 1 B
a—B E+am—m'

The second term is just (8/a)[1/(a — B)], that is, B/a times the originally ex-
panded quantity, so upon iterating N times we get

N n N
L o 0 - (é) o1 (6.43)
a—pB iSatt a a—B
Keeping this last equation in mind, let us write Eq. (6.42) in the form

1 bitd ry b /) ’
fie) = -2_7r_i§cl [(z/ — z)) — (z— zo)]dz * 2mi §C2[(Z — ) — (' — Z°)]dz .
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= LS e ey Lf [ L g

¢y {2/ — zp)"*! 2mi ’

2mi 53 z/ — z, -z
(6.44)
l § (zl _ zo)m , , ‘l § [Z’ —_— zo:|N+l f(z/) ,
. A2V ) d + — dz’.
+ 2mi o=y Jea (2 — zo)’"“f( ) 2ri e, Lz — z4 z— 1z

According to by now familiar arguments the contours C, and C, in the first and
third terms of the above equation may be replaced by any contour C about z,
which is contained in the annulus bounded by C, and C,. Making the change
of index m = n + 1 in the third term, we obtain

N

fly = D5 Az — )"+ Ry(2),

n=—-N-1
where 4, is given by Eq. (6.41) and
Rolz) = _!_§ ’—Z _ zole-H 1) daz' 4+ _1_§ [z/ _ ZO_JNH f(z') i
z z €2

2rwi JeLz’ — z, / 2mi z— 2z, z— 1z

If we can show that the magnitude of R,(z) can be made less than any pre-as
signed € for N sufficiently large, where N is independent of z, then the proof
will be complete. Letting r, be the radius of C, and 7, be the radius of C,, we
have

|Ry ()] <LU“IZ~%I”“ IS, 4 4 s" A rzdo].

T 2zlJo MY 2 — 2

Now we define

M, = Max | f(2)], M, = Max | f(2)] ,
2€C ZEC,
I, = Max |z — z|, l, = Min |z — z,|,
ZER ZER
d, = Min |z/ — ¢/, d,=Min |z/ — 2] .
ZER ZER
2/ €Cy 2'€C,

Since R is a domain within the annulus bounded by C, and G,,

L<r, L>r, (6.45)
Thus,
Mir (INYYY | Myr, /R \Y !
R _g<_r> _z_z<_2) . 6.46
[Ry(2)] < i\ + i \1 (6.46)

But according to Eq. (6.45), (I,/r) < 1 and (ry/h) < 1, independent of z, so the
magnitude of Ry(z) can be made as small as we please for N sufficiently large.
Since the bound of Eq. (6.46) is independent of z we have completed the proof
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of the uniform convergence of the series in Eq. (6.40). This series is known as
the Laurent expansion of f(z) about the point z,.

Example 1. Consider the function

242244
flo = ZE2EES,

We shall obtain the Laurent expansion of f(z) about the singular point z = 1.
Writing z= (z — 1) 4+ 1, we have

— 1 1P+ 2[(z — P44
flo) = [(z ) + 17 + [(23 1)+ 177 +
(z—1)
5 7 7
=1+ + + .
z—1 (z—1?% (z—1)
Clearly this is the Laurent expansion of f(z) about z =1, and the reader is
urged to verify this by evaluating the coefficients 4, of Eq. (6.41) which are
non-vanishing for this particular f(z).

Example 2. We now consider the Laurent series for a less trivial case, namely
the function cosh (z 4 1/z). The hyperbolic cosine is an entire function. Its
argument, z + 1/z, is analytic everywhere except at the origin, and therefore
cosh (z 4+ 1/z) is analytic everywhere except at the origin. Thus we can pick
C, to be an arbitrarily small circle about the origin and C, to be an arbitrarily
large circle about the origin. Then

hod / /
cosh <z + l) = Z A,z", where 4, = -—1-§ M‘Z—)—dz’ ,
z el 27” c (Z/)u+l
and C is any closed contour about the origin. Let C be the unit circle. Then
z/ = €' on C, so the integral becomes

4, =L S cosh (2 cos 8)e=""* df
2w J-=

=1 SK cosh (2 cos 6) cos nf db .
0

T

This integral may be evaluated by using the integral representation of the Bessel
function, which will be discussed in Section 6.9. We will obtain 4, by still
another method later in this section but will give the result here for the sake
of completeness:

1
dy=>S —
: gm!(wr 2|n|)!
A2n+l =0 fOr n=0, j:l, :t2, e

(6.47)

Example 3. To illustrate another kind of problem involving Laurent expan-
sions, consider the function f(z) = (22 — 1)~"%. According to the discussion in
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Section 6.2, this function has branch points at z= —1 and z= +1. We can
choose the cut to run between these two points along the real axis, defining a
single-valued branch by

1) = (o) e,

where 0 < ¢, <27, 0< ¢, <27, p,=|z—1|, p=|z+ 1| and (p, p)) 2
denotes the positive square root of 1/0,0, (see Fig. (6.15)). With these defini-
tions f(z) is analytic everywhere except on the real axis between z = —1 and
z= +1. Thus, if we take C, to be a circle centered at z = 0 with radius in-
finitesimally larger than | and C, to be a circle of arbitrarily large radius, we
can obtain a Laurent expansion of f(z) in the annulus defined by C, and C,. As
usual

(z2 _ 1)—1/2 — Z A,z2",

n=-=0co
where

A = _1_§ =07
2mide ()"

For n > 0 we choose C to be a circle of arbitrarily large radius; it is clear that
for this contour the relevant integral vanishes, so 4, =0 for n > 0. To deal
with the case of negative n, we choose as contour any circle with radius greater
than | (see Fig. 6.15). According to our results on path independence, this
contour can be deformed into a “dogbone” contour as shown in Fig. 6.15. The

Fig. 6.15 The circular contour C is the starting point for the evaluation of the Laurent
series coefficients, A4, of (z2 — 1)~'/% when n is negative. @i, p2, $1, and ¢, define the
single-valued branch of this function, and the dashed ‘‘ dogbone’’ contour is the de-
formation of C which enables us to evaluate the coefficients.
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contribution to 4, from the infinitesimally small circles at the ends of the bone
is vanishingly small, so we have simply

1 U" 1 _ 1 -
A — Iﬂlzxm dx + 3 _— ¢ I(t+2t)/2xm dx
Tl i Vo
1 Sl x™
= = —_  dx,
-1 '\/1 —x?
where m = —n — 1 (note that for the range of n in question m is never nega-

tive). Clearly, for m odd (neven) 4, vanishes. For meven (n odd) the integral
is elementary; we have

1 m (2
A,,:%S ———x-—dngs sinmfdo = ™
T Jo4/1T = X2 7 Jo 2"[(m[2)!P

Thus,

o

2 1)1z — ! m! RS
O L i

m=0

where the prime indicates that only even values of m are included in the sum-
mation. Setting m = 2y, we have finally

(2 IIZ—Z(ZD 1111 31 51+_”_
¥4

4¥(yl)? 22+ 2; 8z 16 z

This result is not surprising: it is just what we would have obtained by expand-
ing (22— 1)~Y* using real variable techniques. Note that in keeping with our
definition of the single-valued branch of (z? — 1)~'/? the Laurent series gives a
value of the square root which is positive on the positive real axis and negative
on the negative real axis.

Until now we have spoken of singularities as points where the function in
question is not analytic, but have made no attempt to classify singular points.
There are differences, however, as we might expect if we look at the singular
point z =0 of the three functions 1/z, 1/z%, and cosh (z + 1/z). We feel that
the singularity of 1/z% is a little worse than that of 1/z and that the singularity
of cosh (z + 1/z) is terrible. A way of classifying the singularities is provided
by the Laurent series of each function.

Suppose that f(z) is analytic in a domain R except at z = z,. Expand f(2)
in a Laurent series about z, inside R:

a,(z — z b, ——

g "+ Z| (z — z))"

If =0 for n=N+4+1, N+ 2, .., oo, that is, if the series of negative
powers of (z — z) terminates with the Nth power, then f(z) is said to have a
pole of order N at z,. The functions 1/z and 1/z? have poles of order 1 and 2
respectively. But the Laurent expansion of cosh (z 4 1/z) has an infinite number
of negative powers of z; so does the Laurent expansion of e'* as we shall soon
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see. The singularities of these functions at the origin are called essential singu-
larities. They cannot be removed by multiplying the function by some finite
power of z, as is the case with the poles of 1/zand 1/z*. Notice, however, that
the presence of an infinite number of negative powers of z in a Laurent series
does not guarantee the presence of an essential singularity. Example 3 above
shows that a branch cut singularity can also give rise to an infinite number of
negative powers of z in a Laurent series. Only if we know that the singularity
in question is confined within an arbitrarily small region can we conclude that
an infinite number of negative powers of z implies the existence of an essential
singularity. A function with no essential singularities in a region—although it
may have poles there—is said to be a meromorphic function.

A particularily important consequence of Laurent’s theorem arises when
there are no singularities contained within the inner circle C,, that is, if f(z) is
analytic everywhere inside C,. Using Laurent’s theorem, we can write

f(Z) = Z A,,(Z - 20)"’

n=-—oo

where
/
4, = _‘_§ _SE) gy, (6.48)
2mi Je (2 — zg)"*?
But if f(z’) is analytic inside C,, then for n = —1, —2, ..., the integrand in

Eq. (6.48) is analytic within and on C (since C lies within C;). Therefore, ac-
cording to the Cauchy-Goursat theorem, 4, = 0 for n < —1. Furthermore,
for n > 0, we have, using Eq. (6.17),

L§ f(Z,) dz! = 1 (n}
2mi Je (2 — z)"+! £ n!f (@)

where [ (z,) denotes the nth derivative of f(z) at z = z, and f(z) = f(z,).
Thus,

o

S =31 () (2 — )" (6.49)

n=0 n!

This result is known as Taylor’s theorem, and the series in Eq. (6.49) is called
Taylor’s series for f(z) about z. This very important result may be stated
formally as follows:

Taylor’s Theorem. If f(z) is analytic at all points interior to a circle C
centered about z, then in any closed region contained wholly inside C

]

M=Z%wmw—w. (6.50)

n=0
and the series converges uniformly.

We can now express the analytic function f(z) as a uniformly convergent
series of analytic functions (it is a simple matter to show that any uniformly
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convergent series of analytic functions is analytic). Because of the uniformity
of the convergence, it can readily be shown that the integral of f(z) along any
path in the region of convergence of the power series in Eq. (6.49) can be eva-
luated by integrating the series term-by-term (see Problem 6.28). Using Eq.
(6.17), we see that this also means that the derivatives of f(z) can be evaluated
similarly by term-by-term differentiation. Thus Eq. (6.49) provides f(z) and
all its derivatives throughout the region of convergence.

Examples
o0 Z"
1. &= =, for |z| < 0.
n=0n!
> 2n+1
2. sinz = —_y for |z|] < oo.
Z_jo( )’ T B

3. (1l—2t= Zz" for |z| <1.

These series all reduce to familiar results for real values of z.
It is often possible to obtain the Laurent expansion of some function by
using a related Taylor series. Thus, Example 1, above, gives us

©

emzzn‘ (|2] >0) .

n
n=0 ' z

This show clearly that €'/* has an essential singularity at z=0. A slightly more
substantial example is provided by the Taylor expansion of cosh z. Itisa sim-
ple matter to show that

o

cosh z =
oS e g(zn)z

For |z] < oo. Thus for |z] > 0 we have

2n

o

cosh (z 4+ 1/2) :Z

n=0

z+1/)

Using the binomial theorem, we find

o n

cosh (z + 1/2) = ZZ 2 = Z Z

n=0 m= 0 'm' n=0 p=—n n - #)'

If in Eq. (6.50) we interchange the order of summation and then make the
change of variable v = n — g, we obtain

= = 1
cosh &+ 112 = 30 2 3 5t |

U=—co

in agreement with the result of Eqs. (6.47).
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The region in which a Taylor series expansion of a function about a point
z, is valid is limited by the presence of a singularity of f(z). We have seen that
if thissingularity isat the point a,, the Taylor’s expansion holds within a circular
region of radius |, — z,| about z,, Now the Taylor expansion gives the values
of the analytic function and all its derivatives at every point in the region of
analyticity. In particular, these quantities are known at a point z; (see Fig. 6.16)
near the region’s border. We may now use the point z, as a point about which
to expand the function in another Taylor series. We can do this because f*(z,)
is known for all n from the first Taylor expansion about z,. The radius of
convergence of this second series expansion about z, is determined by the distance
from z, to the nearest singularity. Continuing in this way (Fig. 6.16), we can
determine the function throughout the entire plane except the points at which
it is singular. To get started, we need only know the values of the analytic
function in some region, however small. This process is called analytic continua-
tion. It is as though a paleontologist could reconstruct a whole dinosaur from
the fossil remains of a single toenail.

Fig. 6.16 A sequence of Taylor expansions
which analytically continue a function
originally known in some region around
Zo. The first expansion about 2o is limited
in its radius of expansion by the singu-
larity at ap. The next Taylor expansion
about z; (inside the first expansion’s radius
of convergence) is limited by a second
singularity at ay, and so on.

The process of analytic continuation is the best demonstration of the rigid
inner structure of analytic functions. Again we see how interdependent are the
values of an analytic function: its values in any region on the plane determine
its values everywhere that it is analytic. This blueprint for the construction of
all the values of an analytic function also demonstrates the necessity of the
property that all derivatives of analytic functions are analytic. For if this were
not the case, we could not continue a function analytically by a chain of Taylor
expansions. To do this requires that we be able to approximate the function
arbitrarily well, and this in turn means that all its derivatives must exist so the
Taylor series can be extended to achieve arbitrary accuracy.
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An immediate consequence of the fact that an analytic function may be
continued is that a function which is zero along any curve in a region R, through-
out which it is analytic, must be zero everywhere in R. This means that if two
functions f(z) and g(z) are equal on any curve inside a simply-connected region
R in which both are single-valued and analytic, then they are equal everywhere
in R, since f(z) — g(z) is zero on the curve and therefore throughout R. 1t will
be recalled that the analytic functions €%, sin z, sinh z, etc., were defined for
complex arguments in a way that reduced to the usual definitions on the real axis.
The principle discussed above shows that these functions could not have been
defined otherwise away from the real axis and still be analytic. Furthermore,
this explains why all the familiar identities satisfied by the functions for real
values continue to hold throughout the complex plane.

It should also be noted that the process of analytic continuation is closely
related to the problem of multivalued functions and Riemann surfaces discussed
in Section 6.2. Suppose that we are given an analytic power series for a function
in some region, for example,

w(l):\/EZ'\/l——(l—z):l—.zk(l_z)_%(l_z)z+...

in the region consisting of the interior of a circle of unit radius about the point
z = 1. If we try to continue such a function along certain paths in the z-plane
(in the case above, any path enclosing the origin), it may happen that upon
returning to the original region of definition, we do not return to the original
values of the function. This leads in a natural way to the construction of
Riemann surfaces of the type discussed in Section 6.2.

6.8 RESIDUE THEORY—EVALUATION OF REAL DEFINITE INTEGRALS
AND SUMMATION OF SERIES

There is really nothing fundamentally new in this section. All the theorems

have been proved; here we just apply them in certain ways to determine the

values of some real definite integrals.

The Residue Theorem. The integral of f(z) around a closed contour C
containing a finite number n of singular points of f(z) equals the sum of »n
integrals of f(z) about n circles, each enclosing one (and only one) of the n
singular points.

Proof. 1f we apply Cauchy’s theorem to the region shown in Fig. 6.17, we
obtain

fleydz + - +.“ flz)dz = 0.

2 Ca

[ 1 dz + Lf(z) &+

Note that the contours C; are traversed clockwise in Fig. (6.17). It follows that

§cf(z) dz = 2mi z": R;,
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Fig. 6.17

where R; = (1/2ri) § f(2) dz is called the residue at the point z;. In thisequa-
¢

tion for R; the integrall sign has its conventional meaning, that is, the contours
C,; are traversed counterclockwise.

There is nothing new in this theorem except the name “residue.” To
compute the residues we shall often use Cauchy’s integral formula or the for-
mula for the derivative of an analytic function derived from Cauchy’s formula
by differentiation.

There is another way to compute residues, however, which is sometimes
useful. We expand f(z) in a Laurent series about the singular point z,:

f0 =3 ale— 2+ Y byle — 29"

n=0 n=1

Now b, = (1/2mi) § flz)dz = R,. It is instructive to check this by integrating
C

0
both sides of the Laurent series expansion about a circle which includes z, but
no other singularities. Interchanging summation and integration, which is
permissible because these series converge uniformly, we get

§C0f(2) dz = i a, §Co (z — z)"dz + 2‘; bn§ dz

et co (2 — zg)"'

The first integral vanishes for all n because (z — z)" is analytic. For n = 1,
the second integral gives 2zib, by Cauchy’s integral formula. For n > 1, we
write b, = g(z); then by Eq. (6.17)
§ b,dz_ _ § glz)dz _  2mi
Co (

co (2 — zo)" z — zg)" B (n — 1)!g"'"’(zo) =0

since g(z) = b, = const. Thus (1/2mi) § f(z) dz = b, = the residue at z, so
C

the residue at a point can be found by ex:)anding the function about the point
in a Laurent series and picking out the coefficient of the term in (z — z)~".
There is nothing mysterious about this; it is a simple consequence of Cauchy’s
integral formula.
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Examples.

1. I= § e'"dz , C = unit circle about the origin.
c

1
e"‘:Z , sob, =1.

“~n'z"
Therefore I = 2mi.
2

2. I=§ 342 +2dz,

cz(z 4+ 1)
where C is the circle: |z} = 3. The quickest way to do this integral is to write
it as

§ :§ +§ :§ (322 + 2)/(z + 1)dz+§ B2+ 2z,

c o c Co z o (z+1)
where C, is a little circle inside C enclosing z = 0, but not z = —1,and C,isa
little circle inside C enclosing z = — 1, but not z = 0. Then using Cauchy’s
integral formula to evaluate both integrals, we obtain I = 2mi(2 — 5) = — 6.
3. 1 = § ___32__1-_2_dz

cz(z + 1)?
where C is the circle |z] = 3. We break up the integral as before:

1:§ (3z 4+ 2)/(z + l)sdz+§ (3_z—+—_2_)£dZ
Co V4 Cy (Z + 1)3
II
= 2mi[2] + 2mi [f —‘

where f(z) = (3z + 2)/z. Therefore f’/(—1) = —4, so the residue at z = —1

is —2, thus I = 27i(2 — 2) = 0.

In this last example we evaluated the residue of a function of the form
Sf(2)/{z — z,)" at the singular point z, by using Cauchy’s formula for the derivative
of an analytic function. In general, if f(z) is analytic within and on some
contour C surrounding z,, then the residue of the function f(z)/(z — z)" at z,is

L Sy [
2mi Je (z — zo)" (n— 1
An instructive way to view this formula is to expand f{z) in a Taylor series

about z,. This is possible because f(z) is analytic in some region about z,, since
the singularities are isolated. Then

f(Z) :f(zo) +f’(20)(z — zo) + e +f"“(zo)(z J— zo)rl—l + .
(n — 1!

If we now form the quantity f(z)/(z — z))" by dividing both sides by (z — z,)",
the coefficient of the term in 1/(z — z), which is just the residue of f(z)/(z — zo)",
is f""(z)/(n — 1)!, in agreement with the above.
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We now use these techniques to evaluate various definite integrals.
a) Ji*R(cos @, sin 6) df, where R is a rational function, that is,

— a,cos @ + a,sin @ + a,cos*0 + - - -
b, cos 6 + bysin @ + bycos? 6 + bysin?6 + -+

To evaluate this integral, let z = e'®, so that

cos(9=1<z+-1-), sin0=l<z-—l ,
2 z j

) Z

and d0 = —i(dz/z). The integral becomes

~i§r [5G+ 0) (- DS
c 2 z 2i z z

where C is the unit circle.

Example.
2%
1:] _d4 _ as
0o a -+ cos@
|z|=l<a+£+_1_> z lz1=1z* 4+ 2az + 1
2 2z

The denominator can be factored into (z — a) (z — ), where
a=—a+ (@—1)", B=—a—(a@—1)".

Since a > 1, it follows readily that || < 1 and |B] > 1. Thus the integrand
has one singularity, at z = «, within the unit circle, and

_ 2T
a—pB (id— 1)1/2'

Next we consider integrals of the form:

I = —2i(2ni)

b) [®. R(x) dx, where R(x) is a rational function (i.e., a ratio of two poly-
nomials), without poles on the real axis.

If there are no poles on the real axis, then this integral exists if the degree
of the denominator of R(x) is at least two units higher than the degree of the
numerator. This means that |R(z)| — 1/|2*| as |z|] — co. Now

§C R(z)dz = L R(x) dx + Lmim R(z) dz

(see Fig. 6.18). As p — oo, the closed contour C encloses all the singularities
of R(z) in the upper half-plane, so

§CR(z) dz = 2mi ) Res R(z) ,

r>0
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Fig. 6.18

27

—7 +p

where this notation means to form the sum of all the residues of R(z) in the
upper half-plane. Now in the limit of large |z],

S R(2) dz| < S lconstlzpdﬁ __ |const| '
semicircle p p

which goes to zero as o — co. Thus

§C R(z) dz = S:, R(x)dx =2ri 3 Res R(z) .

>0

When we say that an integral over a ‘‘contour at infinity’’ vanishes, we
really mean, of course, that given any e > 0 there exists a finite contour C such

that |§C fl2) dz

at oo is zero; all contours are really finite.

< e. If this is so, we say that the integral over the contour

Example.
1= r __dx
— (xz + 1)2
To find the zeros of the denominator in the upper half-plane, we must solve
22 = —1. We get z = *i. Only the root + i is in the upper half-plane.
Therefore
1=§____~dZ =ad L )]
(z4+ )z —10* 10 dz\(z + i)/ Je=i
, 1 :' T
= (2mi) - (—2) + ——— ==,
mi) (=2 ] =3

c) Another very important class of integrals is [, R(x)e’*dx. This is the
Fourier integral of the rational function R(x). Its real and imaginary parts
determine the integrals:

r R(x) cos x dx and r R(x) sin x dx .

We retain the assumption that there are no poles on the real axis. Here,

too, we consider the integral§ R(z)e'*dz over a semicircle. Since |e”?| = e < 1
(o}
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c Fig. 6.19

for any point in the upper half-plane, this integral will exist if the rational
function R(z) has a zero of at least order two at infinity. Then, just as before,
the integral over the infinite semicircle vanishes, leaving

§C R(2)e*dz = So_o R(x)e'*dx = 2mi E Res [R(z)e'"] .

y>0

Example.

‘o eikr
1 :g dk .
— kZ + ﬂz

If r > 0, then letting x = rk, we find that the integral becomes

' ix iz iz
I:rS _L_dx=r§_i_dz:2xir Res<_£—->
- x? 4 (pr)? 22 + (pr)? fé:., 22 4 (pr)?

. e’ et
= 2mir ] =x .
z=ipr

z +ipr 7
Note that
= S°° coskr o
—o kz + #2
and hence the result above is actually independent of the sign of r. Therefore
r vk = ne—”lrl )
=kt 1z

Another way to see this is to compute the integral assuming r << 0. Then
we must take the contour in the lower half-plane, since |e'*| = e~ ®7 which
is bounded only for Im (k) < 0, if r << 0. As before, for a large enough semi-
circle (Fig. 6.19),

§C = S:) = —2xi Z Res .

r<o

The minus sign arises because the contour C is traversed clockwise. Thus

iz r
1= —2mir £ :I = T ,
z — iprle=-ipr 7
which for r < 0 = we~*"!/p. Here the residue was computed at the only pole
in the lower half-plane, z = —ipr.
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d) There arise integrals of the form [, R(x)e"* dx, where the rational function
R(x) has a zero of order one at infinity. The integrals

r R(x) cos ax dx and r R(x) sin ax dx

— —oo

are the real and imaginary parts, respectively, of this integral.

From the preceding discussion, it is not clear that these integrals exist.
Jordan’s lemma, which we now prove, tells us that they do. Again we assume
that there are no poles on the real axis.

Fig. 6.20

Jordan’s Lemma. If as p — oo (in Fig. 6.20), |R(z}| — 0 uniformly in ¢
for 0 < @ < =, then lim,_, S R(z)e"*dz = 0, fora > 0.

l1zl=p
Proof. We have almost proved this result in the section on dispersion relations.
There, however, the analyticity of R(z) in the upper half-plane was used. Here
we use the hypothesis on the uniformity of the approach of |R(z)| to zero. Let
M(p) be the maximum of |R(z)| on the semicircle |z] = p. Then the statement
that |R(z)| — O uniformly means that |R(z)| < M(p), where lim,_., M(0) = 0,
independent of 0.
Let

I= S. R(z)e dz .
l2j=p
Then

|1| g M(p) §o |ela(pcos8+ipsin 9)| lpieiol da

= pM(p) St e sini dg
0

Treating this integral exactly as in Section 6.6, we obtain

1) < eM(e) L=

-0 as p —> oo,

since @ > 0, and M(p) — 0 as p — oo. Thus we arrive at the formula

r R(x)e'** dx = 2mi Z Res [R(z)e'**]

»>0
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fora > 0. Fora < 0, the derivation works only in the lower half-plane (y < 0),
and changes in the above formula must be made accordingly.

e.‘k.r
1 = S dk
k2 _+_ #2
b2 x ©
:X mwjkgnewjtwi___
0 0 0 k? 4 'uz
1 © 2,ik]|r|t
:an dﬂ'dkke
i 0 k2 + ‘uz
‘2_77 Sw dk k(eiklrl _ e—iklr!)
ilr| Jo K+ 2
‘2—71, gm d keiklrl .
JLIPSS kZ + ﬂl
Jordan’s lemma tells us that this integral for complex k vanishes over the infinite

semicircle. Therefore
2w ,

I =" 2nri Res

i|r] ; K+ 2 |r| 2ip 7]

since there is only one pole in the upper half-plane (k = +ip).

Example.

iklricos@

ilr

iklr| 2 5 P-ipfr| 2
ke __4rn'ipe = 27 i ‘ (6.51)

Fig. 6.21

Y

—-R

e) We have not as yet allowed the integrand to have poles on the real axis.
If Q(z) is a meromorphic function in the upper half-plane, if it only has poles
of order one (i.e., simple poles) on the real axis, and if Q(z) behaves at infinity
like any of the integrands of class b, ¢, or d, then the techniques of these cases
can be extended to evaluate integrals of the form

P Sm Q(x) dx,

where the P stands for Cauchy’s principal value, which arises because of the
presence of the poles on the real axis.

Let Q(z) have a single simple pole on the real axis at z = a. Consider the
indented contour C (Fig. 6.21) consisting of the small semicircle y about point
a, the large semicircle T" about the origin, and the two straight line segments
on the real axis from —R to a — p and from a 4+ p to R. We take y small
enough so it encloses only the pole ai a; T'is taken large enough to enclose all
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the poles in the upper half-plane and large enough so the integral over T
approaches 0 as R — co. We have

(Sr + Sa__,: + S, + S:,,)Q(Z) dz = 2mi ; Res Q(z) .

Taking the limit as R — oo, we get

i+ 02+ Jowae = rf” e ae + oo
= 2mi E Res Q(z) .

r>0

We now consider [,0(z) dz. On y,z = a + pe'®, so that
0

S Q(z)dz = S Q(a + pe'®)pe'idf .
4 1

Since Q(z) has a simple pole at z = q, it contains the factor (z — a)~'. We may
therefore write Q(z) = ¢(z)/(z — a) + ¢(z), where ¢(z) and ¢(z) are analytic at
and near z=a. Clearly ¢(z) does not contribute to the integral over y as
0 — 0, so since z — a = pe'’, we have
g 0
| o a: = S dla + pe)idd .
T L1
We now expand ¢ in a Taylor series about a (it is analytic there):
$(a + pe'®) = ¢(a) + terms in p.
Therefore, letting o — 0, we get
0
g 0(z) dz = S $(a)idd = —ind(a) .
T T
Now ¢(a) is the residue of Q(z) = ¢(z)/(z — a) at z = a, so the final answer
may be written as

PST O(x) dx = 2ri Z ResQ(z) + =i Z ResQ(z) ,

where 3,.oResQ(z) denotes the sum of the residues of Q(z) at each of its
simple poles on the real axis (generalizing from one to several simple poles).

Example.

[ = S"" sinx

- X

The value of this integral may be determined from the following simple result:

Pr ﬁia’x = mi Z Res(%) = ri.
»y=0

- X

Here the only pole is on the real axis at z = x = 0.
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Equating real and imaginary parts, we have

P_r cosxdx___o,
o x

which is trivial because the integrand is an odd function, and

o
sin x
PS dx =,
e x

a result derived previously from Hilbert transform theory. In this formula the
P is superfluous because the integrand has no pole. Many integrals involving
sin x or cos x may be evaluated, as we have done here, by replacing the trigono-
metric function with e, and later taking real and imaginary parts.

f) Next we consider integrals of the form [§x*~' R(x) dx, where R(z) is rational,
analytic at z = 0, and has no poles on the positive real axis, and where |z*R(z)|
— 0 uniformly as |z| — 0 and as |z| — oo. Since the case of integral 2 can be
handled by the methods described earlier, we will assume that 4 is not equal to
an integer.

This problem involves branch points and branch cuts because z*~! is not in
general, a single-valued function. The power function z*~! has a branch point
at the origin. Let z*~' denote the following branch of the power function:

' =exp[ (2 — 1) logz] = exp[ (2 — 1)(log r + i6)],
where 0 < 8 < 27, r > 0. Then

zl—l — rl—lel(k—l)ﬂ , O < 0 < 271.' r > 0 .
The branch cut has been chosen to be the positive real axis. For § = 0, the
power function has the value

Now consider the contour integral§ 2*~'R(z) dz, where the closed contour C’ is
Cl

shown in Fig. 6.22. Here C’ consists of a small circle about z = 0, whose radius
will later be shrunk to zero, a large circle whose radius will later be expanded
to oo, and two integrals along the positive real axis in opposite directions and
on opposite sides of the branch cut. Since the integrand is discontinuous along
the branch cut, these two integrals will not cancel. To do the integral, the
phase of z*~! must be prescribed everywhere. We have done this above by
defining it to be 0 on the positive real axis so that z*~! = x*-! there, which is
the usual convention. Therefore, on the line just below the real axis, z*~!
= x*-le'-1_ The integrals over the little and big circles vanish, because
|z*R(z)| — 0 as |z| — 0, and as |z| — co. Therefore

o

§ AR dz = — g -0 AR (x) dx + r *IR(x) dx ,
c’ 0

0
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f](i x Fig. 6.22
Q

where the first integral on the right is the contribution from the line below the
positive x-axis and the second is the contribution from the line above the x-axis.
Together these integrals give

[1 — eu-1] Sm x*IR(x) dx = (M) Sw x*'R(x) dx .
0

e—xil 0
Since
§ 2*~'R(z2) dz = 2ni Z Res [z*7'R(2) ],
¢ inside C'
we obtain
oo —Rik
x*IR(x) dx = =€ Res [z*~'R(z 6.52
[, xR dx = ZEE 5 Res[247UR () (6.:52)

N T IE

sinzd  dEc

since e~"™ = (—1)*. This is as far as we can go without choosing a specific
function R(z). A very simple example of this type is the following integral:

oo xl—l
I= S dx , 0<aALK 1.
o] + x
After evaluating it, we shall use it to prove some results involving the beta and
gamma functions.
First since 0 <2< 1, |2*/(1 4+ 2)| — 0 as |z] — oo and as z— 0. Therefore

Sm xA-! dx __:n'(—l)‘”' Res< 221 > _or
z=-1

ol 4+ x sin A 1 + z " sinmd

The beta function B(x, y) is defined as

[y — et g = TET0)
gy = e — e = TRy >0, (63)
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where I'(x) is the gamma function:

T(x) = r 1t~ dt . (6.54)

0

The proof of the identity in Eq. (6.53) may be found in many books on
analysis. We note that

Blx, 1 —x) = T(XT( — x) = S;t"“(l —)rdr,  ifo<x<l.

If in the last integral we make the change of variable

f=_ 4 _q_ 1
1+ u 14+ u’
it becomes
o x—1
S “ du,
ol 4+ u

which is precisely the integral we have just evaluated. Thus

Blx,1 —x) =TTl —x)=—2—, for0<x<1. (6.55)

sin 7x

This formula may be extended by analytic continuation to all z in the complex
plane. In particular, for x = 4, we have [[’(4)]?* = =. Therefore

o ©

edu = S e~ du, (6.56)

0

—00

' =T(4) = r.t‘”ze" dt = 25
0

where we have made the substitution ¢ = 2.

We close this section on residue theory with an illustration of how series
can be summed by contour integration. The result we shall obtain depends on
the fact that z cot 7z has poles of order one at the zeros of sinznz, (that is, at
z=n,n=0, =1, £2, -+ ), and the fact that the residue at each of these poles
is 1.

Theorem. Let f(z) be a meromorphic function and let C be a contour

which encloses the zeros of sin 7z, located at z =p, 0 + 1, -+ -, n. If we
assume that the poles of f(z) and sin zz are distinct, then

’Zp flm) = 2—17;§C7rcotn'zf(z) dz — E Res [z cot (zz) f(z) ].  (6.57)

poles of f(z)
inside C

Proof.

§ m cot wzf(2) dz = 2mi Z (Residues at all the poles of the integrand)
C

= Zﬂi[i f(m) + Res [m cot wz f(2) ] } . QED

poles of f(z)
inside C
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Example. We shall use this theorem to establish the equivalence of Langevin’s
function (coth x — 1/x) and the sum

i 2x
x2 _F anZ'

n=1
We shall then use this result to derive an infinite product expression for sin 8,
which is of considerable interest in its own right.

Letting f(z) = 2x/(x* + 2’7, and using the formula above, we obtain
N

2x 1 §
——— = —0& wcotrwz f(z) dz — Res [r cot wz f(2)] ,
2 i = o e 1tz Zf [ cot 7z £(z)]
inside

where C is a closed contour, say, a rectangle, enclosing the points z = —N,
—-N+1,.--,0,1,.-.-, N— 1, N. Now let the length and width of the rec-
tangle C approach co. As this happens,

zlm&cncot nz f(2) dzl < %§C |cot zz| Ti—z—z |dz] — 0.

To see that this integral vanishes as z — oo, we observe that

|cot 72| = |cosmz| __ <cos2 nx + sinh? my\'?

|sin 7z| sin* wx + sinh®zy

Now, arbitrarily high accuracy can be achieved in summing the series by choosing
the rectangle so that its vertical sides cross the x-axis at a large enough half-
integer, for example (10 + 1), where cos 7(10” + 3) = 0 and sin (10" + 3)
= 1. Then, over these sides of the rectangle

H hzny 1/2
cot wz =‘<—-SL——— ’ = |tanhmy| < 1.
| | 1 + sinh?zy | q

Over the horizontal sides of the rectangle, lim,.. |cotzz| = 1. Thus the
integrand goes as |1/2?| as |z| — oo, and the integral vanishes.
If we take an infinite rectangular contour, then

i 2x — — Res [(ﬂ cot 7z) Zx:]
m;m x? + m’r? - x? + 2*r? z=%ix|x
_ 2 [cot n(ix/m) , cot n(—ix/n):l — 2icotix = 2cothx .
T 2ix|[m —2ix|n
Therefore
= 2
- = 2 coth
2 le e + e x coth x
or
1 had 2x
cothx—;: Zm;r—z, (6.58)

which establishes the result stated at the outset.
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Aside from illustrating this summation technique, this particular result is
not of much interest. However, if we integrate both sides from 0 to x, we get

-} 2 .
E In <1 + —%—;) = In <smhx) .
= mr x

Hence
sinh x = x? o X
() = 2‘“(1 o) = I (1 55).
)
sinh x il x?
- mI=Ix I+ m27r2> (€-59)

We may extend this result to all z in the complex plane by analytic continua-
tion. Then setting x = if (@ real), we obtain

2
sm0_—0H 1 - = 6 . (6.60)
n=1 n 7[
This infinite product formula displays explicitly all the zeros of sin 8. It represents
the complete factorization of the Taylor series. It can, in fact, be taken as the
definition of the sine function.
By equating coefficients of the 6° term of both sides of the above equation,
we obtain a useful sum:

1 =
”Z_; il (6.61)
This is a special value of the Riemann zeta function,
= 1
- 6.6
=2 5 (6.62)

There are many other special tricks for evaluating integrals and summing
series. We have surveyed only the principal techniques, but the reader will have
no trouble understanding any particular evaluation procedure he may encounter
if he understands this section, Problem 31 provides applications of all the basic
techniques of residue calculus developed above.

6.9 APPLICATIONS TO SPECIAL FUNCTIONS

AND INTEGRAL REPRESENTATIONS
In this section we use the formula for the derivative of an analytic function to
find generating functions for certain special functions from their Rodrigues
formulas. Also, we shall derive integral representations for Bessel functions and
Legendre polynomials.

Bessel Functions
The function e"/?*®=1/" s analytic everywhere in the w-plane except at w = 0,
50 it can be expanded in a Laurent series in any annulus R, < |w| < Ry, no
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matter how small R,(> 0) or how large R,. Denoting the expansion coefficients
by J.(z), we have

/2 z(w—1/w) — n
e = J.(2)w" . (6.63)
The expansion coefficients are functions of the complex variable z. The notation
chosen for them anticipates the fact that they will turn out to be Bessel func-
tions of integral order. In other words, e"/?:™*~1" js a generating function for
Bessel functions.
We now prove that the functions J,(z) do satisfy Bessel’s differential equa-
tion:
22 di' + z aJ,
dz? dz
Along the way to this result we shall find an integral representation for Bessel
functions and also an explicit formula for them.
By Laurent’s theorem,

() = _1_§ S g, (6.65)
2mi Jo (w — wy)"t!
where C is any closed contour in the annulus. We take C to be the unit circle:

w = e'®. Then in Eq. (6.65), w, = 0 and f(w) = e"/?*™="_ On the unit circle
w — 1/w = 2isin §. Therefore

J,,(Z) — _I__S eiz sin ﬁe—lnﬁ d0 —_ __1_ SK e—l’(nﬁ—z sin ) do
2r J-r 2r J -

+ (2 —n)J,=0. (6.64)

= LS cos (nf — zsin ) df — —I—S sin (nf — zsin 6) d6 .
2w J-= 2w J-=

But the second integral is zero because the integrand is odd in #. Since the first

integrand is even in 6,

z
J.(2) = 150 cos (n@ — zsin 6) d6 . (6.66)

T
This is an integral representation for the function J,(z), which we now prove is
a solution of Bessel’s equation by substituting it into Eq. (6.64). The verifica-
tion is trickier than one might expect. We therefore resist the temptation to
“leave it to the reader.” He is, of course, welcome to have a try at it before
reading further. We have

Ji(z) = lS”sin 0 sin (n@ — zsin 6) d6 (6.67a)
7w Jo

= _1 cos @ sin (nd — z sin G)T
T o

+ ly cos 6 cos (nf — zsin @) (n — z cos 6)d6 (6.67b)
wJo
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where we have integrated by parts. The first term is zero. Differentiating Eq.
(6.67a) again, we have

JIz) = — lg sin? @ cos (nf — z sin 6)d6
TJo

We now form the quantity z*(J;" 4 J,) + zJ; — n’J,, using Eq. (6.67b) for J/(x).

It must be identically zero if the J,(z) are Bessel functions. We get

lj cos (nf — zsin 0)[z2*> — 2?sin?@ + zcos @(n — zcos ) — n?] db
TJo

=——§ [cos (n@ — zsin6)(n — zcos @) 146 .
T

The function sin (n@ — zsin @) is an antiderivative of the integrand. It vanishes
at both 0 and =, so the proof is complete: the J,(z) are solutions of Bessel’s
equation. It is easy to show that
JL(0) =1, J,(0) =0 form=+£0,
(6.68)
JI0) =4, Ji(0) =0 form=+£1,
so these functions are indeed that solution of Bessel’s equation, known as Bessel
functions of nth (integral) order of the first kind (which are analytic at the
origin).
Usually, the solution of Bessel’s equation is expressed as an infinite series,
not as an integral. We now derive the infinite series solution from the generating
function:

ell/Z)z(w—llw) — e(l/Z)zwe—zllw
had z 2 W @ —z 2 my,—m b
DI e L
r=0 r m=0 m: n=—co

To obtain J,(z), the coefficient of the term in w"(n > 0), we multiply each term
in w=™ in the second series by the term w"*" in the first series, and then sum
over all m:

(2/2) u+mwn+m(__ 2/2) mw—m

J.(2)w" = i

— (n + m)! m!
_ * [ . 171(2/2)2m+n—" W
- ; (n+mm |~
Thus
© _ m (2/2) 2m+n
Z m +m Pt (6.69)

m=0
This is the infinite series solution for integral » > 0. The reader may show that,
for integral n,
J_.(2) = (= 1)"].(2) . (6.70)
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Thus these solutions are linearly dependent, and there must exist another set of
linearly independent solutions. They are called the Neumann functions, and
are denoted by N,(z). A whole family of equations and solution functions may
be constructed from Bessel’s equations and Bessel functions by permitting the
index n to be nonintegral and half-integral. Also, various linear combinations
of Bessel and Neumann functions of real and imaginary argument give rise to
the modified Bessel functions and the Hankel functions. The spherical Bessel
functions (which we discuss in Chapter 7) are still another set of functions that
are defined in terms of the Bessel functions. Each of these sets of functions is
a Sturm-Liouville system. It is not our purpose to provide an exhaustive (and
exhausting) account of them, but merely to derive and discuss the fundamental
results so the reader can dig the particular facts he needs for his work out of a
treatise on the subject.

Legendre polynomials
Previously we have shown that the Legendre polynomials, defined by the
Rodrigues formula

1 da
2"n! dx"

are an orthogonal set on the interval [—1, 1] and satisfy Legendre’s equation:
(1 —x)P!" —2xP] +n(n+ 1)P, =0.

It was mentioned in Section 1.8, but not proved, (except for P, P, and P,),
that a generating function for the Legendre polynomials is

P,(x) = xt—1)",

_— P,(x)t", o<1, <1. (6.71

(1—2xt+t”z Zo <t< x| < ( )
In the comparison of this equation with Eq. (1.101), the reader will note that
we have set t = r//r and x = cos §. We now prove this relation for all n. We
begin by expressing the Rodrigues formula as a contour integral by making use
of the formula for the nth derivative of an analytic function:

_(=nrd o s (=11 [ (1—2)"
P,(x) = Sl I (1 —x3 5 5 §C(_z_—w+_’ dz . (6.72)

Here we have used the fact that the function (1 — z%)" is entire (C is a closed
contour that encloses the point x). This integral representation of the Legendre
polynomials is known as Schlafli’s integral formula. If we now form the series
S = a2, P,(x)¢t", using this integral representation for P,(x), and interchange
the order of summation and integration, we get

s=Lf g Sl (o),
riJcz — x &= 2" zZ — x

This is a simple geometric series, which converges and is easily summed if

t1—72
2z — x
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y
C z
z+1 -1
Jz+1] \ lz—1]
lz—x
X Fig. 6.23
iy X+l

We must show, however, that a contour C, enclosing the point x, can always
be chosen so that this is true for all x and ¢ in their prescribed ranges. Let C
be the unit circle; z is a point anywhere on C, and x is on the real axis inside
or on C as shown in Fig. 6.23. The area A4 of the right triangle with vertices
at —1, z, and +1 is given by

A=dlz+1llz—1 =41 -2
It is also given by £(2h) = h. But |z — x| > A for all z and x, so

]
lz—x|>h=A=4%]|1 — 2 = g—-lz_‘; <l1.
Consequently,
it 1—2
- 1
2z—x <

since t < 1. A purely algebraic proof is also possible, but this geometric one
is simpler. We now sum the geometric series to obtain

5= 1§ dz 1 ___:_1§ 2/t dz
27ricz—x1 l:—t(l——zz):l 2ridc , 2 ( 2 >
—— 7L 2—Z7 —(1—Z2x
2 (z—1x) t t

The denominator has two roots;

1/2
z*=tli<l—-2ic+l> =tl[1i(1—2xt+z2)'“].

Remembering that 0 < ¢t < 1 and —1 < x < 1, it is easy for us to show that
z, >1land —1 < z_ < 1, so z_ is the root enclosed by the contour C. Evaluat-
ing the residue at z_, we have

- " —-12_ ., 1 _ 1
§= Z=: P”(X)t - 2ri t 2mi Z. —Z, - 1 — 2xt + t? 12 ° QED
n=0
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Table 6.1

6.9

PROPERTIES OF ORTHOGONAL FUNCTIONS
ARISING FROM STURM-LIOUVILLE SYSTEMS

Name and physical

application

Rodrigues formula

Generating function

Legendre polynomials:

i P.(x)t

1) Multipole expansion 1 47
Pu(x) = 27n ) dx" (x* —1)" 1
2) v? in spherical n.ax PV g yrara
coordinates 0<t<1)
= f{n(x) —1242
Hermite polynomials: dre—* th = e Tt
Hn(x) = (—" 1)"6}(2 e nz=o
Quantum oscillator dx >0
Laguerre polynomials: 2\ La(x) e—*1/ -0
n n t" —
Hydrogen atom (radial L.(x) = e"; x"e % Z—; n! 1—1¢
x'l
equation) o<t

Series representation

Bessel’s function (of

S

integral order) 2 (— 1)m(x[2)mtn Z Ju(x) 1" = eW/nxu=1/n
inoylndrical | T 2 Tt mmt |
v? in cylindrical m=0 s
. (t>0)
coordinates
fu =sinnx
, , - ym AL (nx)?m+!
Trigonometric = mzo (— om + 1)
Sfunctions:
gn = cos nx

Classical oscillator
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Differential equation

Differential equation in
Sturm-Liouville form

Orthonormality

(1 — x3) P! — 2xP,
+n(n+ I)Pn:‘—‘o

a4~ ypr
o (L= x)P)

+ nn+ )P, =0

1
S PnPnl dx
-1
_2z
2n + 1

= an m

H!! — 2xH' + 2nH, =0

i(e_"sz,) + 2ne*'H, = 0
dx

s H,H,e**dx

—0

= 6,.,,11/7—1'2"n!

xL!! + (1 — X)L,
+nL, =0

i(xe‘-‘Lﬁ) + ne *L,=0
dx

Sm LoLne *dx

0

= 5:1::1(”!)2

XX+ xJ!
+ (x2—n))J, =0

2
40+ <x - ”—-) J.=0
dx X

See Problem 5.23

i+, =0
g/ +n'=0

LN 4 nify =0
dx

i(g.’.) + n'g, =0
dx

.fll.fln dx = 6""!”
n

4

Enm dx = 6”:"”
n

f;vg mdx =0

377
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In exactly the same way, the generating functions for the Hermite poly-
nomials and the Laguerre polynomials can be derived from their Rodrigues for-
mulas (see Problems 36 and 37).

Let us return to Schlafli’s integral representation of the Legendre poly-
nomials:

P"(x) = _1_.§ ._.(iz_:._l.)_”_dz . (6.73)
2mi Jc 2"(z — x)"*!

It can be proved directly from this integral representation that the P,(x) satisfy
Legendre’s differential equation. But we have already proved that the P,(x) as
given by Rodrigues’ formula satisfy Legendre’s equation, so we omit this proof.
Here we derive another integral representation: a real integral.

For the contour C, we take a circle about x of radius |(x* — 1)"?|. Then
for any point zon C, we may put z = x + (x* — 1)"%'°, where 6 increases from
— 1 to w. Making this substitution in Schlafli’s formula, we obtain

Py(x) = - S [(x — 1+ WP )" x 1+ (& — 1)"Ze"’>]",-do :

2mi 2(x — 1)

—-K

where we have written (22 — 1)" in the form [ (z — 1) (z + 1) ]" before substitut-
ingz = x + (x* — 1)"%", Now everything in square brackets above simplifies
after a little algebra to x + (x> — 1)"?>cos @, an even function of §. Thus we
have a real integral representation of the Legendre polynomials due to Laplace:
P.(x) = lgo [x + (x*— 1)cos 67'd0, forlx| <1.  (6.74)
T
Note how obvious it is from this representation that P,(1) =1, and P,(—1)
= (—1)". It is instructive to compute P, P, and P, from this formula.
Although (x* — 1)"? is pure imaginary for |x| < 1, all the terms in (x* — 1)'?
vanish when the integral is performed because [5 cos™ 8 df = 0 for odd m.
We conclude this section with Table 6.1. It summarizes some of the more
useful information concerning the special functions of mathematical physics.

PROBLEMS
1. Let

fly =AW ez 0, sl =0.
Xt +y
Determine where, if anywhere, this function is a) differentiable, b) analytic.
2. Show that the complex numbers 2, 22, Z; lie on a straight line if and only if
(21 — z3)/{z2 — z3) is a real number.
[Hint: This problem can be done very simply if one thinks of the complex numbers
geometrically (as vectors). It can be done algebraically also, but the geometric
proof is certainly easier.]
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. Prove that ¥ = sin xcosh y + 2cos xsinh y + x2 — y2 4 4xy is a harmonic function

and find a conjugate harmonic function v. Find a complex function of the complex
variable z such that f(z) = u + iv.

. a) Determine all the values of the constants a, b, ¢, d for which the polynomial

u(x,y) = ax® + bxy + cxy* + dy*is harmonic, i.e., satisfies the two-dimensional
Laplace equation in the entire plane.

b) Find a harmonic conjugate, v(x, y), of u(x, y).
¢) Find an analytic function f(z) = u(x, y) + iv(x, y), where z = x + iy.

. A complex function E*(z) is defined by E*(z) = E;(x,y) — iE,(x, y), where E,and

E, are the components of the electric field in two dimensions. Show that the static
Maxwell equations in free space imply that E*(z) is an analytic function of z.

. Show that if we write z = re'?, the Cauchy-Riemann equations become, in terms

of rand 4,

w_1dv  ov_ _1du
or rog’ or rog’

. Analyze the function z'”® in terms of the Riemann sheet concepts discussed in

Section 6.2.

. Using the results of Problem 6.6, show that log z, z!/2, and z!/? are analytic every-

where on their appropriate Riemann sheets except at z = 0.

. Show that the two-sheeted Riemann surface for w(z) = v/(z — a)(z — b) can be cut

and joined along the line segment [a, b] of the real axis (assume for convenience
that g and b are real). Make an appropriate definition of w(z) in terms of the polar
representation of complex numbers, including a definition of the range of the
phases.

Find the Riemann surface on which v'Z — a + vz — b (a, b real and positive) is a
single-valued function, analytic except at z = a and z = b.

Find the Riemann surface on which v/ (z — 1)(z — 2)(z — 3) is a single-valued
function, analytic except at z = 1, 2, 3.

Show that w(z) = z7 (0 < a < 1), where a is irrational, can be made single-valued
only on an infinite-sheeted Riemann surface. Discuss how the sheets should be
connected.

Show that, according to the definitions of Section 6.2,

tan (tan~'z) = z, log (€?) = z + 2zni .

The mean-value theorem. Prove that for charge-free two-dimensional space the
value of the electrostatic potential at any point is equal to the average of the
potential over the surface of any circle centered on that point. Do this by consider-
ing the electrostatic potential as the real part of an analytic function.

Find all the singularities of tanh z.

Explain why one of the following definite integrals is meaningful and the other
meaningless. Evaluate the one that makes sense, writing the answer in the form
a + bi.

]
a) Sl *dz, b) Xsinszz.

-1 0
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Compute, using Cauchy’s integral formula,

14
a) § __eiz:_, C = boundary of a square with sides x = + 2, y = + 2,
cz — mif2
§ dz C = circle of radius 1, center i
sz + 2) ) .
(Both contours are oriented counterclockwise.)
Show that
42241 , ) -
a) _(z_.—z—)‘_ dz = 8rmizo, where C is any closed contour containing zo.
C — 20
; —1\n
b) S(ﬁb—zdz = 2 [—I—_H—I)—J , where C is any closed contour containing the
c zn+l fl! 2
origin,

Cauchy’s integral formula for a polynomial. let P(z) be a polynomial. Using
Cauchy’s Theorem, prove that

-l_§ .P_(Z)_ dz = P(a) ,

2ni JcZz — a
where C encloses the point a. [Hint: Consicder

— P
o = 2 —Flal
z—a
which is also a polynomial (why ?), and evaluate the integral you want from this
expression.]
Prove that if f(z) is analytic within and on a closed contour C, and a and 8 are

two distinct points within C, then

_1_§ flz) dg =Ll 1B

2ri -

clz—a)(z—p) a—f B—a

From this result, deduce Liouville’s theorem, which states that a function must be
a constant. [Hint: If for arbitrary a and B, fla) = f(B), then f(z) = const.]
Movrera’s theorem. Morera’s theorem is a kind of converse to the Cauchy-Goursat

theorem. It states that if f{z) is continuous in a region R and if &f(z) dz = 0 for

any C inside R, then f(z) is analytic inside R. Prove this theorem. Morera’s
theorem gives us another way of establishing the analyticity of a function. We can
use it instead of checking the Cauchy-Riemann conditions and the sometimes
troublesome additional requirement for analyticity, the continuity of the derivative
of f(z) = u + iv, that is, continuity of the four first partial derivatives of ¥ and v.
Conformal mappings. Consider the analytic function w = f(z) as transforming the
complex z-plane into a complex w-plane. Suppose that two curves in the z-plane,
F! and F!, meet at an angle a at the point zo in the z-plane. Prove that the
transformed curves in the w-plane, F. and F2, meet at the same angle in the w-
plane if f'(zo) # 0. The requirement that f’(z¢) # 0 is essential for conformality
at zo. Consider the analytic function w = z2, for which w/(0) = 0. The coordinate
axes themselves, which pass through the origin and are separated by an angle of
90°, are mapped into lines that are separated by 180°. The angle between any
two straight lines through the origin in the z-plane will be doubled in the w-
plane. Thus the mapping is not conformal at the origin. However, it is con-
formal everywhere else.
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23. Poisson’s formula
a) Let f(z) be an analytic function within and on the circle C of radius a. Prove

that
f(z')=—1§c[ fa S :ldz,

2ri z—2  z— (@z'*)

if z/ = re'®, r < a, in polar coordinates located at the center of C.
b) From the above formula, derive Poisson’s formula:

flre¥) = iS" a—r flae") d6
27 )o a* + r2 — 2arcos (6 — @) )

c¢) From Poisson’s formula, prove that if a function is analytic throughout and on
a circle, then the value of the function at the center of the circle, f(0), is the
average of its boundary values on the circle (mean value theorem).

d) Now, starting with the equation

n 1 [ [_f £2)
fz) = 2ni§c[z i <a2/z'*)] 9,

[which differs from the equation of part (a) by the + sign, but holds for the
same reason], derive [using part (c) eventually]

712 = o — 2 [ sin 0= Aflaer) — gp.

T Jo a®>+ r* — 2arcos (0 — @)

e) Letting f(z/) = f(re’*) = u(r, ) +iv (r, ¢), etc., deduce from (d) the formulas

ula, §) = u(0) + ﬁ”r”(“’ ) cot (" = "’) a6,

0

v(a, ¢) = v(0) — E‘;Pr‘u(a, 6) cot (0 ; ¢> deé .

0
These formulas express the real part of an analytic function on a circle in terms
of its imaginary part on the circle, and vice versa. Many further applications
of these formulas are possible.
24. An alternative approach to Hilbert transforms
a) Show that if f(z) is analytic in the upper half z-plane, then if a = a + i (8 > 0),
Lf L L Jaz = s,
2riJclz—a z-—a*
where C is a semicircle of arbitrarily large radius with the real axis for its base.
b) If | f(z) | = Oas | z|— oo in the upper half-plane, then show that
L[ [y 0 g g
2l )-o| X —a x—a
Combine fractions to obtain
1> (x—a)flx)
—_ —— = dx = fla) .
ins_m(x—a)2+/92 4
¢) If flz) = ulx, y) + iv(x, y), show that (b) reduces to

1.("" (x — a)v(x, 0) dx IS“’ (x — a)ulx, 0) dx.

@i p V) == a4

u(a, B)

T
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d) Hence show that if we let § = 0,
ula, 0) = lpr Y60 gy g, 0) = — lpr ux0 ;.
d —X — A T —X — &

which is, apart from notation, the Hilbert transform pair derived in Section 6.5
[Egs. (6.19a) and (6.19b)].

25, Consider the integral

I. = lim S” VAN

—4Xx * ie

where A and B are positive real numbers and € > 0.
a) Show that I can be written as

I+ = lim Sﬁﬂ xf_(*_x) dx 4+ lim S” xf( ) dx + th °____xf(x) dx

=0 J_4x? e~0 Jiox? + € -0 )_sx* + €
B
Filime S ;dx,
€0 _axt 4+ €

where ¢ is a small positive number.

b) Use plausible arguments (of the type found, for example, in Section 5.3) to show
that I. can be written as

I = S_”f( AC R S”f( 9 4y + fl0) nms x’z‘i"
-3

. B dx
Fif(0)1 —_-_ .
—A4 X €0 £2+lf( ) el_l:l;)lGS_sz_*_ez

c) Show that the third term of the equation in (b) vanishes by symmetry. Doing
the fourth integral explicitly, show that

I = PS:f-(;Cx—) dx F if(0) 1([_]:[; [tan“(() + tan“<':>j|.

d) Let ¢ > 0 and use the definition of the d-function to write, finally,

lim S”-i(j-)-_— dx = s’”f( x) dx F inf(0) = SB fx) dx F insﬂ o(x)f(x) dx .

=0 J_4x % 1€ A X —A

This is often written, rather cryptically, as the symbolic formula

lim — = P—1 F imd(x) .
e—0 X X ie x

26. Solve the integral equation

_IPSw _'i(i).dxz_l__g —’U(t)
T Jowx —t 1+
by finding the Hilbert transform of v(¢). Find a complex function f(z) = u(x, y)
+ iv(x,y) such that u(x,0) = u(x) = Re(f(z)) and v(x, 0) = v(x) = Im(f(z)) and
verify that this complex function has the two properties (what are they ?) that
ensure that u(x) and v(x) are a Hilbert transform pair.
27. Derive a dispersion relation for f(z) when | f(z)/z | tends to a constant as | z | — oo.
28. Prove that a uniformly convergent series of analytic functions can be integrated
term by term. Hence show that a uniformly convergent series of analytic functions
is an analytic function.
[Hint: Use Morera’s theorem of Problem 21.]



PROBLEMS 383

29. Find the order of the pole at the origin, the residue there, and the integral around

30.

31.

a (small) path C enclosing the origin, but no other singularities, for each of the
following functions:

z
sinz —tanz’
What are the positions and natures of the singularities and the residues at these
singularities of the following functions in the z-plane, excluding the point at infinity ?

cotwz 1

a) filz) = = 1) b) fa(z) = prosusTl
[Note: Both these functions have nonisolated and hence essential singularities at
infinity because the origin for f1(1/z) and f2(1/z) is a limit point of poles.]
Problems on the evaluation of real definite integrals by contour integration:

a) cotz, b) csctzlog (1 — z), c)

2r d0 o
’ b>0.
SO a+bsing (a2_b2)1/z a>b>
_sin’0 d6 ,

i — — pyuz b 0.
so a+bcosf) [a (a 12, a>b>
2ra

b .
jo (a+bcos¢9 (az_bz)zlz' a>b>0
S"" = € ro__i‘it_.: T
o1 F 23 (@ + x9°  16a*"

smxdx * sin? x
=sqal e, —=dx = .
gox(a + x?) 22( € g j_w o dx=n
o ,2a—1 2(a~1)
h)be+x2 = cscra, 0<a<l.
* log x nlogb
b2+x 2b
1 1 r wWo — W
dof =% W=
. Pg-w("’ —w)l+ate —w @ a (wo — 0)? + a®
k) * dx — 2r
ox'+a* 3a3’

1) Consider the real integral
G(x, x',7) = —l-j elkx=x1g—kee gp |
2r —co
where ¢ is real. In this case it is easy to show that

1 —x—xt
Gx, x',7) = W e~ x=x2/4r

Prove that this result still holds when ¢ is pure imaginary. [Hint: The value of

the integral
S e~ dy
0

may be found by considering the integral of e=**around the boundary of the circular
sector 0 < 0 < /4, 0 < r < R. In the limit R — oo, prove that the contribution
to the integral over the circular arc goes to zero. The contributions over the
remaining straight segments of the contour provide the value of the integral needed
in the problem.]
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Note: This contour integral provides the values of the two real definite integrals:

Sm sin (x2) dx = Sm cos (x2) dx = (x/2)"1?,

—o —oo

by taking real and imaginary parts. By making the change of variable x* = ¢, this
result can be transformed into

sin ¢ Cos t
J, = 5 do = i,

32. We have seen how the function m cot 7z may be used to sum certain series. But
it is useless if the series is an alternating one. Show how alternating series may be
summed by using the function 7 csc (rz) in place of = cot (rz). Use the general
result to prove that

Z )n+l = 7?/12.

n=

33. Consider the problem of evaluating the integral of z!/? from A to D along the
circular path C, shown in Fig. 6.24. We take the cut to lie along the ray § = «
and define z!/2 = r2e/02 for « < § < a + 2r. Compare this with the value obtained
by integrating z'/> from A4 to D along the ‘‘keyhole’’ path ABCD. Do the results
agree ? Should they agree? Why?

N
-

JC

Fig. 6.24 The contours for Problem 6-34. The angles, ¢, for the “keyhole” path are
arbitrarily small. The radius of the circle, Cy, is /, and the cut is along the ray 6 = a.

34. Consider the following response function, G(f), which vanishes for negative values
of the argument and which, for positive values, is given by

sin? ut

G(t) = Go i

Note that this function satisfies conditions (a), (b), (c) at the beginning of Section
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6.6. Show that the Fourier transform, g(w), is given by

glo) = lGo[x/(;—%x/w-FZp—%\/w-—Zu], w>2p;

i i+ 1
= —Z—Go[\/w — o+ 2u] + Go[f'\/Z/A —w], 0<w<2y,
gl—w) = g*) .

Show that the complex-valued function of z which reduces to the above result on
the real axis is

N
=5 GolVz — WTT 2z — VT Zal.

g(z)

Thus we see that g(z) has branch points on the real axis,a possibility which is not
excluded by conditions (a), (b), and (c). Note that we can choose the cuts to lie
in the lower half-plane, so g(z) is analytic in the upper half-plane.

[Hint: the integrals mentioned in the note following Problem 6.31 will be of use.]
The #-function (or step function) is defined as

0 forx<o0,
6(x) =1 3% forx=20,
1 forx>0.
Prove
a) Blx) =1 + —Pr o, b) 20— 50y
2ri o W dx

[Hint: See Eq. (5.63)]
The Laguerre polynomials are generated by the generating function

=Z£"i’ﬂz", 0<r<1.

n!

—xtf(1-1)

_e
¢(xrt)_ 1_’

n=0

They are given directly by the formula

L,(x) = e* "e~%) , 0 x£L oo,

d n
analogous to Rodrigues’ formula for Legendre polynomials.

a) By differentiating the generating function with respect to x [getting (1 — 1)¢’ =
— t¢], derive the recursion relation

’ ’
L, —nLy.1= —nLu_.

By differentiating ¢/(x, f) with respect to ¢, another recursion relation can be
derived. Show that

Liyi — 2n+ 1 —x)L, + n*L,_, =0.
b) From these two recursion relations, derive Laguerre’s differential equation
xL! + (1 —x)L) +nL,=0.

c) Show that L,(0) = n!
d) Derive the generating function from Rodrigues’ formula by contour integration.
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37. In Section 5.10, we defined the Hermite polynomials in terms of the generating
function

-12+z:

t>0,

and deduced from this the Rodrigues formula:

Hx) = (= 1)e? g

Now prove the converse: that Rodrigues’ formula implies the generating function.
Enroute, establish the integral representation

Hy(x) = (_1)"n!ex2§ ( S

2ri clz — x)

n+1

where C encloses the point x.

38. Prove the integral representation for the Hermite polynomials:

Ho{x) = _ZZ_S“’ (x + it)"e~* dt .

2

Use this result to derive an explicit series for the Hermite polynomials:

n

Hix = ;!—((i%";’r)—!(zx)n—v .

2rgm
39. Show that
a) '(x+ 1) = xI'(x) for x>0
b) I'(n 4+ 1) = n!, where n is a positive integer.
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