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The time evolution operator as a time-ordered exponential

1. The time evolution operator and its properties

The time evolution of a state vector in the quantum mechanical Hilbert space is governed
by the Schrodinger equation,

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (1)

where H(t) is the Hamiltonian operator (which may depend on the time t). The solution to
this equation defines the time evolution operator, U(t, t0),

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2)

where the state vector at time t0 provides the initial condition for the time evolution of
|ψ(t)〉. Note that

U(t, t) = I , (3)

where I is the identity operator. In addition, by applying eq. (2) twice, one easily obtains,

U(t2, t0) = U(t2, t1)U(t1, t0) . (4)

Plugging in eq. (2) into eq. (1) yields a partial differential equation for U(t, t0),

{

i~
∂

∂t
−H(t)

}

U(t, t0) |ψ(t0)〉 = 0 .

Since |ψ(t0)〉 is arbitrary, it follows that U(t, t0) must satisfy,

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) , (5)

subject to the initial condition, U(t0, t0) = I.
The goal of these notes is to solve the differential equation [eq. (5)] for U(t, t0). First, we

will derive an expression for U(t + δt, t) in the limit of δt→ 0. By Taylor expansion,

U(t + δt, t0) = U(t, t0) + δt
∂U

∂t
(t, t0) +O

(

(δt)2
)

,

where we discard terms that are quadratic in the infinitesimal quantity δt. Using eq. (5), it
follows that

U(t + δt, t0) = U(t, t0)−
i

~
H(t)U(t, t0)δt+O

(

(δt)2
)

.
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Finally, we can set t0 = t and make use of eq. (3) to obtain the final result,

U(t + δt, t) = I −
i

~
H(t)δt+O

(

(δt)2
)

. (6)

Note that an alternative expression for eq. (6) is,

U(t + δt, t) = exp
{

−iH(t)δt/~
}

+O
(

(δt)2
)

, (7)

since the expressions exhibited in eqs. (6) and (7) differ only in the terms of O
(

(δt)2
)

.

2. An explicit formula for the time evolution operator–Case 1:
[

H(ti),H(tj)
]

= 0

To obtain an explicit formula for the time evolution operator, let us divide up he time
axis from t0 to t in N equal subintervals, each one of length

ε ≡
t− t0
N

. (8)

If we repeatedly apply eq. (4), it follows that

U(t, t0) =

N
∏

k=1

U
(

t0 + kε , t0 + (k − 1)ε
)

. (9)

Using eq. (7) and working to first order in ε,

U
(

t0 + kε , t0 + (k − 1)ε
)

≃ exp

{

−
iε

~
H
(

t0 + (k − 1)ε
)

}

. (10)

Hence, if we take the limit of N → ∞, or equivalently ε → 0, eq. (9) yields,

U(t, t0) = lim
ε→0

N
∏

k=1

exp

{

−
iε

~
H
(

t0 + (k − 1)ε
)

}

= lim
ε→0

exp

{

−
iε

~
H
(

t0
)

}

exp

{

−
iε

~
H
(

t0 + ε
)

}

· · · exp

{

−
iε

~
H
(

t− ε
)

}

. (11)

At this point in the calculation, we would like to combine all of the exponentials in
eq. (11). However, the H(ti) are operators and in general, H(ti) ahd H(tj) do not commute
if i 6= j. In this case it is impractical to evaluate eq. (11) further. Indeed, if

[

A,B
]

6= 0,
then the Baker-Campbell-Hausdorff formula yields an extremely complicated expression,

expA expB = exp
{

A+B + 1
2
[A,B

]

+ · · ·
}

,

where the · · · indicates an infinite series of nested commutators. To try to apply this to
eq. (11) looks quite hopeless.
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Thus, in this section, we shall first assume that the Hamiltonian operator satisfies,
[

H(ti), H(tj)
]

= 0 , (12)

for all choices of ti and tj. In this case, we can simplify eq. (11),

U(t, t0) = lim
ε→0

exp

{

−
iε

~

N−1
∑

k=0

H
(

t0 + kε
)

}

(13)

Since ε = (t− t0)/N , it follows that N → ∞ and t0 + (N − 1)ε→ t as ε→ 0. Hence,

lim
ε→0

ε

N−1
∑

k=0

H
(

t0 + kε
)

=

∫ t

t0

H(t) dt . (14)

Consequently, eq. (13) yields,

U(t, t0) = exp

{

−
i

~

∫ t

t0

H(t) dt

}

, if
[

H(ti), H(tj)
]

= 0. (15)

As usual, the exponential of an operator is defined via its Taylor series.
A special case of eq. (15) is the case of a time-independent Hamiltonian. In this case,

eq. (12) is trivially satisfied, and
∫ t

t0

H dt = H

∫ t

t0

dt = H(t− t0) .

Inserting this result into eq. (15) yields

U(t, t0) = e−iH(t−t0)/~ , if H is time-independent. (16)

Indeed, one can derive eq. (15) directly from eq. (5) by writing
[

∂

∂t
U(t, t0)

]

U−1(t, t0) = −
i

~
H(t) . (17)

In order to proceed, we would like to write,

∂

∂t
lnU(t, t0) =

[

∂

∂t
U(t, t0)

]

U−1(t, t0) . (18)

In general, eq. (18) is not true unless U and ∂U/∂t commute (see Appendix A), in which
case one is free to place the factor of U−1 in eq. (18) to the left or to the right of ∂U/∂t. If
we assume that eq. (18) holds, then it follows that

∂

∂t
lnU(t, t0) = −

i

~
H(t) .

Integrating this equation form t0 to t and imposing the initial condition, U(t0, t0) = I, yields

lnU(t, t0) = −
i

~

∫ t

t0

H(t) dt , (19)

which when exponentiated yields eq. (15). In particular, if
[

H(ti), H(tj)
]

= 0, then the
expression for U(t, t0) given by eq. (15) implies that U and ∂U/∂t commute, in which case
the use of eq. (18) in obtaining eq. (19) is justified.
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3. An explicit formula for the time evolution operator–Case 2:
[

H(ti),H(tj)
]

6= 0

In the case of
[

H(ti), H(tj)
]

6= 0 it is not practical to employ eq. (11). Hence, we will
make use of another technique. Given the differential equation of eq. (5), with the initial
condition U(t0, t0) = I, it is possible to rewrite this as an integral equation,

U(t, t0) = I −
i

~

∫ t

t0

H(t′)U(t′, t0) dt
′ . (20)

There are two points worth noting. First, the initial condition U(t0, t0) = I is automatically
incorporated into the integral equation given in eq. (20) since the integral on the right hand
side of eq. (20) vanishes when t = t0. Second, eq. (20) does not immediately provide the
solution for U(t, t0) since U(t, t0) appears both on the left hand side and the right hand side
of eq. (20). To show that eq. (20) is equivalent to eq. (5) subject to the initial condition
U(t0, t0) = I, we simply note that the fundamental theorem of calculus implies that

∂

∂t

∫ t

t0

H(t′)U(t′, t0) dt
′ = H(t)U(t, t0) .

Hence, taking the partial derivative of eq. (20) with respect to t immediately yields eq. (5).
We can solve eq. (20) by an iterative procedure. To make the procedure clear, I shall

replace eq. (20) with

U(t, t0) = I −
ia

~

∫ t

t0

H(t′)U(t′, t0) dt
′ , (21)

where a is a real positive parameter. The parameter a is being used for “bookkeeping”
(sometimes called a bookkeeping parameter in the physics literature). At the end of the
calculation, we can set a = 1 to regain eq. (20).

The iterative procedure consists of obtaining better and better approximations for U(t, t0)
by working to O(aN) for N = 1, 2, 3, . . .. At step one, we approximate U(t′, t0) = I on the
right hand side of eq. (21), which yields an expression for U(t, t0) [denoted below by U1(t, t0)]
that is valid to O(a),

U1(t, t0) = I −
ia

~

∫ t

t0

H(t′′) dt′′ ,

where we have called the integration variable t′′ for later convenience. At step two, we
approximate U(t, t0) = U1(t, t0) on the right hand side of eq. (21), which yields an expression
for U(t, t0) [denoted below by U2(t, t0)] that is valid to O(a2),

U2(t, t0) = I −
ia

~

∫ t

t0

H(t′) dt′ +

(

ia

~

)2 ∫ t

t0

H(t′) dt′
∫ t′

t0

H(t′′)dt′′ .

It should be clear how to carry the iterative procedure through N steps.

UN (t, t0) = I +

N
∑

n=1

(

−
ia

~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn) ,

where we have employed as integrating variables t1, t2, . . . tn instead of the more awkward
t′, t′′, . . ..
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I now assert the following. UN (t, t0) becomes a better and better approximation to U(t, t0)
as N gets larger. If we formally take the limit of N → ∞, we should end up with the exact
solution,

U(t, t0) = I +

∞
∑

n=1

(

−
ia

~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn) ,

under the assumption that the infinite series converges.1 Finally, setting the bookkeeping
parameter a = 1, we have our final result,

U(t, t0) = I +
∞
∑

n=1

(

−
i

~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn) , (22)

which is sometimes known as the Dyson series. Truncating the sum in eq. (22) yields
approximate expressions for U(t, t0), which is the basis for time-dependent perturbation
theory that will be treated in Physics 216.

4. The time-ordered exponential

At this stage, it is not obvious that eq. (22) reduces to eq. (15) if
[

H(ti), H(tj)
]

= 0.
In particular, the integration limits in the integral over tn involves tn−1, etc in the n-fold
integral that appears in eq. (22) . This does not occur if one performs a Taylor series of
the exponential in eq. (15). Thus, the goal of this section is to find a way to rewrite the
n-fold integral in eq. (22) such that the integration regions do not depend of the integration
variables, but instead simply go from t0 to t in all n integrations!

To achieve the stated goal, one must introduce the time-ordered product of operators,

T
[

H(t1)H(t2) · · ·H(tn)
]

= H(ti1)H(ti2) · · ·H(tin) , where ti1 > ti2 > · · · > tin , (23)

and n is a positive integer.2 That is, the time-ordered product of operators is an instruction to
reorder the operators such that the time arguments of the corresponding operators decrease
as one moves from the left to the right. For example, the largest time appears in the argument
of the first operator and the smallest time appears in the argument of the last operator. Note
that if any of the time arguments in eq. (23) coincide, this does not cause any problem since
H(t) commutes with itself.

Using the time-ordered product, we can rewrite the nth term of eq. (22) in a more
convenient form in which the integration limits are uncoupled. It is instructive to see how
this is accomplished for the n = 2 term of the series (with the general proof for the nth term
in the series left to the reader).

1It is highly nontrivial to prove that the infinite series converges. In some cases, the best we can hope for
is that the series is an asymptotic series representation of U(t, t0).

2If n = 1, then we simply define T
[

H(t)
]

= H(t). For n ≥ 2, the ordering of the operators specified
on the right hand side of eq. (23) matters if the Hamiltonian operators evaluated at different times do not
commute. On the other hand, if

[

H(ti), H(tj)
]

= 0, then the T symbol has no effect.
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Figure 1: (a) The integration region, t0 ≤ t1 ≤ t and t0 ≤ t2 ≤ t1, employed in eq. (24). (b) The
integration region, t0 ≤ t2 ≤ t and t2 ≤ t1 ≤ t, employed in eq. (25) after interchanging the order
of integration .

Consider the integral J2,

J2 ≡

∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) =

∫ t

t0

dt1

∫ t1

t0

dt2 T
[

H(t1)H(t2)
]

. (24)

The region defined by 0 ≤ t1, t2 ≤ t is an area bounded by a square. The integration region
in eq. (24), exhibited in Figure 1(a), consists of the area bounded by half of the square
where t2 ≤ t1, which allows us to insert the T symbol in the second integral above. That is,
T
[

H(t1)H(t2)
]

= H(t1)H(t2) in the region where t2 ≤ t1.
One can also evaluate J2 by interchanging the order of integration, in which case the new

region of integration is exhibited in Figure 1(b). The value of the integral does not change,
so that

J2 =

∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) =

∫ t

t0

dt2

∫ t

t2

dt1H(t1)H(t2) . (25)

Since the integration variables, t1 and t2, are dummy labels, one can relabel the integra-
tion variables in the last integral of eq. (25) by t1 → t2 and t2 → t1, which yields

J2 =

∫ t

t0

dt1

∫ t

t1

dt2H(t2)H(t1) =

∫ t

t0

dt1

∫ t

t1

dt2 T
[

H(t1)H(t2)
]

. (26)

We are allowed to insert the T symbol in the second integral above since t2 ≥ t1, in which
case T

[

H(t1)H(t2)
]

= H(t2)H(t1). That is, the integration region now consists of the area
of the half square above the diagonal line shown in Figure 1(a).

Consequently, we now have two different expressions for J2,

J2 =

∫ t

t0

dt1

∫ t1

t0

dt2 T
[

H(t1)H(t2)
]

=

∫ t

t0

dt1

∫ t

t1

dt2 T
[

H(t1)H(t2)
]

. (27)

Therefore, 2J2 is equal to the sum of the two integrals given in eq. (27). By adding the two
integrals, the dependence on the integration limit t1 disappears. The integration region is
now the area bounded by the full square, i.e. 0 ≤ t1, t2 ≤ t. After dividing by two, we end
up with,

J2 =
1

2

∫ t

t0

dt1

∫ t

t0

dt2 T
[

H(t1)H(t2)
]

. (28)

Remarkably, the integration limits are now decoupled!
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It should now be clear how this works in the case of the nth term of the series in eq. (22).
The original integration region of the integral Jn consists of the hyper-volume bounded by
the hypercube defined by 0 ≤ t1, t2, . . . , tn ≤ t such that t1 ≥ t2 ≥ t3 · · · ≥ tn. This region is
a fraction 1/n! of the hypercube. By interchanging the order of integration in n!−1 possible
ways and then appropriately relabeling the integration variables, one obtains alternative
expressions for Jn that cover the remaining n!− 1 regions of the hypercube. The end result
is an integral over the entire hypercube, 0 ≤ t1, t2, . . . , tn ≤ t (with the integration limits
decoupled),

Jn ≡

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn)

=
1

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·

∫ t

t0

dtn T
[

H(t1)H(t2) · · ·H(tn)
]

. (29)

Employing this result in eq. (22), we arrive at our final result,

U(t, t0) = I +

∞
∑

n=1

1

n!

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 · · ·

∫ t

t0

dtn T
[

H(t1)H(t2) · · ·H(tn)
]

. (30)

Using eq. (30), we now see how to recover eq. (22) when
[

H(ti), H(tj)
]

= 0. In this case,
the T symbol in eq. (30) is redundant, since we are free to reorder the individual operators.
Hence, it follows that if

[

H(ti), H(tj)
]

= 0, then

U(t, t0) = I +
∞
∑

n=1

1

n!

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 · · ·

∫ t

t0

dtnH(t1)H(t2) · · ·H(tn)

= I +
∞
∑

n=1

1

n!

(

−
i

~

)n (∫ t

t0

H(t′) dt′
)n

= exp

{

−
i

~

∫ t

t0

H(t) dt

}

, (31)

after using the Taylor series definition of the exponential.
Comparing eqs. (30) and (31), we are motivated to introduce the time-ordered exponential,

T exp, which is defined by the following expression,

T exp

{

−
i

~

∫ t

t0

H(t) dt

}

≡ I+

∞
∑

n=1

1

n!

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 · · ·

∫ t

t0

dtn T
[

H(t1)H(t2) · · ·H(tn)
]

.

(32)
Thus, in light of eqs. (30) and (32), we conclude that the most general solution to

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) , (33)

subject to the initial condition, U(t0, t0) = I, is given by

U(t, t0) = T exp

{

−
i

~

∫ t

t0

H(t) dt

}

. (34)
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Of course, the remarkably simple form of eq. (34) hides the complexity that is contained in
the definition of the time-ordered exponential given in eq. (32). Nevertheless, it provides a
very useful shorthand notation to use in the case where

[

H(ti), H(tj)
]

6= 0. As noted above,
if the Hamiltonian operators evaluated at different times commute, then we may simply drop
the T symbol, since it has no effect in this case.

The differential equation given in eq. (33) arises in many different circumstances in math-
ematical physics. In some of these circumstances, the parameter t has nothing to do with
time. But, as long as non-commuting operators are involved, the solution to eq. (33) can be
written as a T -ordered exponential, where the T ordering is defined in a way analogous to
that of eq. (23).

Appendix A: Formula for the derivative of lnA(t) where A is a linear operator

Start with the following formula (whose derivation is left to the reader),

ln(A +B)− lnA =

∫

∞

0

du

{

(

A+ uI
)

−1
−
(

A+B + uI
)

−1
}

, (35)

Assume that the operator A depends on a parameter t. Using the definition of the derivative,

d

dt
lnA(t) = lim

h→0

ln(A(t + h)− lnA(t)

h
= lim

h→0

ln
[

A(t) + hdA/dt+O(h2)
]

− lnA(t)

h
.

Denoting B = hdA/dt and making use of eq. (35),

d

dt
lnA(t) = lim

h→0

1

h

∫

∞

0

du

{

(

A+ uI
)

−1
−
(

A+ hdA/dt+ uI
)

−1
}

, (36)

For an infinitesimal h, we have
(

A+ hdA/dt+ uI
)

−1
=

[

(A+ uI)(I + h(A+ uI)−1dA/dt)
]

−1

= (I + h(A+ uI)−1dA/dt)−1(A + uI)−1

= (I − h(A + uI)−1dA/dt)(A+ uI)−1 +O(h2)

= (A+ uI)−1 − h(A + uI)−1dA/dt(A+ uI)−1 +O(h2) . (37)

Inserting this result into eq. (36) yields

d

dt
lnA(t) =

∫

∞

0

du (A+ uI)−1dA

dt
(A+ uI)−1 . (38)

Finally, if we change variables using u = (1− s)/s, one obtains an alternative form,

d

dt
lnA(t) =

∫ 1

0

ds
[

sA + (1− s)I
]

−1dA

dt

[

sA+ (1− s)I
]

−1
. (39)

One can check that if [A, dA/dt] = 0, then eq. (38) [or eq. (39)] reduces to,

d

dt
lnA(t) = A−1dA

dt
=
dA

dt
A−1 .
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