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Preface

World Scientific Publishing Company recently published my book entitled

Introduction to Modern Physics: Theoretical Foundations. The book is

aimed at the very best students, with a goal of exposing them to the foun-

dations and frontiers of today’s physics. Typically, students have to wade

through several courses to see many of these topics, and I wanted them to

have some idea of where they were going, and how things fit together, as

they went along. Hopefully, they will then see more inter-relationships, and

get more original insights, as they progress. The book assumes the reader

has had a good one-year, calculus-based freshman physics course, along

with a good one-year course in calculus. While it is assumed that mathe-

matical skills will continue to develop, several appendices are included to

bring the reader up to speed on any additional mathematics required at the

outset. With very few exceptions, the reader should then find the material

to be self-contained. Many problems are included, some for each chapter.

Although the book is designed so that one can, in principle, read and follow

the text without doing any of the problems, the reader is strongly urged

to attempt as many of them as possible in order to obtain some confidence

in his or her understanding of the basics of modern physics and to hone

working skills.

After completing that book, it occurred to me that a second volume

could be prepared that would significantly extend the coverage, while fur-

thering the stated goals. The ground rules would be that anything covered

in the text and appendices of the first volume would be fair game, while

anything covered in the problems would first be re-summarized. Those few

results quoted without proof in Vol. I would now be derived. The topics

chosen would be those of wide applicability in all areas of physics. Again,

an important goal would be to keep the entire coverage self-contained. The

vii
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viii Preface

present book is the outcome of those musings. All of the material in this

book is taken from course lectures given over the years by the author at

either Stanford University or the College of William and Mary.

Quantum mechanics is first reformulated in abstract Hilbert space,

which allows one to focus on the general structure of the theory. The book

then covers the following topics: angular momentum, scattering theory, la-

grangian field theory, symmetries, Feynman rules, quantum electrodynam-

ics, path integrals, and canonical transformations for quantum systems.

Several appendices are included with important details. When finished,

the reader should have an elementary working knowledge in the principal

areas of theoretical physics of the twentieth century. With this overview in

hand, development in depth and reach in these areas can then be obtained

from more advanced physics courses.

I was again delighted when World Scientific Publishing Company, which

had done an exceptional job with four of my previous books, showed enthu-

siasm for publishing this new one. I would like to thank Dr. K. K. Phua,

Executive Chairman of World Scientific Publishing Company, and my ed-

itor Ms. Lakshmi Narayanan, for their help and support on this project.

I am greatly indebted to my colleagues Paolo Amore and Alfredo Aranda

for their reading of the manuscript.

John Dirk Walecka

Governor’s Distinguished CEBAF

Professor of Physics, emeritus

College of William and Mary

Williamsburg, Virginia

December 1, 2009
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Chapter 1

Introduction

The goal of this book is to provide an extension of the previous book Intro-

duction to Modern Physics: Theoretical Foundations, refered to as Vol. I.

That volume develops the underlying concepts in twentieth-century physics:

quantum mechanics, special relativity, and general relativity. Included in it

are applications in atomic, nuclear, particle, and condensed matter physics.

It is assumed in Vol. I that readers have had a good calculus-based intro-

ductory physics course together with a good course in calculus. Several

appendices then provide sufficient background so that, with very few ex-

ceptions, the presentation is self-contained. Many of the topics covered in

that work are more advanced than in the usual introductory modern physics

books. It was the author’s intention to provide the best students with an

overview of the subject, so that they are aware of the overall picture and

can see how things fit together as they progress.

As projected in Vol. I, it is now assumed that mathematical skills have

continued to develop. In this volume, readers are expected to be familiar

with multi-variable calculus, in particular, with multiple integrals. It is

also assumed that readers have some familiarity with the essentials of linear

algebra. An appendix is included here on functions of a complex variable,

since complex integration plays a key role in the analysis. The ground

rules now are that anything covered in the text and appendices in Vol. I is

assumed to be mastered, while anything covered in the problems in Vol. I

will be re-summarized. Within this framework, readers should again find

Vol. II to be self-contained.

There are over 175 problems in this book, some after each chapter and

appendix. The problems are not meant to baffle the reader, but rather

to enhance the coverage and to provide exercises on working skills. The

problems for the most part are not difficult, and in most cases the steps

1
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are clearly laid out. Those problems that may involve somewhat more

algebra are so noted. The reader is urged to attempt as many problems as

possible in order to obtain some confidence in his or her understanding of

the framework of modern theoretical physics.

In chapter 2 we revisit quantum mechanics and reformulate the the-

ory in terms of linear hermitian operators acting in an abstract Hilbert

space. Once we know how to compute inner products, and have the com-

pleteness relation, we understand the essentials of operating in this space.

The basic elements of measurement theory are also covered. We are then

able to present quantum mechanics in terms of a set of postulates within

this framework. The quantum fields of Vol. I are operators acting in the

abstract many-particle Hilbert space.

Chapter 3 is devoted to the quantum theory of angular momentum, and

this subject is covered in some depth. There are a variety of motivations

here: this theory governs the behavior of any isolated, finite quantum me-

chanical system and lies at the heart of most of the applications in Vol. I;1

it provides a detailed illustration of the consequences of a continuous sym-

metry in quantum mechanics, in this case the very deep symmetry of the

isotropy of space; furthermore, it provides an extensive introduction to the

theory of Lie groups, here the special unitary group in two dimensions

SU(2), which finds wide applicability in internal symmetries. An appendix

explores the use of angular momentum theory in the multipole analysis of

the radiation field, which is applicable to transitions in any finite quantum

mechanical system.

Chapter 4 is devoted to scattering theory. The Schrödinger equation

is solved in terms of a time-development operator in the abstract Hilbert

space, and the scattering operator is identified. The interaction is turned

on and off “adiabatically”, which allows a simple construction of initial and

final states, and the S-matrix elements then follow immediately. Although

inappropriate for developing a covariant scattering analysis, the time inte-

grations in the scattering operator can be explicitly performed and contact

made with time-independent scattering theory. It is shown how adiabatic

damping puts the correct boundary conditions into the propagators. A

general expression is derived for the quantum mechanical transition rate.

Non-relativistic scattering from a static potential provides a nice example

of the time-independent analysis. If the time is left in the scattering op-

erator, one has a basis for the subsequent analysis in terms of Feynman

1For example, here we validate the “vector model” used there.
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diagrams and Feynman rules. The tools developed in this chapter allow

one to analyze any scattering or reaction process in quantum mechanics.

Lagrangian field theory provides the dynamical framework for a consis-

tent, covariant, quantum mechanical description of many interacting parti-

cles, and this is the topic in chapter 4. We first review classical lagrangian

particle mechanics, and then classical lagrangian continuum mechanics, us-

ing our paradigm of the transverse planar oscillations of a string. The string

mechanics can be expressed in terms of “two-vectors” (x, ict) where c is the

sound velocity in the string. We then discuss the quantization of these

classical mechanical systems obtained by imposing canonical quantization

relations on the operators in the abstract Hilbert space.

The appending of two additional spatial dimensions to obtain four-

vectors (x, ict), where c is now the speed of light, leads immediately to a

covariant, continuum lagrangian mechanics for a scalar field in Minkowski

space, which is then quantized with the same procedure used for the string.

We develop a covariant, continuum lagrangian mechanics for the Dirac field,

and discuss how anticommutation relations must be imposed when quantiz-

ing in this case. A general expression is derived for the energy-momentum

tensor, and Noether’s theorem is proven, which states that for every contin-

uous symmetry of the lagrangian density there is an associated conserved

current. A full appendix is dedicated to the lagrangian field theory of the

electromagnetic field.

Symmetries play a central role in developing covariant lagrangian densi-

ties for various interacting systems, and chapter 6 is devoted to symmetries.

The discussion starts with spatial rotations and the internal symmetry of

isospin, and it builds on the analysis of SU(2) in chapter 3. Here isospin

is developed in terms of global SU(2) transformations of the nucleon field

ψ = (ψp, ψn). The internal symmetry is generalized to SU(3) within the

framework of the Sakata model with a baryon field ψ = (ψp, ψn, ψΛ).2

It is also shown in chapter 6 how the imposition of invariance under local

phase transformations of the charged Dirac field, where the transformation

parameter depends on the space-time point x, necessitates the introduction

of a photon (gauge) field Aµ(x) and leads to quantum electrodynamics

(QED), the most accurate theory known. Yang-Mills theory, which extends

this idea to invariance under local internal symmetry transformations of

the Dirac field, and necessitates the introduction of corresponding gauge

bosons, is developed in detail. These gauge bosons must be massless, and to

2Wigner’s supermultiplet theory based on internal SU(4) transformations of the nu-
cleon field ψ = (ψp↑, ψp↓, ψn↑, ψn↓) is also touched on.
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understand the very successful physical application of Yang-Mills theories,

it is necessary to understand how mass is generated in relativistic quantum

field theories.3

We do this within the framework of the σ-model, a very simple model

which has had a profound effect on the development of modern physics.

A massless Dirac field has an additional chiral invariance under a global

transformation that also mixes the components of the Dirac field. The cor-

responding conserved axial-vector current, which augments the conserved

vector current arising from global isospin invariance, corresponds closely to

what is observed experimentally in the weak interactions. The σ-model ex-

tends the massless Dirac lagrangian through a chiral-invariant interaction

with a pion and scalar field (π, σ). A choice of shape of the chiral-invariant

meson potential V(π2+σ2) then leads to a vacuum expectation value for the

scalar field that gives rise to a mass for the Dirac particle while maintaining

chiral invariance of the lagrangian. This spontaneous symmetry breaking il-

lustrates how observed states do not necessarily reflect the symmetry of the

underlying lagrangian. Generating mass through the expectation value of

a scalar field, in one way or another, now underlies most modern theories

of particle interactions.4

The most fundamental symmetry in nature is Lorentz invariance. One

must obtain the same physics in any Lorentz frame. The Lorentz transfor-

mation properties of the scalar and Dirac fields are detailed in an appendix.

Some very useful tools are provided in another appendix devoted to the ir-

reducible representations of SU(n).

Chapter 7 is concerned with the derivation of the Feynman rules, and to

focus on the method, they are developed for the simplest theory of a Dirac

particle interacting with a neutral, massive, scalar field. Wick’s theorem

is proven. This allows one to convert a time-ordered product of fields in

the interaction picture, where the time dependence is that of free fields,

into a normal-ordered product where the destruction operators sit to the

right of the creation operators for all times. It is the time-ordered prod-

uct that occurs naturally in the scattering operator, and it is the normal-

ordered product from which it is straightforward to compute any required

matrix elements. Wick’s theorem introduces the vacuum expectation value

3Both quantum chromodynamics (QCD) and the Standard Model of electroweak in-
teractions are Yang-Mills theories built on internal symmetry groups, the former on an
internal color SU(3)C symmetry and the latter on an internal weak SU(2)W

⊗

U(1)W .
4In the Standard Model, it provides the basis for the “Higgs mechanism” (see, for

example, [Walecka (2004)]).
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of the time-ordered product of pairs of interaction-picture fields— these are

the Feynman propagators. An appendix provides a thorough discussion of

these Green’s functions, as well as other singular functions, for the scalar,

Dirac, and electromagnetic fields.5 The lowest-order scattering amplitudes,

self-energies, and vacuum amplitude are all calculated for the Dirac-scalar

theory, and then interpreted in terms of Feynman diagrams and Feynman

rules. The cancellation of the disconnected diagrams is demonstrated in

this chapter, as is the requisite procedure for mass renormalization.

In chapter 8 these techniques are applied to a theory with immedi-

ate experimental implications. That theory is quantum electrodynamics

(QED), where the fine-structure constant α = e2/4π~cε0 = 1/137.04 pro-

vides a meaningful dimensionless expansion parameter. The point of de-

parture here is the derived QED hamiltonian in the Coulomb gauge, where

∇ ·A(x) = 0 and there is a one-to-one correspondence between the degrees

of freedom in the vector potential and transverse photons. The interaction

of the electron current and vector potential is combined with the instan-

taneous Coulomb interaction to produce a photon propagator, and then

conservation of the interaction-picture current is invoked to reduce this to

an effective photon propagator with a Fourier transform in Minkowski space

of D̃µν(q) = δµν/q
2. One thereby recovers covariance and gauge invariance

in the electromagnetic interaction.

The steps leading from an S-matrix element to a cross section are cov-

ered in detail in two examples, µ−+e− → µ−+e− and e+ +e− → µ+ +µ−.

Expressions are obtained in the center-of-momentum (C-M) frame that are

exact to O(α2). The scattering operator is extended to include an inter-

action with a specified external field, and the lowest-order amplitudes for

bremsstrahlung and pair production are obtained. The Feynman diagrams

and Feynman rules in these examples serve to provide us with the Feynman

diagrams and Feynman rules for QED.

Chapter 9 presents an introduction to the calculation of various vir-

tual processes in relativistic quantum field theory, and again, to keep close

contact with experiment, we focus on QED. Calculations of the O(α) cor-

rections to the scattering amplitude for an electron in an external field

provide an introduction to the relevant lowest-order “loop” contributions,

where there is an integral over one virtual four-momentum. The insertions

here are characterized through the electron self-energy, vertex modification,

and vacuum polarization (photon self-energy) diagrams.

5The neutral, massive vector meson field is covered in the problems.
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Dimensional regularization, detailed in an appendix, serves as a tech-

nique that gives mathematical meaning to originally ill-defined integrals.

Here one works in the complex n-plane, where n is the dimension, and any

potential singularity is then isolated at the point n→ 4. The contribution

of each of the above diagrams is cast into a general form that isolates such

singular pieces and leaves additional well-defined convergent expressions.

Some care must be taken with the contribution of the self-energy inser-

tions on the external legs (“wavefunction renormalization”), and we do so.

It is then shown how Ward’s identity, which relates the electron self-energy

and vertex insertion, leads to a cancellation in the scattering amplitude of

the singular parts of these insertions. Vacuum polarization then leads to

a shielding of the charge in QED and to charge renormalization. The two

remaining singular terms in the theory are removed by mass and charge

renormalization, and if the scattering amplitude is consistently expressed

in terms of the renormalized mass and charge (m, e) one is left with finite,

calculable, O(α) corrections to the scattering amplitude. The Schwinger

term in the anomalous magnetic moment of the electron is calculated here.

Higher-order corrections are summarized in terms of Dyson’s and Ward’s

equations, and it is demonstrated through Ward’s identities how the mul-

tiplicative renormalizability of QED holds to all orders.

With the techniques developed in chapter 9, one has the tools with which

to examine loop contributions in any relativistic quantum field theory.

Chapter 10 is on path integrals. There are many reasons for becoming

familiar with the techniques here, which underly much of what now goes on

in theoretical physics, for example: this approach provides an alternative

to canonical quantization, which, with derivative couplings, can become

prohibitively difficult; here one deals entirely with classical quantities, in

particular the classical lagrangian and classical action; and the classical

limit ~→ 0 leads immediately to Hamilton’s principle of stationary action.

We start from the analysis of a non-relativistic particle moving in a po-

tential in one dimension and show how the quantum mechanical transition

amplitude can be exactly expressed as an integral over all possible paths be-

tween the initial and final space-time points.6 We then make the transition

to a system with many degrees of freedom, and then to field theory.

The addition of an arbitrary source term, together with the crucial the-

orem of Abers and Lee, allows one to construct the generating functional

as a ratio of two path integrals, one a transition amplitude containing the

6It is shown in a problem how the partition function of statistical mechanics in the
microcanonical ensemble can also be expressed as a path integral.
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source and the second a vacuum-vacuum amplitude without it. The con-

nected Green’s functions can then be determined from the generating func-

tional by functional differentiation with respect to the source, as detailed

here. The generating functional is calculated for the free scalar field using

gaussian integration, and it is shown how the Feynman propagator and

Wick’s theorem are reproduced in this case. The treatment of the Dirac

field necessitates the introduction of Grassmann variables, which are anti-

commuting c-numbers. The generating functional is computed for the free

Dirac field, and the Feynman propagator and Wick’s theorem again recov-

ered. It is shown how to include interactions and express the full generating

functional in terms of those already computed.

An appendix describes how one uses the Faddeev-Popov method in a

gauge theory, at least for QED, to factor the measure in the path integral

into one part that is an integral over all gauge functions and a second part

that is gauge invariant. With a gauge-invariant action, the path integral

over the gauge functions then factors and cancels in the generating func-

tional ratio. It is shown how the accompanying Faddeev-Popov determinant

can be expressed in terms of ghost fields, which also factor and disappear

from the generating functional in the case of QED. The generating func-

tional for the free electromagnetic field is calculated here.

Although abbreviated, the discussion in chapter 10 should allow one to

use path integrals with some facility, and to read with some understanding

material that starts from path integrals.

The final chapter 11 deals with canonical transformations for quantum

systems. Chapter 11 of Vol. I provides an introduction to the properties

of superfluid Bose systems and superconducting Fermi systems. In both

cases, in order to obtain a theoretical description of the properties of the

quantum fluids, it is necessary to include interactions. A technique that

has proven invaluable for the treatment of such systems is that of canonical

transformations. Here one makes use of the fact that the properties of

the creation and destruction operators follow entirely from the canonical

(anti)commutation relations in the abstract Hilbert space. By introducing

new “quasiparticle” operators that are linear combinations of the original

operators, and that preserve these (anti)commutation relations, one is able

to obtain exact descriptions of some interacting systems, both in model

problems and in a starting hamiltonian.

The problem of a weakly interacting Bose gas with a repulsive interac-

tion between the particles is solved with the Bogoliubov transformation. A

phonon spectrum is obtained for the many-body system, which, as shown
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in Vol. I, allows one to understand superfluidity. Motivated by the Cooper

pairs obtained in Vol. I, a Fermi system with an attractive interaction be-

tween those particles at the Fermi surface is analyzed with the Bogoliubov-

Valatin transformation. The very successful BCS theory of superconduc-

tivity is obtained in the case that the residual quasiparticle interactions can

be neglected.

A problem takes the reader through the Bloch-Nordsieck transforma-

tion, which examines the quantized electromagnetic field interacting with a

specified, time-independent current source. A key insight into the infrared

problem in QED is thereby obtained. A second problem guides the reader

through the analysis of a quantized, massive, neutral scalar field interacting

with a classical, specified, time-independent source. The result is an exact

derivation of the Yukawa interaction of nuclear physics.

This book is designed to further the goals of Vol. I and to build on

the foundation laid there. Volume II covers in more depth those topics

that form the essential framework of modern theoretical physics.7 Readers

should now be in a position to go on to more advanced texts, such as
[Bjorken and Drell (1964); Bjorken and Drell (1965); Schiff (1968); Itzykson

and Zuber(1980); Cheng and Li (1984); Donoghue, Golowich, and Holstein

(1993); Merzbacher (1998); Fetter and Walecka (2003a); Walecka (2004);

Banks (2008)], with a deeper sense of appreciation and understanding.

Modern theoretical physics provides a basic understanding of the phys-

ical world and serves as a platform for future developments. When finished

with this book, readers should have an elementary working knowledge in

the principal areas of theoretical physics of the twentieth-century.

7The author considered also including in Vol. II a chapter on solutions to the Einstein
field equations in general relativity; however, given the existence of [Walecka (2007)], it
was deemed sufficient to simply refer readers to that book.
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Chapter 2

Quantum Mechanics (Revisited)

In this chapter we formalize some of the analysis of quantum mechanics in

Vol. I, which will allow us to focus on the general structure of the theory.

We start the discussion with a review of linear vector spaces.

2.1 Linear Vector Spaces

Consider the ordinary three-dimensional linear vector space in which we

live.

2.1.1 Three-Dimensional Vectors

Introduce an orthonormal set of basis vectors ei with i = 1, 2, 3 satisfying

ei · ej = δij ; (i, j) = 1, 2, 3 (2.1)

An arbitrary vector v is a physical quantity that has a direction and length

in this space. It can be expanded in the basis ei according to

v =

3
∑

i=1

viei ; vi = ei · v (2.2)

v can now be characterized by its components (v1, v2, v3) in this basis.1

Vectors have the following properties:

(1) Addition of vectors, and multiplication of a vector by a constant, are

1This characterization will be denoted by v : (v1, v2, v3).

9



ADVANCED MODERN PHYSICS - Theoretical Foundations
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/physics/7555.html

January 27, 2010 10:37 WSPC/Book Trim Size for 9in x 6in V2root

1 0 Advanced Modern Physics

expressed in terms of the components by

a + b : (a1 + b1, a2 + b2, a3 + b3)

γa : (γa1, γa2, γa3) ; linear space (2.3)

T hese properties characterize a linear space;

(2) T he dot product, or inner product, of two vectors is defi ned by

a · b ≡ a1b1 + a2b2 + a3b3 ; dot product (2.4 )

T he length of the vector is then determined by

|v| =
√

v2 =
√

v · v = (v2
1 + v2

2 + v2
3)1/2 ; length (2.5 )

O ne says that there is an inner-prod u ct no rm in the space.

(3) S uppose one goes to a new orthonormal basis αi where the vector v

has the components v : (v̄1, v̄2, v̄3). T hen the components are evidently

related by

v =

3
∑

i=1

viei =

3
∑

i=1

v̄iαi

⇒ vi =

3
∑

j=1

v̄j(ei ·αj) =

3
∑

j=1

v̄j [αj ]i (2.6 )

2.1.2 n-Dimensions

T hese arguments are readily extended to n-dimensions by simply increasing

the number of components

v : (v1, v2, v3, · · · , vn) ; n-dimensions (2.7 )

T he extension to co m plex vecto rs is accomplished through the use of

the linear multiplication property with a complex γ. T he positive-defi nite

norm is then correspondingly defi ned through |v|2 ≡ v? · v,

γv : (γv1, γv2, γv3, · · · , γvn) ; complex vectors

|v|2 ≡ v? · v = |v1|2 + |v2|2 + · · ·+ |vn|2 (2.8 )
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2.2 H ilbert Space

T he notion of a H ilbert space involves the generalization of these concepts

to a space with an infi nite number of dimensions. L et us start with an

example.

2.2.1 E x amp le

Recall the set of plane waves in one spatial dimension in an interval of

length L satisfying periodic boundary conditions

φn(x) =
1√
L
eiknx ; kn =

2πn

L
; n = 0,±1,±2, · · · ;

basis vectors (2.9 )

T hese will be referred to as the basis vecto rs. T hey are orthonormal and

satisfy

∫ L

0

d x φ?
m(x)φn(x) = δmn ; orthonormal

≡ 〈φm|φn〉 ; inner product (2.10)

T his relation allows us to defi ne the inner prod u ct of two basis vectors,

denoted in the second line by 〈φm|φn〉,2 and the positive-defi nite inner-

prod u ct no rm of the basis vectors is then given by

|φn|2 = 〈φn|φn〉 =

∫ L

0

d x |φn(x)|2 ; (“ length” )2 (2.11)

An arbitrary function ψ(x) can be expanded in this basis according to

ψ(x) =

∞
∑

n=−∞

cnφn(x) ; expansion in complete set (2.12)

T his is, after all, just a complex F ourier series. T he orthonormality of the

basis vectors allows one to solve for the coeffi cients cn

cn = 〈φn|ψ〉 =

∫ L

0

d x φ?
n(x)ψ(x) (2.13)

2The notation, and m ost of the analysis in this chap ter, is du e to D irac [D irac (1 94 7 )].
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Any piecewise continuous function can actually be expanded in this set,

and the basis functions are co m plete in the sense that3

L imN → ∞

∫ L

0

d x

∣

∣

∣

∣

∣

ψ(x) −
N
∑

n=−N

cnφn(x)

∣

∣

∣

∣

∣

2

= 0 ; completeness (2.14 )

J ust as with an ordinary vector, the function ψ(x) can now be characterized

by the expansion coeffi cients cn

ψ(x) : (c−∞, · · · , c−1, c0, c1, · · · , c∞)

or; ψ : {cn} (2.15 )

Addition of functions and multiplication by constants are defi ned in terms

of the coeffi cients by

ψ(1) + ψ(2) : {c(1)n + c(2)n }
γψ : {γcn} ; linear space (2.16 )

T his function space is again a linear space. T he norm of ψ is given by

|ψ|2 = 〈ψ|ψ〉 =

∫ L

0

d x |ψ(x)|2 =

∞
∑

n=−∞

|cn|2 ; (norm)2 (2.17 )

which, in the case of F ourier series, is just P arseval’s theorem.

2.2.2 Defi nition

T he function ψ(x) in E q. (2.17 ) is said to be square-integrable. T he set of

all square-integrable functions (L2) forms a H ilbert space. M athematicians

defi ne a H ilbert space as follows:

(1) It is a linear space;

(2) T here is an inner-product norm;

(3) T he space is complete in the sense that every Cauchy sequence con-

verges to an element in the space.

T he above analysis demonstrates, through the expansion coeffi cients cn, the

isomorphism between the space of all square-integrable functions (L2) and

the ordinary infi nite-dimensional complex linear vector space (l2) discussed

at the beginning of this section.

3This is all the com p leteness we will need for the p hysics in this v olu m e.
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2.2.3 R elation to L inear Vector S pace

A more direct analogy to the infi nite-dimensional complex linear vector

space (l2) is obtained through the following identifi cation

vi → ψx ; coordinate space (2.18 )

We now use the coordinate x as a subscript, and we note that it is here a

co ntinu o u s index. T he square of the norm then becomes

∑

i

v?
i vi →

∑

x ψ
?
xψx ≡

∫

d xψ?(x)ψ(x) (2.19 )

T he sum over the continuous index has here been appropriately defi ned

through a familiar integral. With this notation, the starting expansion in

E q. (2.12) takes the form

ψx =

∞
∑

n=−∞

cn[φn]x (2.20)

2.2.4 A bstract S tate Vector

E quation (2.20) can be interpreted in the following manner:

T his is ju st o ne co m po nent o f the abstract vecto r relatio n

|ψ〉 =
∑

n

cn|φn〉 ; abs tract vecto r relatio n (2.21)

T he qu antity |ψ〉 is no w interpreted as a vecto r in an infi nite-

d im ensio nal, abstract H ilbert space. It can be given a co ncrete rep-

resentatio n thro u gh the co m po nent fo rm in E qs. (2 .2 0 ) and (2 .1 2 ),

u sing the particu lar set o f basis vecto rs in E qs. (2 .9 ).

As before, one solves for the expansion coeffi cients cn by simply using the

orthonormality of the basis vectors in E q. (2.10)

cn = 〈φn|ψ〉 =
∑

x

[φn]?xψx =

∫

d x φ?
n(x)ψ(x) (2.22)
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2.3 Linear H erm itian O perators

Consider an operator L in H ilbert space. G iven ψ(x), then Lψ(x) is some

new state in the space. L is a linear o perato r if it satisfi es the condition

L(αφ1 + βφ2) = α(Lφ1) + β(Lφ2) ; linear operator (2.23)

for any (φ1, φ2) in the space. L is herm itian if it satisfi es the relation4

∫

d x φ?
1(x)Lφ2(x) =

∫

d x [Lφ1(x)]
?φ2(x) =

[
∫

d x φ?
2(x)Lφ1(x)

]?

;

hermitian (2.24 )

A shorthand for these relations is as follows

〈φ1|L|φ2〉 = 〈Lφ1|φ2〉 = 〈φ2|L|φ1〉? ; shorthand (2.25 )

We now make the important observation that if o ne kno w s the m atrix

elem ents o f L

Lmn ≡
∫

d x φ?
m(x)Lφn(x) ≡ 〈m|L|n〉 ; matrix elements (2.26 )

in any co m plete basis, then o ne kno w s the o perato r L. L et us prove this

assertion. L et ψ(x) be an arbitrary state in the space. If one knows the

corresponding Lψ(x), then L is determined. E xpand ψ(x) in the complete

basis

ψ(x) =
∑

n

cnφn(x) ; complete basis (2.27 )

As above, the coeffi cients cn follow from the orthonormality of the eigen-

functions φn

cn =

∫

d x φ?
n(x)ψ(x) ; known (2.28 )

T hese coeffi cients are thus determined for any given ψ. N ow compute5

Lψ(x) =
∑

n

cn[Lφn(x)] (2.29 )

4S ee P robI. 4 .5 — the notation “ P robI” refers to the p roblem s in V ol. I.
5It is assu m ed here that there is enou g h conv erg ence that one can op erate on this

series term by term .
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T he expansion in a complete basis can again be invoked to write the state

Lφn(x) as

Lφn(x) =
∑

m

βmnφm(x) ; complete basis (2.30)

and the orthonormality of the eigenfunctions allows one to identify

βmn =

∫

d x φ?
m(x)Lφn(x) = Lmn (2.31)

H ence

Lφn(x) =
∑

m

φm(x)Lmn

⇒ Lψ(x) =
∑

n

∑

m

φm(x)Lmncn ; known (2.32)

T his is now a kno w n qu antity , and thus we have established the equivalence6

L ← → Lmn ; equivalent (2.33)

2.3 .1 E igenfu nctions

T he eigenfu nctio ns of a linear operator are defi ned by the relation

Lφλ(x) = λφλ(x) ; eigenfunctions

λ is eigenvalue (2.34 )

H ere the operator simply reproduces the function and multiplies it by a

constant, the eigenvalu e. If L is an herm itian operator, then the following

results hold:

• T he eigenvalues λ are real (P robI. 4 .6 );

• T he eigenfunctions corresponding to diff erent eigenvalues are orthogo-

nal.7

We give two examples from Vol. I:

(1) M o m entu m . T he momentum operator in one dimension in coordinate

space is

p =
~

i

∂

∂x
; momentum (2.35 )

6This eq u iv alence is the basis of m atrix m echanics (com p are P rob. 2.8 ).
7The p roof here is essentially that of P robI. H .4 ; dedicated readers can su p p ly it.
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With periodic boundary conditions, the eigenfunctions are just those

of E q. (2.9 ), and

pφk(x) = ~k φk(x) ; k =
2πn

L
; n = 0,±1, · · · (2.36 )

p is hermitian with these boundary conditions (P robI. 4 .5 ), and as we

have seen, these eigenfunctions are both orthonormal and complete.

(2) H am ilto nian. In one dimension in coordinate space the hamiltonian is

given by

H =
−~

2

2m

∂2

∂x2
+ V (x) ; hamiltonian (2.37 )

We assume that V (x) is real. T he eigenstates are

HuEn
(x) = En uEn

(x) ; eigenstates (2.38 )

In general, there will be both bound-state and continuum solutions to

this equation. With the choice of periodic boundary conditions in the

continuum, the hamiltonian is hermitian (P robI. 4 .5 ), and the energy

eigenvalues En are real (P robI. 4 .6 ). T he eigenstates of this hermitian

operator also form a co m plete set, so that one can similarly expand an

arbitrary ψ(x) as

ψ(x) =
∑

n

an uEn
(x) ; complete set (2.39 )

F or the present purposes, one can simply take two of the postulates of

quantum mechanics to be:

(1) O bservables are represented with linear hermitian operators;

(2) T he eigenfunctions of any linear hermitian operator form a complete

set.8

2.3 .2 E igenstates of P osition

T he position operator x in one dimension is an hermitian operator. Con-

sider the eigenstates of x with eigenvalues ξ so that

xψξ(x) = ξ ψξ(x) ; position operator (2.4 0)

8A p roof of com p leteness for any op erator of the S tu rm -L iou v ille typ e is contained in
[F etter and W aleck a (20 0 3 )]. The u se of ordinary riem annian integ ration in the defi nition
of the inner p rodu ct in E q . (2.1 9), and the notion of com p leteness ex p ressed in E q . (2.1 4 ),
rep resent the ex tent of the m athem atical rig or in the p resent discu ssion.
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T he solution to this equation, in coordinate space, is just a D irac delta

function

ψξ(x) = δ(x − ξ) ; eigenstates of position (2.4 1)

It is readily verifi ed that

xψξ(x) = xδ(x− ξ) = ξδ(x− ξ) = ξ ψξ(x) (2.4 2)

O n the interval [0, L], with periodic boundary conditions, the eigenvalues

ξ run continuously over this interval. As to the orthonormality of these

eigenfunctions, one can just compute
∫

d xψ?
ξ′ (x)ψξ(x) =

∫

d x δ(x − ξ′)δ(x − ξ) = δ(ξ − ξ′) (2.4 3)

H ence
∫

d xψ?
ξ′(x)ψξ(x) = δ(ξ − ξ′) ; orthonormality (2.4 4 )

We make some comments on this result:

• O ne cannot avoid a continuum normalization here, since the position

eigenvalue ξ is truly continuous;

• In contrast, in one dimension with periodic boundary conditions on

this interval, the eigenfunctions of momentum in E q. (2.36 ) have a

d enu m erab ly infi nite set o f d iscrete eigenvalu es. T his proved to be an

essential calculational tool in Vol. I;

• T o make the analogy between coordinate space and momentum space

closer, one can take L to infi nity.9 D efi ne

ψk(x) =

(

L

2π

)1/2

φk(x) =
1√
2π
eikx (2.4 5 )

T hen
∫

d xψ?
k′ (x)ψk(x) =

1

2π

∫

d x ei(k−k′)x

→ δ(k − k′) ; L→∞ (2.4 6 )

In this limit bo th the momentum and position eigenfunctions have a

continuum norm.
9A s shown in V ol. I, F ou rier series are conv erted to F ou rier integ rals in this lim it; one

fi rst u ses the p .b.c. to conv ert the interv al to [−L / 2, L / 2].
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2.4 A bstract H ilbert Space

Recall E qs. (2.12) and (2.20) from above, which represent an expansion in

a complete set,

ψ(x) =
∑

n

cnφn(x)

or ; ψx =
∑

n

cn[φn]x (2.4 7 )

T his can be viewed as the component form of the abstract vector relation

|ψ〉 =
∑

n

cn|φn〉 ; abstract vector relation (2.4 8 )

J ust as an ordinary three-dimensional vector v has meaning independent

of the basis vectors in which it is being decomposed, one can think of this

as a vector pointing in some direction in the abstract, infi nite-dimensional

H ilbert space. E quations (2.4 7 ) then provide a component form of this

abstract vector relation.

2.4 .1 Inner P rod u ct

T he inner product in this space is provided by E q. (2.19 )

〈ψa|ψb〉 =
∑

x

[ψa]?x[ψb]x ≡
∫

d xψ?
a(x)ψb(x) ; inner product (2.4 9 )

T hus, from E qs. (2.4 7 )

cn = 〈φn|ψ〉 =
∑

x

[φn]?xψx ≡
∫

d x φ?
n(x)ψ(x) (2.5 0)

We note the following important inner products:

〈ξ′|ξ〉 =

∫

d xψ?
ξ′(x)ψξ(x) = δ(ξ′ − ξ)

〈k′|k〉 =

∫

d x φ?
k′ (x)φk(x) = δkk′ ; with p.b.c.

〈ξ|k〉 =

∫

d xψ?
ξ (x)φk(x) =

1√
L
eikξ (2.5 1)

T he last relation follows directly from the wave functions in E qs. (2.36 ) and

(2.4 1).10

10 S ee also E q . (2.9); note that the su bscrip t n on kn = 2π n/ L is su p p ressed.
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2.4 .2 C omp leteness

As established in Vol. I, the statement of completeness with the set of

coordinate space eigenfunctions φp(x), where p denotes the eigenvalues of

a linear hermitian operator, is

∑

p

φp(x)φ
?
p(y) = δ(x− y) ; completeness (2.5 2)

Insert this relation in the defi nition of the inner product in E q. (2.4 9 )

〈ψa|ψb〉 =

∫

d xψ?
a(x)ψb(x) ≡

∫

d xd y ψ?
a(x)δ(x − y)ψb(y)

=
∑

p

∫

d xψ?
a(x)φp(x)

∫

d y φ?
p(y)ψb(y)

=
∑

p

〈ψa|φp〉〈φp|ψb〉 (2.5 3)

H ere E q. (2.5 2) has been used in the second line, and the defi nition of

the inner product used in the third. T his relation can be summarized by

writing the abstract vector relation

∑

p

|φp〉〈φp| = 1op ; completeness (2.5 4 )

T his unit operator 1op can be inserted into any inner product, leaving that

inner product unchanged. T his relation follows from the completeness of

the wave functions φp(x) providing the coordinate space components of the

abstract state vectors |φp〉.

2.4 .3 L inear H ermitian O perators

In Vol. I, quantum mechanics was introduced in coordinate space, where

the momentum p is given by p = (~/i)∂/∂x. It was observed in P robI. 4 .8

that one could equally well work in momentum space, where the position x

is given by x = i~∂/∂p. It was also observed there that the commutation

relation [p, x] = ~/i is independent of the particular representation. O ur

goal in this section is to similarly abstract the S chrö d inger equ atio n and free

it from any particular component representation.



ADVANCED MODERN PHYSICS - Theoretical Foundations
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/physics/7555.html

January 27, 2010 10:37 WSPC/Book Trim Size for 9in x 6in V2root

20 Advanced Modern Physics

2.4 .3.1 E igenstates

A linear hermitian operator Lop takes one abstract vector |ψ〉 into another

Lop |ψ〉. T he eigenstates of Lop , as before, are defi ned by

Lop |φλ〉 = λ|φλ〉 ; eigenstates (2.5 5 )

F or example:

pop |k〉 = ~k|k〉 ; momentum

xop |ξ〉 = ξ|ξ〉 ; position

(Lz)op |m〉 = m|m〉 ; z-component of angular momentum

Hop |ψ〉 = E|ψ〉 ; hamiltonian (2.5 6 )

2.4 .3.2 A d jo int O perato rs

In coordinate space, the adjoint operator L† is defi ned by

∫

d ξ ψ?
a(ξ)L†ψb(ξ) ≡

∫

d ξ [Lψa(ξ)]?ψb(ξ) =

[
∫

d ξ ψ?
b (ξ)Lψa(ξ)

]?

(2.5 7 )

T he adjoint operator in the abstract H ilbert space is defi ned in exactly the

same manner

〈ψa|L†op |ψb〉 ≡ 〈Lop ψa|ψb〉 = 〈ψb|Lop |ψa〉? ; adjoint (2.5 8 )

N ote that it follows from this defi nition that if γ is some complex number,

then

[γLop ]
† = γ?L†op (2.5 9 )

An operator is herm itian if it is equal to its adjoint

L†op = Lop ; hermitian

⇒ 〈ψa|Lop |ψb〉 = 〈Lop ψa|ψb〉 = 〈ψb|Lop |ψa〉? (2.6 0)

With an hermitian operator, one can just let it act on the state on the left

when calculating matrix elements.

2.4 .4 S chröd inger E qu ation

T o get the tim e-ind epend ent S chrö d inger equ atio n in the coo rd inate

representatio n, o ne pro jects the abstract o perato r relatio n Hop |ψ〉 =

E|ψ〉 o nto the basis o f eigenstates o f po sitio n |ξ〉.
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We show this through the following set of steps:

(1) F irst project |ψ〉 onto an eigenstate of position |ξ〉

〈ξ|ψ〉 =
∑

x

[ψξ]
?
x[ψ]x =

∫

d xψ?
ξ (x)ψ(x) =

∫

d x δ(ξ − x)ψ(x)

〈ξ|ψ〉 = ψ(ξ) ; wave function (2.6 1)

T his is simply the familiar coordinate space wave function ψ(ξ);

(2) Compute the matrix element of the potential Vop = V (xop ) between

eigenstates of position

〈ξ|Vop |ξ′〉 = 〈ξ|V (xop )|ξ′〉 = V (ξ′)〈ξ|ξ′〉 = V (ξ)δ(ξ − ξ′) (2.6 2)

(3) S imilarly, compute the matrix elements of the kinetic energy Top . T his

is readily accomplished by invoking the completeness relation for the

eigenstates of momentum [see E q. (2.5 4 )]

∑

k

|k〉〈k| = 1op ; completeness (2.6 3)

With the insertion of this relation (twice), one fi nds

〈ξ|Top |ξ′〉 =
1

2m
〈ξ|p2

op |ξ′〉 =
1

2m

∑

k

∑

k′

〈ξ|k〉〈k|p2
op |k′〉〈k′|ξ′〉

=
~

2

2m

∑

k

∑

k′

〈ξ|k〉k2δkk′ 〈k′|ξ′〉 =
~

2

2m

∑

k

k2

L
eik(ξ−ξ′)

= − ~
2

2m

∂2

∂ξ2

∑

k

1

L
eik(ξ−ξ′) = − ~

2

2m

∂2

∂ξ2
δ(ξ − ξ′) (2.6 4 )

T he fi nal relation follows from the completeness of the momentum wave

functions.

(4 ) M ake use of the statement of completeness of the abstract eigenstates

of position, which is

∫

d ξ |ξ〉〈ξ| = 1op ; completeness (2.6 5 )

N ote that the sum here is actually an integral because the position

eigenvalues are continuous.11

11S ee P rob. 2.2.



ADVANCED MODERN PHYSICS - Theoretical Foundations
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/physics/7555.html

January 27, 2010 10:37 WSPC/Book Trim Size for 9in x 6in V2root

22 Advanced Modern Physics

(5 ) T he operator form of the time-independent S chrödinger equation is

Hop |ψ〉 = (Top + Vop )|ψ〉 = E|ψ〉 ; S -equation (2.6 6 )

A projection of this equation on the eigenstates of position gives

〈ξ|Hop |ψ〉 = E〈ξ|ψ〉 = Eψ(ξ) (2.6 7 )

N ow insert E q. (2.6 5 ) in the expression on the l.h.s., and use the results

from E qs. (2.6 2) and (2.6 4 )

〈ξ|Hop |ψ〉 =

∫

d ξ′ 〈ξ|Hop |ξ′〉〈ξ′|ψ〉

=

∫

d ξ′
[

− ~
2

2m

∂2

∂ξ2
+ V (ξ)

]

δ(ξ − ξ′)ψ(ξ′)

=

[

− ~
2

2m

∂2

∂ξ2
+ V (ξ)

]
∫

d ξ′ δ(ξ − ξ′)ψ(ξ′)

=

[

− ~
2

2m

∂2

∂ξ2
+ V (ξ)

]

ψ(ξ) (2.6 8 )

T hus, in summary,

[

− ~
2

2m

∂2

∂ξ2
+ V (ξ)

]

ψ(ξ) = E ψ(ξ) ; S -equation (2.6 9 )

T his is just the time-independent S chrödinger equation in the coordi-

nate representation. It is the component form of the operator relation

of E q. (2.6 6 ) in a basis of eigenstates of position.12

F or the tim e-d epend ent S chrö d inger equ atio n, the state vector |Ψ(t)〉
simply moves in the abstract H ilbert space with a time dependence gen-

erated by the hamiltonian. Q uantum dynamics is thus summarized in the

following relations

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 ; S -equation

[p̂, x̂] =
~

i
; C.C.R. (2.7 0)

We make several comments:

12The tim e-indep endent S chröding er eq u ation in the m om entu m rep resentation is ob-
tained by p rojecting E q . (2.6 6 ) onto the states |k〉. This g iv es the com p onents of the
op erator relation in a basis of eig enstates of m om entu m (see P rob. 2.9).
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• H ere, and henceforth, we shall use a caret over a symbol to denote an

operator in the abstract H ilbert space;13

• T he fi rst equation is the abstract form of the time-dependent

S chrödinger equation;

• T he second equation is the canonical commutation relation for the mo-

mentum and position operators;

• As shown above, the usual S chrödinger equation in coordinate space

is obtained by projecting the fi rst relation on eigenstates of position;

however, these relations are now ind epend ent o f the particu lar basis in

w hich w e choo se to express their co m po nents.

2.4 .4 .1 S tatio nary S tates

With a time-independent potential, one can again look for normal-mode

solutions to the time-dependent S chrödinger E q. (2.7 0) of the form

|Ψ(t)〉 = e−iEt/~|ψ〉 ; normal modes (2.7 1)

S ubstitution into the fi rst of E qs. (2.7 0), and cancellation of a factor

exp (−iEt/~), leads to the stationary-state S chrödinger equation

Ĥ|ψ〉 = E|ψ〉 ; stationary-state S -eqn (2.7 2)

2.5 M easu rem ents

We must establish the relation between these formal developments and

physical measurements. M easurement theory is a deep and extensive topic,

and we certainly shall not do justice to it here. N o attempt is made to

consider implications for very complex objects with a myriad of degrees of

freedom.14 Rather, the discussion here focuses on simple systems where

measurement theory is really quite intuitive.

2.5 .1 C oord inate S pace

We start in coordinate space and abstract later. An observable F is repre-

sented by a linear hermitian operator (H, p, x, Lz, etc.) with an (assumed)

13E x cep t for the creation and destru ction op erators, where their op erator natu re is
ev ident (see later).

14S chröding er’s cat, for ex am p le (see [W ik ip edia (20 0 9)]).
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complete set of eigenstates15

Fufn
(x) = fn ufn

(x) ; eigenstates

eigenvalues f1, f2, · · · , f∞ (2.7 3)

L et Ψ(x, t) be an arbitrary wave function. At a given time t, its spatial

dependence can be expanded in the complete set of wave functions ufn
(x)

Ψ(x, t) =
∑

n

afn
(t) ufn

(x) (2.7 4 )

T he wave function is assumed to be normalized so that
∫

d x |Ψ(x, t)|2 =
∑

n

|afn
(t)|2 = 1 (2.7 5 )

We can m easu re the expectation value of F given by16

〈F 〉 =

∫

d xΨ?(x, t)FΨ(x, t) =
∑

n

∑

n′

a?
fn

(t)afn′
(t)

∫

d x u?
fn

(x)Fufn′
(x)

=
∑

n

∑

n′

a?
fn

(t)afn′
(t)fnδnn′ (2.7 6 )

H ence

〈F 〉 =
∑

n

|afn
(t)|2fn ; expectation value (2.7 7 )

If one is in a stationary state so that

Ψ(x, t) = ψ(x)e−iEt/~ ; stationary state (2.7 8 )

then the wave function ψ(x) can be expanded in the ufn
(x) with time-

independent coeffi cients afn

ψ(x) =
∑

n

afn
ufn

(x) ; completeness (2.7 9 )

It follows as above that in this case

1 =
∑

n

|afn
|2

〈F 〉 =
∑

n

|afn
|2fn ; stationary state (2.8 0)

15F or clarity, we p resent the following arg u m ents in one dim ension.
16S ee P robI. 4 .5 .
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If one is also in an eigenstate of F , then

〈F 〉 = fn ; in eigenstate (2.8 1)

E quations (2.7 7 ) and (2.7 5 ) suggest that one should interpret the quan-

tity |afn
(t)|2 as the pro bability o f m easu ring the valu e fn at the tim e t if

a sy stem is in the state Ψ(x, t). B ased on this argument, we make the

following m easu rem ent po stu lates:

(1) If one makes a precise measurement of F , then one m u st o bserve o ne

o f the eigenvalu es fn;

(2) If one is in an arbitrary state Ψ(x, t), then |afn
(t)|2 is the probability

that one will observe the value fn for F at the time t, where17

afn
(t) =

∫

d x u?
fn

(x)Ψ(x, t) (2.8 2)

As an example, consider the free-particle wave packet of Vol. I

Ψ(x, t) =
1√
2π

∫

d k A(k)ei(kx−ωkt) ; free particle (2.8 3)

T he probability density in coordinate space is |Ψ(x, t)|2. T he F ourier trans-

form of this relation gives

1√
2π

∫

d x e−ikxΨ(x, t) = A(k)e−iωkt (2.8 4 )

F or localized wave packets, one can take up(x) = eikx/
√

2π as the eigen-

states of momentum. T hen, consistent with our interpretation in Vol. I,

|A(k)|2 =

∣

∣

∣

∣

∫

d x u?
p(x)Ψ(x, t)

∣

∣

∣

∣

2

; p = ~k (2.8 5 )

is the pro bability d ensity in m o m entu m space (see P robI. 4 .8 ).

2.5 .2 A bstract F orm

O ne can now proceed to abstract these results:

(1) T he quantity F is represented with a linear hermitian operator F̂ with

eigenstates

F̂ |fn〉 = fn|fn〉 (2.8 6 )

17A lternativ ely, if one has a larg e nu m ber of identical system s with wav e fu nction
Ψ (x , t), then the fraction of m easu rem ents yielding fn will be |afn

(t)|2.



ADVANCED MODERN PHYSICS - Theoretical Foundations
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/physics/7555.html

January 27, 2010 10:37 WSPC/Book Trim Size for 9in x 6in V2root

26 Advanced Modern Physics

If one makes a precise measurement of F , then one will observe one of

the eigenvalues fn.

(2) An arbitrary state |Ψ(t)〉 can be expanded in the (assumed) complete

set of eigenstates of F̂ according to

|Ψ(t)〉 =
∑

n

afn
(t)|fn〉 (2.8 7 )

T hen the probability that a measurement will yield the value fn is

|afn
(t)|2 = |〈fn|Ψ(t)〉|2 (2.8 8 )

In particular, |〈ξ|Ψ(t)〉|2 = |Ψ(ξ, t)|2 is the pro bability d ensity that o ne

w ill o bserve the valu e ξ if o ne m akes a m easu rem ent o f the po sitio n x. T his

is how we have used the wave function Ψ(ξ, t). N ow everything stands

on the same footing, and the above contains all our previous assumptions

concerning the physical interpretation of the theory.

2.5 .3 R ed u ction of the W ave P acket

If a particle moves in a classical orbit, its position can be measured and

one fi nds a value q. If the measurement is repeated a short time ∆t later,

such that |∆q| � |q|, one must again fi nd the value q. M easu rem ents m u st

be reprod u cib le. H ow does this show up in quantum mechanics?

If one measures the quantity F at the time t and fi nds a value fn, then

if F is measured again right away, must again fi nd the value fn. T his is an

assu m ptio n o f the reprod u cib ility o f m easu rem ents.

S uppose one is in the state

Ψ(x, t) =
∑

n

afn
(t)ufn

(x) (2.8 9 )

If one measures F at the time t0 and fi nds a value fn, then right after this

measurement, the wave function must be such as to again give the valu e

fn, and it must be normalized. T hus, with no degeneracy, the eff ect of this

measurement is to red u ce the wave function to the form18

Ψ(x, t0)
′ =

afn
(t0)

|afn
(t0)|

ufn
(x) (2.9 0)

T his result can be abstracted and extended to lead to an additional mea-

surement postulate:
18W e sp eak here of “ p u re p ass m easu rem ents” that do not m odify the coeffi cients

afn
(t).
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(3) If, at the time t0, one observes a value f for the quantity F which lies

in the inteval f ′ ≤ f ≤ f ′′, then the state vector is reduced to

|Ψ(t0)〉′ =

∑′
n afn

(t0)|fn〉
(
∑′

n |afn
(t0)|2

)1/2
; where f ′ ≤ fn ≤ f ′′ (2.9 1)

H ere
∑′

n implies f ′ ≤ fn ≤ f ′′.

Although this postulate may at fi rst seem very mysterious, a little re-

fl ection will convince the reader that a measurement does indeed provide

a great deal of information about a system, in particular, this type of in-

formation. We briefl y discuss, as an example, the classic S tern-G erlach

experiment.

2.5 .4 S tern-G erlach E x periment

T he fi rst moral here is that in applying measurement theory, one must

always discuss the specifi c measurement in detail.19 Consider, for illus-

tration, a spinless, positively-charged particle in a metastable p-state in a

neutral atom, where there is no L orentz force on the atom. T here are three

possible values of Lz, the angular momentum in the z-direction, m = 0,±1.

T his atom has a magnetic moment, and if placed in a magnetic fi eld which

determines the z-direction, and which also varies in the z-direction, it will

feel a force in the z-direction of

Fz = µz
d B z

d z
(2.9 2)

T his force acts diff erently on the diff erent m components, and can be used

to separate them. S uppose a beam of these atoms, produced, say, in an

oven, is passed through an appropriate inhomogeneous magnet as sketched

in F ig. 2.1. We then note the following:

• T he beam will subsequently split into three separate co m po nents w ith

m = 0,±1. E ach beam can be caused to pass through a separate slit

as shown in F ig. 2.1. T his illu strates that o ne o bserves the eigenvalu es

o f Lz.

• Initially, the internal wave function of an atom can be written

ψint(x, t) = Rnp(r)
∑

m=0,±1

cm(t)Y1m(θ , φ) (2.9 3)

19S ee chap ter IV of [G ottfried (1 96 6 )] for a thorou g h discu ssion of the m easu rem ent
p rocess.
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If the center-of-mass of the atom goes through the top slit (this will

happen with probability |c+ 1(t0)|2 where t0 is the time it goes through

the magnet), then the internal wave function of the atom must be20

ψint(x, t) =
c+ 1(t0)

|c+ 1(t0)|
Rnp(r)Y11(θ , φ)e−iEnp (t−t0)/~ (2.9 4 )

B
z

( A )

m = + 1

m = 0

m = - 1

zd

dz

o v e n

in h o m o g e n e o u s

m a g n e t

B

F ig . 2.1 S k etch of the S tern-G erlach ex p erim ent. W e will refer to the entire box ed u nit
as detector (A ).

If a second detector identical to (A) in F ig. 2.1 is placed after the

top slit, the beam will be observed to pass through and emerge from

its top slit with unit probability (see F ig. 2.2). T his illu strates the

reprod u cib lity o f the m easu rem ent.

m = + 1

m = + 1

( A )

F ig . 2.2 D etector (A ) p laced after the u p p er beam with m = + 1 in F ig . 2.1 .

20 A g ain, we assu m e a “ p u re p ass m easu rem ent” here.
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• If one looks for a beam emerging from the middle and bottom slits of

the second detector, there will be none. T his illu strates the red u ctio n

o f the w ave packet by the fi rst m easu rem ent.

Whenever you run into apparent paradoxes in discussing the measurement

process, you should always return to this simple and fundamental example

of the analysis.

2.6 Q u antu m M ech anics P ostu lates

H ere we su m m arize the quantum mechanics postulates arrived at in the

previous discussion. T hey are formulated in the abstract H ilbert space.

(1) T here is a state vector |Ψ(t)〉 that provides a complete dynamical de-

scription of a system;

(2) An observable F is represented by a linear hermitian operator F̂ ;

(3) T he operators obey canonical commutation relations, in particular

[p̂, x̂] =
~

i
(2.9 5 )

(4 ) T he dynamics is given by the S chrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.9 6 )

(5 ) T he eigenstates of a linear hermitian operator form a complete set

F̂ |fn〉 = fn|fn〉 ;
∑

n

|fn〉〈fn| = 1̂ (2.9 7 )

(6 ) M easurement postulate:

(a) A precise measurement of F must yield one of the eigenvalues fn ;

(b) T he probability of observing an eigenvalue fn at the time t is

|〈fn|Ψ(t)〉|2 ;

(c) A measurement f ′ ≤ f ≤ f ′′ at time t0 reduces the state vector to

|Ψ(t0)〉′ =

∑′
n afn

(t0)|fn〉
(
∑′

n |afn
(t0)|2

)1/2
; where f ′ ≤ fn ≤ f ′′ (2.9 8 )

T hrough his many years in physics, the author has found this to be a

complete and essential set of postulates for the implementation of quantum

mechanics.
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2.7 M any -P article H ilbert Space

T he previous discussion has eff ectively focused on the quantum mechanics

of a single particle. M ost of the applications discussed in Vol. I involve

many-body systems: atoms, nuclei, hadrons, and quantum fl uids. T he goal

of this section is to extend the previous analysis to the abstract m any -

particle H ilbert space, and to make a connection with quantum fi eld theory

as presented in chapter 12 of Vol. I. We start with a summary of the one-

dimensional simple harmonic oscillator in abstract H ilbert space.

2.7 .1 S imp le H armonic O scillator

T he operator analysis of the one-dimensional simple harmonic oscillator is,

in fact, carried out in P robsI. 4 .17 – 4 .18 .21 T he creation and destruction

operators (a†, a) are fi rst defi ned as linear combinations of the momentum

and coordinate (p̂, q̂). T he canonical commutation relations for (p̂, q̂) imply

that22

[a, a†] = 1 (2.9 9 )

T he hermitian number operator is defi ned as

N̂ ≡ a†a ; number operator

Ĥ = ~ω(N̂ + 1/2) ; hamiltonian (2.100)

T he second line expresses the hamiltonian in terms of the number operator.

As demonstrated in P robsI. 4 .17 – 4 .18 , it fo llo w s entirely fro m the general

pro perties o f the linear herm itian o perato rs invo lved that the spectru m o f

the nu m ber o perato r co nsists o f the po sitive integers and zero

N̂ |n〉 = n|n〉 ; n = 0, 1, 2, · · · ,∞
N̂ |0〉 = 0 ; ground state (2.101)

T he last relation defi nes the ground state. It further follows that

a|n〉 =
√
n |n− 1〉 ; destruction operator

a†|n〉 =
√
n+ 1 |n+ 1〉 ; creation operator (2.102)

21The reader is ag ain strong ly u rg ed to work throu g h those p roblem s (see P rob. 2.1 ).
22W e su p p ress the carets on the creation and destru ction op erators, since it will hence-

forth be obv iou s that they act in the abstract occu p ation-nu m ber H ilbert sp ace.
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As shown in P robI. 4 .18 , the eigenstates |n〉 can be explicitly constructed

as

|n〉 =
1√
n!

(a†)n|0〉 (2.103)

We note that this construction involves a relative phase convention.

T he eigenstates of the simple harmonic oscillator in the abstract H ilbert

space are both orthonormal and complete

〈n|n′〉 = δnn′ ; orthonormal
∑

n

|n〉〈n| = 1̂ ; complete (2.104 )

2.7 .2 B osons

With many identical bosons, one introduces a set of creation and destruc-

tion operators satisfying

[ak, a
†
k′ ] = δkk′ (2.105 )

H ere k denotes a complete set of single-particle quantum numbers appropri-

ate to the problem at hand. T he basis vectors in the abstract many-particle

H ilbert space are then constructed as the direct product of the basis vectors

for each of the single-particle states

|n1n2 · · ·n∞〉 ≡ |n1〉|n2〉 · · · |n∞〉 ; many-body basis states (2.106 )

H ere the subscripts {1, 2, · · · ,∞} simply represent an ordering of all possi-

ble values of k. T he eff ects of the creation and destruction operators for any

given mode now follow from the above discussion of the simple harmonic

oscillator, and as the operators for the diff erent modes commute, it does

not matter where one sits relative to the others.

Q u antu m fi eld s are then o perato rs in this abstract m any -particle H ilbert

space. We give three examples from Vol. I:

(1) The normal modes for the transverse oscillations of a continuous string

of length L with periodic boundary conditions are given by23

φk(x) =
1√
L
eikx ; k =

2πm

L
; m = 0,±1,±2, · · · (2.107 )

23We again suppress the subscript m on km = 2πm/L.
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The string energy, which plays the role of free-fi eld hamiltonian, is then

found in terms of the q uantum fi eld of the string q̂(x, t), obtained from

its classical transverse displacement, and the corresponding q uantum

momentum density π̂(x, t) = σ∂q̂(x, t)/∂t, obtained from its classical

transverse motion

q̂(x, t) =
∑

k

(

~

2ωkσL

)1/2
[

ake
i(kx −ωkt) + a†ke

−i(kx −ωkt)
]

; ωk = |k|c

π̂(x, t) =
1

i

∑

k

(

~ωkσ

2L

)1/2
[

ake
i(kx −ωkt) − a†ke−i(kx −ωkt)

]

(2.108 )

H ere σ is the mass density, and c is the sound velocity. These operators,

which here carry the free-fi eld time dependence, satisfy the canonical

eq ual-time commutation relations

[q̂(x, t), π̂(x′, t′)]t=t′ = i~δ(x− x′) (2.109 )

The free-fi eld hamiltonian is24

Ĥ =
σ

2

∫ L

0

dx

{

[

∂q̂(x, t)

∂t

]2

+ c2
[

∂q̂(x, t)

∂x

]2
}

(2.110)

S ubstitution of the expressions in E q s. (2.108 ) gives

Ĥ =
∑

k

~ωk(a†kak + aka
†
k) =

∑

k

~ωk(N̂k + 1/2) (2.111)

This represents an infi nite collection of uncoupled simple harmonic os-

cillators, as discussed above.

The energy eigenvalues for the whole system are given by25

Ĥ |n1n2 · · · n∞〉 = En1n2 · · · n∞ |n1n2 · · · n∞〉
En1n2 · · · n∞ =

∑

k

~ωk(nk + 1/2) (2.112)

The q uantity nk is the number of q uanta in the k th mode, and in

analogy to the q uantization of light, we refer to these q uanta of the

sound waves in a string as phonons.

24 N ote c2 = τ/σ w here τ is the tension.
25 S ince the subscripts {1, 2, · · · ,∞} on (n1, n2, · · · , n∞) sim ply label the ord ered

m em bers of the set k = (0 ,±2π/L,±4π/L, · · · ), the second of E q s. (2.112) can eq ually
w ell be w ritten as En1n2···n∞ =

∑

∞

i= 1
~ωi(ni + 1/2).
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Various interaction terms (non-linearity in the string, a spring attached

to the string, etc.) can now be written in terms of the fi elds. S ince these

interactions do not conserve the number of phonons, they will connect

one state to any other in the many-particle H ilbert space.

(2) The q uantization of the electromagnetic fi eld in Vol. I follows in an

analogous fashion.

(3 ) The non-relativistic many-body hamiltonian for a collection of identi-

cal, massive, spin-zero bosons, each with k inetic energy T = p2/2m =

−~
2
∇

2/2m, and interacting through an instantaneous two-body po-

tential of the form V (x,y), can be written as

Ĥ =

∫

d3x ψ̂†(x)T ψ̂(x) +
1

2

∫

d3x

∫

d3y ψ̂†(x)ψ̂†(y)V (x,y)ψ̂(y)ψ̂(x)

(2.113 )

H ere the q uantum fi eld is defi ned by

ψ̂(x) ≡
∑

k

ak φk(x) (2.114 )

where the φk(x) form a complete set of solutions to a one-body

S chrödinger eq uation appropriate, as a starting basis, for the problem

at hand. The fi elds satisfy the canonical commutation relation

[ψ̂(x), ψ̂†(x′)] = δ(3)(x− x′) (2.115 )

The time evolution of the many-particle system is now governed by the

many-body S chrödinger eq uation.26 H ere, as in our original formulation

of q uantum mechanics, the operators in this S chrödinger picture are

tak en to be time-independent, and all the time dependence derives from

the S chrödinger eq uation. When the number of bosons is a constant of

the motion, as in liq uid 4H e, then this hamiltonian never tak es one out

of the subspace with given N (S ee P rob. 2.4 ).

2 .7 .3 Fermions

In the case of fermions, in order to satisfy the P auli exclusion principle, one

q uantizes with a nticom m u ta tion relations instead of commutation relations.

26 T his is called “ second q uantization” , since w hat w ere prev iously single-particle w av e
functions now becom e fi eld operators in the abstract m any -particle H ilbert space. T he
form ulation of the m any -bod y problem in second q uantization is carried out in d etail in
chapter 1 of [F etter and Waleck a (20 0 3 a)].
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F or a single mode, one then has

{a, a†} ≡ aa† + a†a = 1

{a, a} = {a†, a†} = 0 (2.116 )

The number operator is again defi ned as

N̂ ≡ a†a ; number operator (2.117 )

It follows that this number operator has eigenvalues 0 and 1 (see Vol. I)

N̂ |n〉 = n|n〉 ; n = 0, 1 (2.118 )

F urthermore (see P robI 12.8 )

a|1〉 = |0〉 ; a|0〉 = 0

a†|0〉 = |1〉 ; a†|1〉 = 0 (2.119 )

The basis states in the abstract H ilbert space are again formed from the

direct product of the single-particle states as in E q . (2.106 ); however, since

the operators for the diff erent single-particle modes now a nticom m u te , one

has to k eep careful track of the ordering of various terms.

A s an example, the non-relativistic many-body hamiltonian for a collec-

tion of identical spin-1/ 2 fermions, each with k inetic energy T = p2/2m =

−~
2
∇

2/2m, and interacting through an instantaneous two-body spin-

independent potential of the form V (x,y), can again be written as

Ĥ =

∫

d3x ψ̂
†
(x)T ψ̂(x) +

1

2

∫

d3x

∫

d3y ψ̂
†
(x)ψ̂

†
(y)V (x,y) ψ̂(y)ψ̂(x)

(2.120)

H ere the q uantum fi eld is defi ned by

ψ̂(x) ≡
∑

kλ

akλ φ kλ
(x) (2.121)

where the two-component spinors φ
kλ

(x) form a complete set of solutions

to a one-body S chrödinger eq uation again appropriate, as a starting basis,

for the problem at hand. The index λ = (↑, ↓) denotes the two spin projec-

tions.27 The components of the fi eld, in this case, now satisfy the canonical

a nticom m u ta tion relation

{ψ̂α(x), ψ̂†β(x′)} = δαβ δ
(3)(x− x′) (2.122)

27 T he spinors w ith the sam e coord inate label are to be paired in E q . (2.120 ).
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Chapter 4

Scattering Theory

Given a hamiltonian Ĥ , the goal of this chapter is to solve the Schrödinger

equation for a scattering problem and derive general expressions for the

S-matrix, T -matrix, and transition rate, many of whose consequences have

already been examined in Vol. I.1 We work in the abstract Hilbert space.

4.1 Interaction Picture

Assume the hamiltonian can be split into two parts Ĥ = Ĥ0 + Ĥ1, the

first part of which leads to an exactly solvable problem, for example, free

quanta with no interactions. Ĥ1 may, or may not, have an explicit time

dependence; that depends on the problem at hand.2 We then want to solve

the Schrödinger equation

Ĥ = Ĥ0 + Ĥ1

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 ; Schrödinger-equation (4 .1)

D efine a new state vector |ΨI(t)〉 by

|ΨI(t)〉 ≡ e
i
~

Ĥ0t|Ψ(t)〉 ; interaction picture

|ΨI(0)〉 = |Ψ(0)〉 ; coincide at t = 0 (4 .2)

1For a comprehensive treatment of scattering theory, see [Goldberger and Watson
(2004)].

2Scattering in a given external field, for example, may lead to an explicitly time-
dependent Ĥ1(t).

69
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What equation of motion does this new state satisfy? J ust compute

i~
∂

∂t
|ΨI(t)〉 = −Ĥ0 e

i
~

Ĥ0t|Ψ(t)〉+ e
i
~

Ĥ0t i~
∂

∂t
|Ψ(t)〉

= −Ĥ0 |ΨI(t)〉+ e
i
~

Ĥ0t(Ĥ0 + Ĥ1)e
− i

~
Ĥ0t|ΨI(t)〉 (4 .3 )

T he terms in Ĥ0 cancel, and thus

i~
∂

∂t
|ΨI(t)〉 = ĤI(t)|ΨI(t)〉 ; interaction picture

ĤI(t) ≡ e
i
~

Ĥ0t Ĥ1 e
− i

~
Ĥ0t (4 .4 )

T he advantage of this new formulation is that in the limit Ĥ1 → 0, the

state |ΨI(t)〉 becomes time-independent; the free time variation, which can

be extremely rapid, has been explicitly dealt with. E quations (4 .2) and

(4 .4 ) are said to be a formulation of the problem in the interaction picture.

4.2 A d iab atic A pproach

We will find that when we try to solve the resulting equations and generate

the S-matrix, there will be infinite time integrals to carry out over oscil-

lating integrands. In order to give the theory a well-defined mathematical

meaning, we introduce an adiabatic damping factor e−ε|t| with ε ≥ 0, and

use the following interaction in the interaction picture

Ĥε
I (t) ≡ e−ε|t|ĤI(t) ; adiabatic damping (4 .5 )

The theory is then defined to be what is obtained in the limit as

ε→ 0.3

T his is a somewhat archaic approach, and there are more sophisticated

ways of doing formal scattering theory, which, however, can easily lead

to spurious results if one is not very careful and thoughtful. T he great

advantage of this adiabatic approach is that it allows one to do well-defined

mathematics at each step.

O ne can imagine that the interaction in E q. (4 .5 ) is being turned on

and off very slowly (“ adiabatically” ) as the time t → ± ∞, that is, in

the infinite past and infinite future.4 T his allows us to easily specify the

initial and final states in any scattering process, since now as t → ± ∞,

3T here may, or may not, be other limits — w e w ill not go there.
4E xplicitly dealing w ith the scattering of w ave pack ets can play the same role.
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the hamiltonian simply reduces to Ĥ0, and we know how to solve the non-

interacting problem

Ĥ = Ĥ0 ; t→ ± ∞

i~
∂

∂t
|Ψ(t)〉 = Ĥ0 |Ψ(t)〉

|Ψ(t)〉 = e−
i
~

E0t |ψ〉 (4 .6 )

Here |ψ〉 is simply a solution to the free, time-independent, S chrödinger

equation

Ĥ0 |ψ〉 = E0|ψ〉 (4 .7 )

T he interaction-picture state vector in E q. (4 .2) is then given in this same

limit by

|ΨI(t)〉 = e
i
~

Ĥ0t |Ψ(t)〉 = |ψ〉 ; t→ ± ∞

i~
∂

∂t
|ΨI(t)〉 = 0 (4 .8 )

T hus, in summary, with the adiabatic approach in the interaction picture,

one has

|ΨI(t)〉 = |ψ〉 ; t→ ± ∞
Ĥ0 |ψ〉 = E0|ψ〉 (4 .9 )

O ne starts with an initial state of this type, and then slowly turns on and

off the interaction. T he transition amplitude into a final state of this type is

then calculated. T he (transition probability)/ (time interval the interaction

is on) gives the transition rate,5 and the path from the transition rate to a

cross section was detailed in Vol. I.

It is then necessary to determine what happens when the interaction

in E q. (4 .5 ) is turned on and off adiabatically. T his is done through the

construction of the time-development operator for the problem.

5We shall get more sophisticated here and actu ally derive a general expression for the
transition rate itself.
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4.3 Û -O perator

L et us look for an operator that develops our system in time

|ΨI(t)〉 = Ûε(t, t0)|ΨI(t0)〉

i~
∂

∂t
|ΨI(t)〉 = i~

∂

∂t
Ûε(t, t0)|ΨI(t0)〉 = Ĥε

I (t)Ûε(t, t0)|ΨI(t0)〉 (4 .10)

If this is to hold for all |ΨI(t0)〉, then Ûε(t, t0) must satisfy the operator

relation

i~
∂

∂t
Ûε(t, t0) = Ĥε

I (t)Ûε(t, t0)

Ûε(t0, t0) = 1 (4 .11)

T his diff erential equation, with its initial condition, can be rewritten as an

integral equation

Ûε(t, t0) = 1− i

~

∫ t

t0

e−ε|t′| ĤI(t
′)Ûε(t

′, t0) dt
′ (4 .12)

It is readily verified that E qs. (4 .11) are reproduced by this expression.

We will try to find a solution to this equation as a power series in ĤI.
6

L et us substitute this expression for Ûε(t
′, t0) in the integrand on the r.h.s.

Ûε(t, t0) = 1− i

~

∫ t

t0

e−ε|t′| ĤI(t
′) dt′ +

(

− i
~

)2 ∫ t

t0

e−ε|t′| ĤI(t
′) dt′

∫ t′

t0

e−ε|t′′| ĤI(t
′′)Ûε(t

′′, t0) dt
′′ (4 .13 )

T his expression is still exact. R epeated application of this process leads to

the following infinite series in ĤI

Ûε(t, t0) =

∞
∑

n=0

(

− i
~

)n ∫ t

t0

e−ε|t1| dt1

∫ t1

t0

e−ε|t2| dt2 · · ·
∫ tn−1

t0

e−ε|tn| dtn ×

ĤI(t1)ĤI(t2) · · · ĤI(tn) (4 .14 )

6O ne can only expect a pow er series to hold for scattering amplitu des at all energies
in the absence of bou nd states; how ever, w e w ill eventu ally “ z ip things u p again” and
obtain closed forms that are also valid in the presence of bou nd states.
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B y convention, the first term in this series is 1. N ote that it is important

to keep the ordering of the operators ĤI(t) straight in the integrand, since

they do not necessarily commute at diff erent times. It is easy to remember

the ordering since the operators are time-ordered, with the operator at the

latest time appearing furthest to the left.

E quation (4 .14 ) can be rewritten in the following manner

Ûε(t, t0) =
∞
∑

n=0

(

− i
~

)n
1

n!

∫ t

t0

e−ε|t1| dt1

∫ t

t0

e−ε|t2| dt2 · · ·
∫ t

t0

e−ε|tn| dtn ×

T
[

ĤI(t1)ĤI(t2) · · · ĤI(tn)
]

; t ≥ t0 (4 .15 )

Here

• All the integrals are now over the full range
∫ t

t0
;

• T he “ T -product” carries the instruction that the operators are to be

time-ordered, with the operator at the latest time sitting to the left;

• E ach term in the sum is divided by n!.

T he proof that E q. (4 .15 ) reproduces E q. (4 .14 ) is quite simple. T here

are n! possible orderings of the times in the multiple integral, pick one, say

t1 > t2 > t3 > · · · > tn. All possible time orderings of these integration

variables provides a complete enumeration of the region of integration in

the multiple integral. T he operator in the integrand is time-ordered in each

case. B ut now all of these contributions are identical by a change of dummy

integration variables. T hus E q. (4 .14 ) is reproduced.7

T he scattering operator Ŝ is now defined in the following manner

Ŝ ≡ L imε→0 L imt→+∞ L imt0→−∞ Ûε(t, t0) (4 .16 )

O ne lets the initial time t0 → −∞, the final time t→ +∞, and then, at the

very end, the limit of the adiabatic damping factor ε→ 0 is taken. T hus

Ŝ = L imε→0 Ŝε

= L imε→0

∞
∑

n=0

(

− i
~

)n
1

n!

∫ ∞

−∞

e−ε|t1| dt1 · · ·
∫ ∞

−∞

e−ε|tn| dtn ×

T
[

ĤI(t1)ĤI(t2) · · · ĤI(tn)
]

(4 .17 )

E verything so far has assumed t ≥ t0 in E qs. (4 .11) and the subsequent

development; however, one can equally well write these equations for t ≤ t0.

7T he explicit demonstration of this eq u ality for n = 2 is assigned as P rob. 4.1 .
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How is the above analysis modified? Write E q. (4 .12) in the following

fashion

Ûε(t, t0) = 1 +
i

~

∫ t0

t

e−ε|t′| ĤI(t
′)Ûε(t

′, t0) dt
′ (4 .18 )

It is readily verified that this expression reproduces E qs. (4 .11), and it

is most convenient since the integral now runs in the positive direction if

t0 ≥ t. A repetition of the above arguments in this case then leads to the

following infinite series

Ûε(t, t0) =
∞
∑

n=0

(

i

~

)n
1

n!

∫ t0

t

e−ε|t1| dt1

∫ t0

t

e−ε|t2| dt2 · · ·
∫ t0

t

e−ε|tn| dtn ×

T
[

ĤI(t1)ĤI(t2) · · · ĤI(tn)
]

; t ≤ t0 (4 .19 )

T he “ T -product” instructs the operators to be anti-time-ordered such that

the operator with the earliest time sits to the left. A simple reversal of the

limits of integration in each integral then gives the equivalent expression

Ûε(t, t0) =

∞
∑

n=0

(

− i
~

)n
1

n!

∫ t

t0

e−ε|t1| dt1

∫ t

t0

e−ε|t2| dt2 · · ·
∫ t

t0

e−ε|tn| dtn ×

T
[

ĤI(t1)ĤI(t2) · · · ĤI(tn)
]

; t ≤ t0 (4 .20)

We are now in a position to exhibit some of the properties of Ûε(t, t0)

from these series expansions:8

(1) Since the adjoint of a product is the product of the adjoints in the

reverse order, it follows immediately from E qs. (4 .15 ) and (4 .19 ) that

Ûε(t, t0)
† = Ûε(t0, t) (4 .21)

which holds for both t > t0 and t < t0.

(2) If one ends up back at the start time, no matter whether t > t0 or

t < t0, it must be true that

Ûε(t0, t)Ûε(t, t0) = 1 (4 .22)

T his follows from the series expansions, and the explicit demonstration of

this relation for n = 2 is left as P rob. 4 .1.

(3 ) It follows from the results in (1) and (2) that

Ûε(t, t0)
† = Ûε(t, t0)

−1 ; unitary (4 .23 )

8N ote that relations (1 )– (4) hold for finite ε.
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T he time-evolution operator is unitary. We know this must be true, since

the Schrödinger equation preserves the norm of the states. T his is now

readily verified from the relation

〈ΨI(t)|ΨI(t)〉 = 〈ΨI(t0)|Ûε(t, t0)
†Ûε(t, t0)|ΨI(t0)〉

= 〈ΨI(t0)|Ûε(t, t0)
−1Ûε(t, t0)|ΨI(t0)〉

= 〈ΨI(t0)|ΨI(t0)〉 (4 .24 )

(4 ) If one propagates the system from t0 → t1, and then from t1 → t2,

the result must be the same as propagation from t0 → t2. T hus the time-

evolution operator must obey the group property

Ûε(t2, t1)Ûε(t1, t0) = Ûε(t2, t0) ; group property (4 .25 )

L et us demonstrate this result for t2 > t1 > t0. T he result in (2) can then

be used to extend it to any relative times. F or example, if t1 > t2, just

write

Ûε(t2, t1)Ûε(t1, t0) = Ûε(t2, t1)Ûε(t1, t2)Ûε(t2, t0)

= Ûε(t2, t0) ; t1 > t2 (4 .26 )

Write out the νth term in the sum on the r.h.s. of E q. (4 .25 )

Û (ν)
ε (t2, t0) =

(

− i
~

)ν
1

ν!

∫ t2

t0

e−ε|t′
1
| dt′1 · · ·

∫ t2

t0

e−ε|t′ν | dt′ν ×

T
[

ĤI(t
′
1)ĤI(t

′
2) · · · ĤI(t

′
ν)
]

(4 .27 )

N ow note:

• T here are ν!/n!m! ways to partition the times t′1 · · · t′ν so that n times

are greater than the intermediate time t1, and m times are less than t1
— pick one;

• N ow integrate over all possible relative orderings of the times within

this particular partition;

• T hen sum over all possible choices of the times within this particu-

lar partition. T his provides a complete enumeration of the regions of

integration for a given (n,m) ;

• T he contributions in the sum are identical by a change of dummy in-

tegration variables, giving ν!/n!m! equal contributions;
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• T hen sum over all values of (n,m) for which m+ n = ν. T his provides

a complete evaluation of the multiple integral in E q. (4 .27 )

Û (ν)
ε (t2, t0) =

1

ν!

∑

n+m=ν

(

− i
~

)n+m
ν!

n!m!
× (4 .28 )

∫ t2

t1

e−ε|t′
1
| dt′1 · · ·

∫ t2

t1

e−ε|t′n| dt′n T
[

ĤI(t
′
1) · · · ĤI(t

′
n)
]

×
∫ t1

t0

e−ε|t′n+1
| dt′n+1 · · ·

∫ t1

t0

e−ε|t′n+m| dt′n+m T
[

ĤI(t
′
n+1) · · · ĤI(t

′
n+m)

]

• F inally, use
∑

ν

∑

n+m=ν =
∑

n

∑

m. T his establishes E q. (4 .25 ).

4.4 Û -O perator for F inite T im es

We started from the hamiltonian

Ĥε = Ĥ0 + e−ε|t| Ĥ1 (4 .29 )

In the end, we are to take the limit ε → 0, which restores the proper

hamiltonian. L et us assume that we have used the preceding analysis to

propagate the system from its initial state at t0 → −∞ to a finite time such

that

|t| � 1/ε ; finite time (4 .3 0)

N ow, for this time,

Ĥ = Ĥ0 + Ĥ1 ; full Ĥ (4 .3 1)

In this case, we can write a formal solution to the full Schrödinger equation

as9

|Ψi(t)〉 = e−
i
~

Ĥt|Ψi(0)〉 (4 .3 2)

Here |Ψi(0)〉 = |Ψi
I(0)〉 is the state that has propagated up to the time t = 0

from the initial state |ψi〉 prepared at t0 → −∞ [see E qs. (4 .2)]. With the

aid of the previous time-evolution operator, one can write this state as

|Ψi(0)〉 = |Ψi
I(0)〉 = Ûε(0,−∞)|ψi〉 ≡ |ψ(+)

i 〉 (4 .3 3 )

9We assu me here and henceforth that Ĥ1 now has no explicit time dependence.
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T his relation defines |ψ(+)
i 〉. A combination of E qs. (4 .3 2) and (4 .3 3 ) allows

the solution to the Schrödinger equation at a finite time, which satisfies

E q. (4 .3 0), to be expressed as

|Ψi(t)〉 = e−
i
~

Ĥt|ψ(+)
i 〉 (4 .3 4 )

Some comments:

• T his is the full Schrödinger state vector that develops from the state

|ψi〉 at t0 → −∞ ;

• O ne needs the adiabatic damping factor to bring that state vector up

to finite time with |Ψi(0)〉 = Ûε(0,−∞)|ψi〉 ≡ |ψ(+)
i 〉 ;

• F rom there, one can use the formal solution to the full Schrödinger

equation in E q. (4 .3 4 ).

We note that under the conditions that one can indeed use the formal

solution to the full Schrödinger equation, it follows that the interaction-

picture state vector at the time t is given by

|ΨI(t)〉 = e
i
~

Ĥ0t|Ψ(t)〉 = e
i
~

Ĥ0te−
i
~

Ĥ(t−t0)|Ψ(t0)〉
= e

i
~

Ĥ0te−
i
~

Ĥ(t−t0)e−
i
~

Ĥ0t0 |ΨI(t0)〉 (4 .3 5 )

Here |ΨI(t0)〉 is the interaction-picture state vector at the time t0. B ut now

we can immediately identify the time development operator Û(t, t0) from

the first of E qs. (4 .10)!

Û(t, t0) = e
i
~

Ĥ0te−
i
~

Ĥ(t−t0)e−
i
~

Ĥ0t0 ; |t|, |t0| � 1/ε (4 .3 6 )

It is only necessary to keep careful track of the ordering of the operators,

and make sure that one never interchanges factors that do not commute.

Several of our previous properties of the time-development operator

follow immediately from the expression in E q. (4 .3 6 ):

Û(t, t0)
† = Û(t0, t)

Û(t, t0)
† = Û(t, t0)

−1 ; unitary

Û(t1, t2)Û(t2, t3) = Û(t1, t3) ; group property (4 .3 7 )

4.5 T h e S-M atrix

T he interaction-picture state vector in the infinite future |ΨI(+∞)〉 that

develops from the interaction-picture state vector in the infinite past
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|ΨI(−∞)〉 is obtained with the scattering operator in E q. (4 .17 )

|ΨI(+∞)〉 = Ŝ |ΨI(−∞)〉 ; scattering operator (4 .3 8 )

N ow, with the adiabatic damping factor, the interaction state vectors in

the infinite past and infinite future are simple, they are just the individual

non-interacting state vectors in E q. (4 .9 ), or linear combinations of them.

T hus, if one starts with one such prepared state |Ψi
I(−∞)〉 = |ψi〉, and

asks for the probability for finding a particular state |ψf 〉 in the final state

|Ψi
I(+∞)〉 that evolves, in the presence of all the interactions, from that

initial prepared state, one has

Pfi = |〈ψf |Ψi
I(+∞)〉|2 = |〈ψf |Ŝ |Ψi

I(−∞)〉|2 = |〈ψf |Ŝ|ψi〉|2 (4 .3 9 )

T his is the probability of finding the initial state |ψi〉 in the final state |ψf 〉
after the scattering has taken place. Here |ψi〉 and |ψf 〉 are eigenstates of

the free hamiltonian Ĥ0. T he amplitude for this process to take place is

given by the S-matrix

Sfi ≡ 〈ψf |Ŝ|ψi〉 ; S-matrix (4 .4 0)

It was argued in Vol. I that the general form of the S-matrix for a

scattering process is

Sfi = δfi − 2πiδ(Ef − Ei) T̃fi (4 .4 1)

where T̃fi is the T -matrix. T here will always be an energy-conserving delta

function here coming out of any calculation.10

T he probability of making a transition to a state f 6= i is therefore

Pfi = |2πiδ(Ef − Ei)|2|T̃fi|2 ; probability of transition (4 .4 2)

It was argued in Vol. I that the square of the energy-conserving δ-function

is to be interpreted as

|2πiδ(Ef − Ei)|2 = 2πδ(Ef − Ei)
1

~

∫ T /2

−T /2

dt e
i
~
(Ef−Ei)t

=
2π

~
δ(Ef − Ei)T ; T → ∞ (4 .4 3 )

10 C ompare E q . (4.5 3 ) and P rob. 4.8 . In V ol. I w e removed some additional factors in
the definition of the T -matrix element Tfi [see E q I. (7 .3 6) and E q . (7 .3 8 )].
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where T → ∞ is the total time the interaction is turned on. T he transition

rate is then given by

ωfi =
Pfi

T
ωfi =

2π

~
δ(Ef − Ei)|T̃fi|2 ; transition rate (f 6= i) (4 .4 4 )

T his is the transition rate into one final state in the continuum. T o get the

transition rate into the group of states that actually get into our detectors

when the states are spaced very close together, one must multiply this

expression by the appropriate number of states dnf . T o get a cross section,

one divides by the incident fl ux

dσ =
2π

~
δ(Ef − Ei)|T̃fi|2

dnf

Iinc
; cross section (4 .4 5 )

Some comments:

• All of these expressions were discussed and utilized frequently in Vol. I;

• E q. (4 .4 4 ) is the full expression for F ermi’s Golden R ule, to all orders

in the interaction;

• T he derivation of the result for the transition rate involves some refine-

ment when adiabatic switching is invoked, in contrast to the sudden

turn-on and turn-off of the interaction in Vol. I; however, a proper

derivation of the transition rate in this case, which we shall subse-

quently carry out, gives essentially the same result

Sfi = δfi − 2πiδ(Ef − Ei) T̃fi

ωfi =
2

~
δfi Im T̃ii +

2π

~
δ(Ef − Ei)|T̃fi|2 ; transition rate (4 .4 6 )

4.6 T im e-Ind epend ent A nalysis

We will now perform some formal manipulations on the above results. L et

us try to explicitly carry out the time integrations in the general term in the

S-matrix in E q. (4 .17 ), which we rewrite in its initial time-ordered form

〈ψf |Ŝ(n)
ε |ψi〉 =

(

− i
~

)n ∫ ∞

−∞

e−ε|t1| dt1

∫ t1

−∞

e−ε|t2| dt2 · · ·
∫ tn−1

−∞

e−ε|tn| dtn

×〈ψf |e
i
~

Ĥ0t1Ĥ1e
− i

~
Ĥ0t1e

i
~

Ĥ0t2Ĥ1e
− i

~
Ĥ0t2 · · ·

· · · Ĥ1e
− i

~
Ĥ0tn−1e

i
~

Ĥ0tnĤ1e
− i

~
Ĥ0tn |ψi〉 (4 .4 7 )
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Here we have simply written out 〈ψf |ĤI(t1) · · · ĤI(tn)|ψi〉 in detail.

We will change variables in the integrals as follows

x1 = t1 ; t1 = x1

x2 = t2 − t1 ; t2 = x1 + x2

x3 = t3 − t2 ; t3 = x1 + x2 + x3

...
...

xn = tn − tn−1 ; tn = x1 + x2 + · · · + xn (4 .4 8 )

F irst, let the hamiltonians Ĥ0 on either end of the operator in E q. (4 .4 7 )

act on |ψi〉 and |ψf 〉, which are eigenstates of Ĥ0 with eigenvalues E0 and

Ef respectively. E quation (4 .4 7 ) then can be written as

〈ψf |Ŝ(n)
ε |ψi〉 =

(

− i
~

)n ∫ ∞

−∞

e−ε|t1| dt1

∫ t1

−∞

e−ε|t2| dt2 · · ·
∫ tn−1

−∞

e−ε|tn| dtn

×〈ψf |e
i
~
(Ef−E0)t1Ĥ1e

− i
~

Ĥ0(t1−t2)e
i
~

E0(t1−t2)Ĥ1e
− i

~
Ĥ0(t2−t3)e

i
~

E0(t2−t3) · · ·
· · · e− i

~
Ĥ0(tn−1−tn)e

i
~

E0(tn−1−tn)Ĥ1|ψi〉 (4 .4 9 )

N ext, introduce the change in variables in E qs. (4 .4 8 ), starting from the

right

〈ψf |Ŝ(n)
ε |ψi〉 =

(

− i
~

)n ∫ ∞

−∞

e
i
~
(Ef−E0)x1e−ε|x1| dx1 ×

〈ψf |Ĥ1

∫ 0

−∞

dx2 e
{− i

~
(E0−Ĥ0)x2−ε|x1+x2|} Ĥ1 ×

∫ 0

−∞

dx3 e
{− i

~
(E0−Ĥ0)x3−ε|x1+x2+x3|} Ĥ1 × · · ·

· · · Ĥ1

∫ 0

−∞

dxn e
{− i

~
(E0−Ĥ0)xn−ε|x1+ · · · +xn|} Ĥ1|ψi〉 (4 .5 0)

N ow do all the integrals starting on the right, keeping all the other variables

fixed while so doing.

C onsider the first integral over dxn at fixed (x1, · · · , xn−1). What we

really need is L imε→0 〈ψf |Ŝ(n)
ε |ψi〉. Since the damping factors are just there

to cut off the oscillating exponentials, we should get the same results no

matter how we go to that limit, if the theory is to make sense. We claim

that in the limit, we can replace e−ε|x1+ · · · +xn| .= eεxn in the integral over

xn, since it is only important for very large negative xn. R epetition of this
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argument, as we do the integrals from right to left, allows us to replace

L im ε→0

∫

· · ·
∫

e−ε|x1|e−ε|x1+x2| · · · e−ε|x1+ · · · xn| · · · =

L im ε→0

∫

· · ·
∫

e−ε|x1|eεx2 · · · eεxn · · · (4 .5 1)

T he integrals now factor, and they can all be immediately carried out

〈ψf |Ŝ(n)
ε |ψi〉 =

(

− i
~

)n

2π~ δ(Ef − E0)×

〈ψf |Ĥ1
1

−i(E0 − Ĥ0)/~ + ε
Ĥ1

1

−i(E0 − Ĥ0)/~ + ε
Ĥ1 · · ·

· · · 1

−i(E0 − Ĥ0)/~ + ε
Ĥ1|ψi〉

(4 .5 2)

T he operator Ĥ1 appears n times in this expression. T his equation has

meaning in terms of a complete set of eigenstates of Ĥ0 inserted be-

tween each term. With the redefinition ε~ ≡ ε, one arrives at the time-

independent power series expansion of the S-matrix

L imε→0 〈ψf |Ŝε|ψi〉 = 〈ψf |ψi〉 − L imε→0 2πiδ(Ef − E0)×

〈ψf |Ĥ1

∞
∑

n=0

(

1

E0 − Ĥ0 + iε
Ĥ1

)n

|ψi〉 (4 .5 3 )

Several comments:

• T he n = 0 term is exactly F ermi’s Golden R ule (see Vol. I);

• T he +iε in the denominator, with the sign coming from the correct

convergence factor in the integrals, just determines the correct boundary

conditions to put in the Green’s function (see later);

• We have proceeded to take the ε→ 0 limit in the final factor

L im ε→0

∫ ∞

−∞

dx1 e
{ i

~
(Ef−E0)x1−ε|x1|} = 2π~ δ(Ef − E0) (4 .5 4 )

• T he T -matrix can now be identified from E qs. (4 .4 1) and (4 .5 3 )

T̃fi ≡ 〈ψf |T̂ |ψi〉

〈ψf |T̂ |ψi〉 = 〈ψf |Ĥ1

∞
∑

n=0

(

1

E0 − Ĥ0 + iε
Ĥ1

)n

|ψi〉 ; T -matrix (4 .5 5 )
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• T his last relation can be rewritten as

〈ψf |T̂ |ψi〉 = 〈ψf |Ĥ1|ψ(+)
i 〉

|ψ(+)
i 〉 ≡

∞
∑

n=0

(

1

E0 − Ĥ0 + iε
Ĥ1

)n

|ψi〉 (4 .5 6 )

We show below that this is indeed identical to the state |ψ(+)
i 〉 pre-

viously introduced in E q. (4 .3 3 ). If the first term is separated out in

E q. (4 .5 6 ), and the series for |ψ(+)
i 〉 again identified in the second, this

relation can be rewritten as

|ψ(+)
i 〉 = |ψi〉+

1

E0 − Ĥ0 + iε
Ĥ1|ψ(+)

i 〉 ; L ippmann-Schwinger (4 .5 7 )

In this form, when projected into the coordinate representation, one

has an integral equation for |ψ(+)
i 〉. T his is the L ippmann-S chwinger

equation [L ippmann and Schwinger (19 5 0)], which has a meaning that

extends beyond the power series expansion though which it has been

derived. N ote that from E q. (4 .5 7 ), one observes

(E0 − Ĥ0)|ψ(+)
i 〉 = Ĥ1|ψ(+)

i 〉
or (E0 − Ĥ)|ψ(+)

i 〉 = 0 ; Ω→∞
ε→ 0 (4 .5 8 )

T hus the state |ψ(+)
i 〉, in the limits as the quantization volume Ω→∞,

and as the adiabatic damping factor ε → 0, is a scattering state that

is an eigenstate of the full Ĥ with eigenvalue E0.
11 T his is the same

energy we started with at t→ −∞ in the interaction picture.

• O ne therefore does not generate all of the eigenstates of Ĥ in this

manner, if there are bound states, but only the continuum scattering

states.12

• T he terms with n ≥ 1 in E q. (4 .5 6 ) give the higher B orn approx imations

for the scattering amplitude. T his is just “ old-fashioned” perturbation

theory, except that with the +iε in them, we now know what to do

when the denominators vanish.

• P eople tried to do Q E D with this perturbation scheme; however, by

singling out the time integration, the scattering amplitude is no longer

11A lthou gh the dependence on Ω is not explicit, w e k now , for example, that w ith a
potential V (r) in a big box w ith rigid w alls there w ill be a finite shift in the energy levels
as the interaction is tu rned on; this energy shift only vanishes in the limit Ω →∞.

12T he completeness relation is now
∑

i |ψ
(+ )

i 〉〈ψ
(+ )

i |+
∑

b n d sta te s
|ψb〉〈ψb| = 1̂ .
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explicitly covariant. Infinities arise from various sources, which are not

interpretable in a non-covariant approach. We will find that by leaving

the time integrations in, and starting from E q. (4 .17 ), we are able to

maintain a covariant, gauge-invariant S-matrix, which proves essential

to developing a consistent renormalization scheme.13

4.7 S cattering S tate

T he H eisenberg picture for the state vector is defined as follows

|ΨH〉 ≡ e
i
~

Ĥt |Ψ(t)〉 ; Heisenberg picture (4 .5 9 )

C orrespondingly, an operator in the Heisenberg picture is defined by

ÔH ≡ e
i
~

Ĥt Ô e−
i
~

Ĥt ; Heisenberg picture (4 .6 0)

It follows from E q. (4 .3 2) that the Heisenberg state vector is independent

of time14

i~
∂

∂t
|ΨH〉 = 0 (4 .6 1)

T he interaction-picture state vector is defined in E q. (4 .2). T he state vec-

tors in all the diff erent pictures coincide at t = 0

|ΨH〉 = |Ψ(0)〉 = |ΨI(0)〉 (4 .6 2)

T his provides further motivation for looking at the scattering state |ψ(+)
i 〉

defined in E q. (4 .3 3 ) by

|ψ(+)
i 〉 ≡ Ûε(0,−∞)|ψi〉 (4 .6 3 )

T he nth order contribution to Ûε(0,−∞) explicitly contains n powers

of Ĥ1

Û (n)
ε (0,−∞)|ψi〉 =

(

− i
~

)n ∫ 0

−∞

eεt1 dt1

∫ t1

−∞

eεt2 dt2 · · ·
∫ tn−1

−∞

eεtn dtn ×

e
i
~

Ĥ0t1Ĥ1e
− i

~
Ĥ0(t1−t2)Ĥ1e

− i
~

Ĥ0(t2−t3) · · · e− i
~

Ĥ0(tn−1−tn)Ĥ1e
− i

~
Ĥ0tn |ψi〉

(4 .6 4 )

13See the discu ssion in V ol. I.
14We remind the reader of the assu mption, at this point, that Ĥ has no explicit time

dependence.
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In comparing with our starting point in E q. (4 .4 7 ) from which we proceeded

to explicitly carrying out the time integrations, we note two diff erences:

• All the times satisfy t ≤ 0, hence the adiabatic damping factors in all

cases become e−ε|t| = eεt ;

• T here is no eigenstate |ψf 〉 on the left, and hence the operator Ĥ0 on

the left can no longer be replaced by its eigenvalue Ef .

We may proceed to change variables as in E qs. (4 .4 8 )– (4 .5 0). T his time,

instead of e−ε|x1+x2+ · · · +xn|, for example, we have eε(x1+x2+ · · · +xn) so that

all the adiabatic damping factors can simply be moved to their appropriate

position in the multiple integral. T hus we arrive at

Û (n)
ε (0,−∞)|ψi〉 =

(

− i
~

)n ∫ 0

−∞

dx1 e
nεx1e

i
~
(Ĥ0−E0)x1 Ĥ1 ×

∫ 0

−∞

dx2 e
(n−1)εx2e

i
~
(Ĥ0−E0)x2 Ĥ1

∫ 0

−∞

dx3 e
(n−2)εx3e

i
~
(Ĥ0−E0)x3 Ĥ1 × · · ·

· · · Ĥ1

∫ 0

−∞

dxn e
εxne

i
~
(Ĥ0−E0)xn Ĥ1|ψi〉 (4 .6 5 )

All the integrals now explicitly factor, and they can immediately be done

just as before with the result

Û (n)
ε (0,−∞)|ψi〉 =

1

E0 − Ĥ0 + inε
Ĥ1

1

E0 − Ĥ0 + i(n− 1)ε
Ĥ1 · · ·

· · · 1

E0 − Ĥ0 + iε
Ĥ1|ψi〉 (4 .6 6 )

Again, we are interested in the limit as ε → 0. E ach of the in̄ε in the

denominators, where n̄ = (1, 2, · · · , n), simply serves to define how one

treats the singularity in the individual Green’s functions.15 Hence, we can

simply replace them all by iε in the limit. T hus we indeed reproduce the

previously employed expression in E q. (4 .5 6 )

|ψ(+)
i 〉 = Ûε(0,−∞)|ψi〉

=

∞
∑

n=0

(

1

E0 − Ĥ0 + iε
Ĥ1

)n

|ψi〉 ; scattering state (4 .6 7 )

Again, by separating out the first term in the second line, and then re-

15T hey serve to define a contou r in the evalu ation of the Green’s fu nctions (see later).
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identifying the series for |ψ(+)
i 〉, this can be rewritten as an integral equation

|ψ(+)
i 〉 = |ψi〉+

1

E0 − Ĥ0 + iε
Ĥ1|ψ(+)

i 〉 (4 .6 8 )

and the integral equation has a meaning, even when the power series solu-

tion to it does not.

L et us also consider the fully interacting state |ψ(−)
f 〉 ≡ |Ψf

I (0)〉 that as

t→ +∞ reduces to the state |ψf 〉, so that |ψ(−)
f 〉 = Ûε(0,+∞)|ψf 〉. If we go

back to E q. (4 .19 ), and go through the arguments leading from E q. (4 .6 4 )

to (4 .6 7 ), we see that the only changes are the replacements E0 → Ef and

ε→ −ε (see P rob. 4 .3 ). T hus

|ψ(−)
f 〉 ≡ Ûε(0,+∞)|ψf 〉

=

∞
∑

n=0

(

1

Ef − Ĥ0 − iε
Ĥ1

)n

|ψf 〉 ; scattering state (4 .6 9 )

T his can again be written as an integral equation, which has meaning even

when the power series solution for it does not

|ψ(−)
f 〉 = |ψf 〉+

1

Ef − Ĥ0 − iε
Ĥ1|ψ(−)

f 〉 (4 .7 0)

T he state |ψ(+)〉 is known as the outgoing scattering state, and |ψ(−)〉 as

the incoming scattering state.16

T here are some important properties of these scattering states that fol-

low immediately:

(1) T he unitarity of the Ûε operator implies that

〈ψ(+)
i′ |ψ

(+)
i 〉 = 〈ψi′ |Ûε(0,−∞)†Ûε(0,−∞)|ψi〉 = 〈ψi′ |ψi〉 = δi′i (4 .7 1)

Similarly17

〈ψ(−)
f ′ |ψ

(−)
f 〉 = δf ′f (4 .7 2)

16T he Green’s fu nction in the former case has ou tgoing scattered w aves, w hile in the
latter case they are incoming [compare E q . (4.1 07 ) and P rob. 4.9].

17T he completeness relation can also be w ritten
∑

f |ψ
(−)

f
〉〈ψ

(−)

f
| +

∑

b n d sta te s

|ψb〉〈ψb| = 1̂ .
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(2) F urthermore, from E q. (4 .21) and the group property of Ûε, it follows

that

〈ψ(−)
f |ψ(+)

i 〉 = 〈ψf |Ûε(0,+∞)†Ûε(0,−∞)|ψi〉
= 〈ψf |Ûε(+∞, 0)Ûε(0,−∞)|ψi〉
= 〈ψf |Ûε(+∞,−∞)|ψi〉 (4 .7 3 )

T hus the inner product of |ψ(−)
f 〉 and |ψ(+)

i 〉 is just the S-matrix!

〈ψ(−)
f |ψ(+)

i 〉 = 〈ψf |Ŝ|ψi〉 ; S-matrix (4 .7 4 )

(3 ) Since taking the adjoint merely reverses the order of the operators and

changes the sign of the iε, the T -matrix in E q. (4 .5 5 ) can also be written

in the case Ef = E0 as

〈ψf |T̂ |ψi〉 = 〈ψf |Ĥ1

∞
∑

n=0

(

1

E0 − Ĥ0 + iε
Ĥ1

)n

|ψi〉

= 〈ψf |
[

∞
∑

n=0

(

1

E0 − Ĥ0 − iε
Ĥ1

)n
]†

Ĥ1|ψi〉

= 〈ψ(−)
f |Ĥ1|ψi〉 ; Ef = E0 (4 .7 5 )

(4 ) T hus, in summary, in addition to the explicit power-series expansions

in E qs. (4 .5 3 ) and (4 .5 5 ), we have expressions for the S-matrix and

T -matrix in terms of the incoming and outgoing scattering states that

are more general than the power-series solutions through which they

were derived

〈ψf |Ŝ|ψi〉 = 〈ψ(−)
f |ψ(+)

i 〉 ; S-matrix

= 〈ψf |ψi〉 − 2πiδ(Ef − E0)〈ψf |T̂ |ψi〉
〈ψf |T̂ |ψi〉 = 〈ψf |Ĥ1|ψ(+)

i 〉 = 〈ψ(−)
f |Ĥ1|ψi〉 ; T -matrix (4 .7 6 )

4.8 T ransition R ate

We now calculate the transition rate directly, in the presence of the adia-

batic switching. T he derivation is from [Gell-M ann and Goldberger (19 5 3 )],

in their classic paper on scattering theory. T he only subtlety in the cal-

culation is identifying those expressions that are well-defined in the limit

ε→ 0, and knowing when to take that limit. T his takes a little experience.
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T he Schrödinger state vector at the finite time t for a system that started

as |ψi〉 at t→ −∞ is

|Ψi(t)〉 = e−
i
~

Ĥt|Ψi(0)〉 = e−
i
~

ĤtÛε(0,−∞)|ψi〉 = e−
i
~

Ĥt|ψ(+)
i 〉 (4 .7 7 )

T he states that one observes experimentally in scattering, decays, etc. are

the free-particle states

|Φf (t)〉 = e−
i
~

Ef t|ψf 〉 (4 .7 8 )

F rom the general principles of quantum mechanics, the probability of

finding the system in the state |Φf (t)〉 at the time t, if it started in |ψi〉 at

t→ −∞, is then

Pfi(t) = |〈Φf (t)|Ψi(t)〉|2 ≡ |Mfi(t)|2 (4 .7 9 )

T his is the probability of having made a transition to the state |Φf (t)〉 at

the time t. T he transition rate is the time derivative of this quantity

ωfi =
d

dt
Pfi(t) = M?

fi(t)
d

dt
Mfi(t) + c.c. (4 .8 0)

We will show that this transition rate is independent of time for times such

that |t| � 1/ε. In the end, we will again let Ω → ∞, and ε → 0, where Ω

is the quantization volume. L et us proceed to calculate the transition rate.

F rom E qs. (4 .7 7 )– (4 .7 9 ) one has

Mfi(t) = 〈Φf (t)|Ψi(t)〉
= 〈ψf |e

i
~

Ef te−
i
~

Ĥt|ψ(+)
i 〉 (4 .8 1)

T his relation may be diff erentiated with respect to time to give

d

dt
Mfi(t) = − i

~
〈ψf |(Ĥ − Ef )e

i
~

Ef te−
i
~

Ĥt|ψ(+)
i 〉 (4 .8 2)

T he observation that (Ĥ −Ef )|ψf 〉 = (Ĥ0 + Ĥ1 −Ef )|ψf 〉 = Ĥ1|ψf 〉 gives

d

dt
Mfi(t) = − i

~
e

i
~

Ef t〈ψf |Ĥ1 e
− i

~
Ĥt|ψ(+)

i 〉 (4 .8 3 )

N ow E q. (4 .5 8 ) states that in the above limit

(E0 − Ĥ)|ψ(+)
i 〉 = 0 ; Ω→∞

ε→ 0 (4 .8 4 )
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U se of this relation in E qs. (4 .8 3 ) and (4 .8 1) then gives

d

dt
Mfi(t) = − i

~
e

i
~
(Ef−E0)t〈ψf |Ĥ1|ψ(+)

i 〉

Mfi(t) = e
i
~
(Ef−E0)t〈ψf |ψ(+)

i 〉 (4 .8 5 )

Substitution of these relations into E q. (4 .8 0) then expresses the tran-

sition rate as

ωfi =
2

~
Im 〈ψf |Ĥ1|ψ(+)

i 〉〈ψf |ψ(+)
i 〉? (4 .8 6 )

T his expression now has the following properties:

• It is independent of time;

• It is well-defined in the limit Ω →∞, ε→ 0.18

F rom our previous analysis in E qs. (4 .7 6 ) and (4 .6 8 ), we have

〈ψf |Ĥ1|ψ(+)
i 〉 = 〈ψf |T̂ |ψi〉 = T̃fi

|ψ(+)
i 〉 = |ψi〉+

1

E0 − Ĥ0 + iε
Ĥ1|ψ(+)

i 〉 (4 .8 7 )

T he inner product of the second relation with |ψf 〉 gives

〈ψf |ψ(+)
i 〉 = 〈ψf |ψi〉+

1

E0 − Ef + iε
T̃fi (4 .8 8 )

Substitution of this relation and the first of E qs. (4 .8 7 ) into E q. (4 .8 6 ) then

gives

ωfi =
2

~
δfi Im T̃ii +

2

~
Im

1

E0 − Ef − iε
|T̃fi|2 (4 .8 9 )

F inally, we make use of the relation

1

E0 − Ef − iε
= P 1

E0 − Ef
+ iπδ(E0 − Ef ) (4 .9 0)

Here P denotes the C auchy principal value, defined by deleting an infinites-

imal symmetric region of integration through the singularity, and then let-

ting the size of that region go to zero. E quation (4 .9 0) is a statement on

18H ere w e w ill simply ju stify this observation a posteriori, throu gh the many applica-
tions of the final expression. N ote that by tak ing this limit too early in the derivation,
one can arrive at spu riou s resu lts [for example, try su bstitu ting the second of E q s. (4.8 5 )
into E q . (4.7 9)].
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contour integration; it is derived in P rob. B .4 . With the use of this relation,

E qs. (4 .8 9 ) and (4 .7 6 ) become

ωfi =
2

~
δfi Im T̃ii +

2π

~
δ(E0 − Ef )|T̃fi|2 ; transition rate

Sfi = δfi − 2πiδ(E0 − Ef )T̃fi ; S-matrix (4 .9 1)

T hese expressions are exact. T hey are the results quoted in E qs. (4 .4 6 ) and

used extensively in Vol. I.

4.9 U nitarity

T he first term on the r.h.s. of ωfi in E q. (4 .9 1) only contributes if f = i;

it is there to take into account the depletion of the initial state. R eturn to

E q. (4 .7 9 ). With the completeness of the states |Φf (t)〉, and the normal-

ization of the state |Ψi(t)〉, a sum over all final states gives19

∑

f

Pfi(t) =
∑

f

〈Ψi(t)|Φf (t)〉〈Φf (t)|Ψi(t)〉

= 〈Ψi(t)|Ψi(t)〉 = 1 (4 .9 2)

T his is the statement of conservation of probability— the initial state must

end up somewhere. T he time derivative of this sum then vanishes

d

dt

∑

f

Pfi(t) =
∑

f

d

dt
Pfi(t) =

∑

f

ωfi = 0 (4 .9 3 )

Here the transition rate has been identified from E q. (4 .8 0). A substitution

of the expression for the transition rate in E q. (4 .9 1) into this relation then

gives

− 2

~
Im T̃ii =

∑

f

2π

~
δ(Ef − E0)|T̃fi|2 ; unitarity (4 .9 4 )

T his relation for the imaginary part of the elastic T -matrix, refl ecting con-

servation of probability and depletion of the initial state, is known as uni-

tarity.

19T his su m now inclu des the state f = i; the reader shou ld note that there is no su m
over the repeated index i implied in E q s. (4.91 ) and (4.94).
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4.10 E xam ple: Potential S cattering

T o see one practical application of the preceding scattering theory, con-

sider the elastic scattering of a non-relativistic particle of mass m from a

spherically symmetric potential Ĥ1 = V (|x̂|) in three dimensions. F irst we

calculate the Green’s function, or propagator.

4.10 .1 Green’s Function (Propagator)

T he Green’s function in this case is defined by the following matrix element

taken between eigenstates of position

G0(x− y) = 〈x| 1

Ĥ0 − E0 − iε
|y〉 ; Green′s function (4 .9 5 )

Here

Ĥ0 =
p̂2

2m
; E0 ≡

~
2k2

2m
(4.96)

As usual, we start in a big cubical box of volume Ω where the eigenstates

of momentum are plane waves satisfying periodic boundary conditions

p̂ |t〉 = ~t |t〉

〈x|t〉 = φt(x) =
1√
Ω
eit·x ; p.b.c. (4.97 )

T he eigenstates of momentum satisfy the completeness relation
∑

t

|t〉〈t| = 1̂ (4.98 )

Insert this expression in E q . (4.95 ), and use E q s. (4.96) and (4.97 )

G0(x− y) =
2m

~2

∑

t

〈x|t〉 1

t2 − k2 − iε〈t|y〉

=
2m

~2

1

Ω

∑

t

eit·(x−y) 1

t2 − k2 − iε (4.99)

W e have redefi ned (2m/~2)ε→ ε in this expression.

N ow tak e the limit as the volume Ω → ∞ , in which case the sum over

states becomes an integral, in the familiar fashion,
∑

t → Ω(2π)−3
∫

d3t.

In this limit

G0(x− y) =
2m

~2

1

(2π)3

∫

d3t eit·(x−y) 1

t2 − k2 − iε (4.10 0 )
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It remains to do this integral. T ak e r ≡ x − y to defi ne the z-axis. T hen

t · (x − y) = tr cos θ and d3t = t2dt dφ sin θ dθ. T he angular integrations

are then immediately performed

∫ 2π

0

dφ

∫ π

0

sin θ dθ eitr c o s θ = 2π

∫ 1

−1

dx eitr x = 4π
sin tr

tr
(4.10 1)

W e are left with

G0(x − y) =
2m

~2

4π

(2π)3
1

r

∫ ∞

0

tdt sin tr
1

t2 − k2 − iε (4.10 2)

N ow write the integral as
∫ ∞

0

tdt sin tr · · · =
∫ ∞

0

tdt
1

2i
(eitr − e−itr ) · · ·

=
1

2i

∫ ∞

−∞

tdt eitr · · · (4.10 3 )

H ere we have simple changed variables t → −t in the second term, and

combined it with the fi rst (the rest of the integrand is a function of t2).

T he req uired integral is then reduced to

G0(x− y) =
2m

~2

4π

(2π)3
1

2ir

∫ ∞

−∞

tdt eitr 1

t2 − k2 − iε ; r ≡ x− y (4.10 4)

where the integral now runs along the entire real t-axis. T here is suffi cient

convergence in the integrand that closing the contour with a semi-circle in

the upper-1/ 2 t-plane mak es a vanishing contribution to the integral in the

limit as the radius R of that semi-circle becomes infi nite.20 T hus the free

G reen’s function has been reduced to a contour integral where the contour

C is that illustrated in F ig. 4.1.

T he integral is then evaluated using the complex-variable techniq ues

summarized in appendix B . T he integrand is an analytic function of t except

at the poles where the denominator vanishes. T hat denominator can be

rewritten as

1

t2 − k2 − iε =
1

(t− k − iε)(t+ k + iε)
(4.10 5 )

where we have again redefi ned ε→ 2kε (here k > 0 ), and neglected O(ε2).

T he integrand thus has simple poles at t = k+ iε and t = −k− iε, only the

fi rst of which lies inside C.

20S e e P ro b . 4 .4 .



ADVANCED MODERN PHYSICS - Theoretical Foundations
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/physics/7555.html

J a n u a ry 27 , 2010 10:37 W S P C / B o o k T rim S iz e fo r 9 in x 6 in V 2ro o t

92 A d vanced M od ern P hysics

k+i

C

t

-k- i

R

- p la n e

F ig . 4 .1 C o n to u r fo r th e e v a lu a tio n o f th e G re e n ’s fu n c tio n G0(x − y) in th e c o m p le x
t-p la n e , to g e th e r w ith th e sin g u la rity stru c tu re a rriv e d a t w ith a d ia b a tic d a m p in g . H e re
R →∞.

T he integral is then given by 2πi× (residue at k). T hus

G0(x− y) =
2m

~2

4π

(2π)3
1

2ir
2πi

(

eik r

2

)

(4.10 6)

H ence we arrive at our fi nal result for the free G reen’s function in potential

scattering

G0(x− y) =
2m

~2

eik r

4πr
; r ≡ x− y (4.10 7 )

T his is recognized as the familiar G reen’s function for the scalar H elmholtz

eq uation (see [F etter and W aleck a (20 0 3 )]).

4 .1 0 .2 Scattering Wave Function

T he scattering state |ψ(+ )
i 〉 can be similarly projected onto eigenstates of

position. W ith the use of the completeness relation for these eigenstates,

and the defi nition of the G reen’s function in E q . (4.95 ), one has21

〈x|ψ(+ )
i 〉 = 〈x|ψi〉 −

∫

d3y 〈x| 1

Ĥ0 − E0 − iε
|y〉V (y) 〈y|ψ(+ )

i 〉 (4.10 8 )

W ith the defi nition 〈x|ψ(+ )
i 〉 ≡ ψ

(+ )
i (x)/

√
Ω, this becomes an integral eq ua-

tion for the scattering wave function

〈x|ψ(+ )
i 〉 ≡ 1√

Ω
ψ

(+ )
i (x)

ψ
(+ )
i (x) = eik·x −

∫

d3y G0(x− y)V (y)ψ
(+ )
i (y) (4.10 9)

21 W e h a v e u se d V (|x̂|) |y〉 = V (y) |y〉 w h e re y ≡ |y|; n o te th e sig n o f th e se c o n d te rm .
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4 .1 0 .3 T -m atrix

T he T -matrix can also be expressed in the coordinate representation as

T̃fi =

∫

d3y 〈kf |y〉V (y) 〈y|ψ(+ )
i 〉 (4.110 )

where the fi nal state is now written explicitly as an eigenstate of momentum

|ψf 〉 ≡ |kf 〉. W ith the introduction of the corresponding wave functions,

one has

T̃fi =
1

Ω

∫

d3y e−ikf ·y V (y)ψ
(+ )
i (y) (4.111)

4 .1 0 .4 C ross Section

T he diff erential cross section follows from the transition rate according to

E q . (4.45 )

dσ =
2π

~
δ(Ef − E0)|T̃fi|2

dn f

Iin c
(4.112)

In this expression:

(1) T he incident wave function is ψi(x) = eik·x/
√

Ω. T his yields an inci-

dent probability fl ux of

Iin c =
1

Ω

~k

m
(4.113 )

(2) T he number of fi nal states in a big box with periodic boundary condi-

tions is

dn f =
Ω

(2π)3
d3kf =

Ω

(2π)3
k2

fdkf dΩf (4.114)

(3 ) T he integral over the energy-conserving delta function gives
∫

δ(Ef − E0)k
2
fdkf =

2m

~2

kf

2
; |kf | = |k| (4.115 )

(4) A combination of the results in E q s. (4.112)– (4.115 ) gives

dσ

dΩf
=

2π

~

[

Ω

(2π)3
mk

~2

] [

Ωm

~k

]

|T̃fi|2 (4.116)

T he factors of Ω cancel, as they must, and the fi nal result for the

diff erential cross section for elastic scattering of a particle of energy
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E0 = ~
2k2/2m from the potential V (|x|) tak es the form

dσ

dΩf
= |f(k,θ)|2

f(k,θ) ≡ − 1

4π

2m

~2

∫

d3y e−ikf ·y V (y)ψ
(+ )
i (y) (4.117 )

T he minus sign is conventional.

(5 ) T he scattering wave function ψ
(+ )
i (x) in this expression is the solution

to the integral eq uation

ψ
(+ )
i (x) = eik·x − 2m

~2

∫

d3y
eik |x−y|

4π|x− y| V (y)ψ
(+ )
i (y) (4.118 )

4 .1 0 .5 U nitarity

T he scattering amplitude f(k,θ) and the T -matrix are related through

E q s. (4.117 ) and (4.111), and thus

− 2

~
Im T̃ii =

4π

Ω

~

m
Im f(k, 0 ) (4.119)

T he unitarity relation in E q . (4.94) states that

− 2

~
Im T̃ii =

∑

f

2π

~
δ(Ef − E0)|T̃fi|2 (4.120 )

W ithin a factor of the incident fl ux, the r.h.s. of this relation is just the

total cross section σto t. T hus E q . (4.120 ) can be rewritten as

− 2

~
Im T̃ii = Iin c σto t =

1

Ω

~k

m
σto t (4.121)

A comparison of E q s. (4.119) and (4.121) then leads to the op tical th eorem

relating the imaginary part of the forward elastic scattering amplitude and

the total cross section22

Im f(k, 0 ) =
k

4π
σto t ; optical theorem (4.122)

T he analysis of potential scattering in this section provides the under-

lying basis for the study of scattering in q uantum mechanics, as presented,

for example, in [S chiff (1968 )].23

22S o fa r, th e re is o n ly e la stic sc a tte rin g in th is p o te n tia l m o d e l, b u t th e o p tic a l th e o re m
is m o re g e n e ra l a n d h o ld s in th e p re se n c e o f a d d itio n a l in e la stic p ro c e sse s.

23 P ro b le m s 1.1– 1.5 in [W a le ck a (2 0 0 4 )] ta k e th e re a d e r th ro u g h th e e sse n tia ls o f th e
p a rtia l-w a v e a n a ly sis o f th e sc a tte rin g p ro b le m .




