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The Variational Computation of the Ground State Energy of Helium

I. Introduction to the variational computation

The Hamiltonian for the two-electron system of the helium atom is:

H = − ~
2

2m
(~∇2

1 + ~∇
2
2)−

2e2

r1
− 2e2

r2
+
e2

r12
, (1)

where
r12 ≡ |~r1 − ~r2|

is the distance between the two electrons. The mass of the electron is denoted
by m, and we work in the approximation of an infinitely heavy nucleus that is
located at the origin of our coordinate system. The term e2/r12 represented the
repulsion energy due to the two electrons.

We shall use the variational principle to compute the ground state energy of
the helium atom. The ground state wave function of the helium atom is of the
form:

1√
2
ψ(~r1 , ~r2)

[

|↑ ↓〉 − |↓ ↑〉
]

,

where the spin-part of the wave function is in an antisymmetric spin-singlet state
and the space-part of the wave function is symmetric, ψ(~r1 , ~r2) = ψ(~r2 , ~r1),
in order to be consistent with the Pauli principle, which requires that the total
wave function should be antisymmetric with respect to the interchange of the
two electrons. Since the Hamiltonian is spin-independent (we will not include
small corrections due to fine-structure or hyperfine-structure), we can ignore the
spin-part of the wave function and focus on the space-part alone.

We choose our variational ground state wave function to be:

ψ(~r1 , ~r2 , Z) =
Z3

πa30
e−Z(r1+r2)/a0 , (2)

where a0 is the usual Bohr radius and Z is the variational parameter. This choice is
motivated by the following observation. For Z = 2, the wave function of eq. (2) is
the product of two ground state hydrogen atom wave functions (but with the total
charge of the nucleus set to 2e). This would be the ground state wave function
for the helium atom in the absence of the term e2/r12 in the Hamiltonian given
in eq. (1). Including the latter term, each electron sees the nucleus as partially
screened due to the presence of the other electron. Hence, we expect that each
electron sees and effective value of Z that is somewhat less than two (but certainly
greater than one). Consequently, eq. (2) with Z as a variational parameter seems
like a suitable candidate for a trial ground state wave function.
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According to the variational principle, we must compute

E(Z) = 〈ψ(Z)|H |ψ(Z)〉 , (3)

and minimize E(Z) as a function of Z. Suppose the minimum occurs at Z = Zmin.
Then, our estimate for the helium ground state energy is

Eg ≃ E0 ≡ E(Zmin) .

The variational principle guarantees that the true ground state energy, Eg, satisfies
E0 ≥ Eg. If we have chosen our trial wave function wisely, then E0 will be only
slightly larger than Eg and provide a good estimate of the true ground state
energy.

II. Details of the computation of E(Z)

Inserting the trial wave-function, eq. (2) into eq. (3) and using the coordinate
representation for the wave function,

E(Z) =

(

Z3

πa30

)2 ∫

d3r1 d
3r2 e

−Z(r1+r2)/a0

×
[

~
2

2m
(~∇2

1 + ~∇
2
2)− 2e2

(

1

r1
+

1

r2

)

+
e2

r12

]

e−Z(r1+r2)/a0 . (4)

Our task is to evaluate this integral. We can simplify our calculation by noting
that:
[

~
2

2m
(~∇2

1 + ~∇
2
2)− Ze2

(

1

r1
+

1

r2

)]

e−Z(r1+r2)/a0 = (−2Z2 Ry)e−Z(r1+r2)/a0 , (5)

where

1 Ry =
me4

2~2
=

e2

2a0
≃ 13.6 eV , (6)

is the usual Rydberg of energy. Eq. (5) is simply the statement that if we neglect
the repulsive electron–electron energy, e2/r12, then eq. (2) is the exact ground
state energy for two independent hydrogen-like atoms, each with a nucleus charge
of Ze. The unnormalized ground state energy-eigenfunction is e−Z(r1+r2)/a0 and
the corresponding ground state energy eigenvalue is then −2Z2 Ry.

Thus, if we replace −2e2 with −Ze2 + (Z − 2)e2 in eq. (4), and use the fact
that the trial wave function, eq. (2) is normalized to unity,

(

Z3

πa30

)2 ∫

d3r1 d
3r2 e

−2Z(r1+r2)/a0 = 1 ,

then eqs. (4) and (5) yield:

E(Z) = −2Z2 Ry +

(

Z3

πa30

)2 ∫

d3r1 d
3r2

[

(Z − 2)e2
(

1

r1
+

1

r2

)

+
e2

r12

]

e−2Z(r1+r2)/a0

= −2Z2 Ry +
2e2(Z − 2)Z

a0
+

(

Z3

πa30

)2 ∫

d3r1 d
3r2

e2

r12
e−2Z(r1+r2)/a0 ,
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where I have used the fact that:1
〈

1

r

〉

100

≡
∫

d3r
1

r
|ψ100(~r)|2 =

Z3

πa30

∫

d3r
1

r
e−2Zr/a0 =

Z

a0
.

Using eq. (6), it follows that:

E(Z) = −2 Ry(4Z − Z2) +

(

Z3

πa30

)2 ∫

d3r1 d
3r2

e2

r12
e−2Z(r1+r2)/a0 . (7)

The remaining integral is challenging. However, it can be done with the help
of a couple of identities. The first identity involves the expansion of 1/r12 in terms
of Legendre polynomials:

1

r12
≡ 1

|~r1 − ~r2|
=

1

r>

∞
∑

ℓ=0

(

r<
r>

)ℓ

Pℓ(cos β) , (8)

where β is the angle between ~r1 and ~r2, and the quantities r< and r> are defined
by:2

r> = max{r1 , r2} , r< = min{r1 , r2} . (9)

Eq. (8) can be easily derived using the generating function,3

(1− 2µs+ s2)−1/2 =

∞
∑

ℓ=0

Pℓ(µ)s
ℓ , |s| < 1 . (10)

Note that:

|~r1 − ~r2| =
√

r21 + r22 − 2r1r2 cos β = r>

√

1− 2r<
r>

cos β +

(

r<
r>

)2

,

1The derivation of this result can be found in Supplement 8A to S. Gasiorowicz, Quantum

Physics, 3rd Edition (John Wiley & Sons, Inc., Hoboken, NJ, 2003), which you can download
from Section IV of the class website.

2This notation allows us to write one formula instead of two formulae for the two separate
cases of r1 < r2 and r1 > r2. Technically, the series does not converge in the case of r1 = r2.
Nevertheless, we can treat the case of r1 = r2 by appropriately defining the sum in the limit of
r1 → r2 [cf. footnote 3].

3This result can be found in N.N. Lebedev, Special Functions and Their Applications (Dover
Publications, Inc., Mineola, NY, 1972), p. 45. Strictly speaking, the series on the right hand
side of eq. (10) does not converge when |s| = 1. However, in the mathematical literature,
the Legendre series given in eq. (10) with |s| = 1 is defined to be the result obtained by first
computing the sum for arbitrary |s| < 1 and then taking the |s| → 1 limit at the end of the
calculation. The end result is called the Poisson sum of the Legendre series. For example, for
s = ±1, we define the corresponding Poisson sums of eq. (10) by:

1

2 sin(β/2)
=

∞
∑

ℓ

Pℓ(cosβ) ,
1

2 cos(β/2)
=

∞
∑

ℓ

(−1)ℓPℓ(cosβ) ,

where we have used the identities: sin2(β/2) = 1

2
(1− cosβ) and cos2(β/2) = 1

2
(1 + cosβ) , and

the well-known property, Pℓ(− cosβ) = (−1)ℓPℓ(cosβ). For more details, see pp. 129–132 of
Paolo Lanzano, Deformations of an Elastic Earth (Academic Press, Inc., New York, NY, 1982).
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where 0 ≤ r<
r>

< 1 due to the definition of eq. (9). In particular, we identify

µ ≡ cos β and s ≡ r<
r>
, in which case eq. (8) then follows.

The second identity is the addition formula for spherical harmonics,

Pℓ(cos β) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Y m
ℓ (θ1, φ1)

∗ Y m
ℓ (θ2, φ2) , (11)

which is derived on p. 363 of Baym. Here, θ1 and φ1 are the polar and azimuthal
angles of the vector ~r1, and θ2 and φ2 are the polar and azimuthal angles of the
vector ~r2, respectively.

Combining eqs. (8) and (11), one obtains a very useful identity:

1

r12
≡ 1

|~r1 − ~r2|
=

1

r>

∞
∑

ℓ=0

(

r<
r>

)ℓ
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Y m
ℓ (θ1, φ1)

∗ Y m
ℓ (θ2, φ2) (12)

We can use this identity to perform the integration:
∫

d3r1 d
3r2

1

r12
e−2Z(r1+r2)/a0 =

∫

∞

0

r21 dr1

∫

∞

0

r22 dr2 e
−2Z(r1+r2)/a0

×
∞
∑

ℓ=0

rℓ<
rℓ+1
>

4π

2ℓ+ 1

ℓ
∑

m=−ℓ

∫

dΩ1 Y
m
ℓ (θ1, φ1)

∗

∫

dΩ2 Y
m
ℓ (θ2, φ2) . (13)

The integrals over the solid angles Ω1 and Ω2 are trivial. If one recalls the or-
thonormality condition:

∫

dΩY m
ℓ (θ, φ)∗ Y m′

ℓ′ (θ, φ) = δℓℓ′ δmm′ ,

and remembers that

Y 0
0 (θ, φ) =

1√
4π

,

then it follows that
∫

dΩY m
ℓ (θ, φ) =

√
4π

∫

dΩY m
ℓ (θ, φ)Y 0

0 (θ, φ) =
√
4π δℓ,0 δm,0 .

Inserting this result into eq. (13), we see that the only term that survives in the
sum over ℓ and m is the ℓ = m = 0 term. Thus, after writing d 3r1 = r21dr1dΩ1

and d 3r2 = r22dr2dΩ2, we can easily perform the integration over the solid angles
Ω1 and Ω2. We are then left with:
∫

d3r1 d
3r2

1

r12
e−2Z(r1+r2)/a0 = (4π)2

∫

∞

0

r21 e
−2Zr1/a0 dr1

∫

∞

0

r22 e
−2Zr2/a0

1

r>
dr2 .

Since r> ≡ max {r1 , r2}, it is convenient to break up the integration over r2
into two parts: 0 ≤ r2 < r1 and r1 < r2 < ∞. Note that in the region where
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0 ≤ r2 < r1 we have r> = r1, whereas in the region where r1 < r2 < ∞ we have
r> = r2. Thus,

∫

d3r1 d
3r2

1

r12
e−2Z(r1+r2)/a0 = (4π)2

∫

∞

0

r1 e
−2Zr1/a0 dr1

∫ r1

0

r22 e
−2Zr2/a0 dr2

+ (4π)2
∫

∞

0

r21 e
−2Zr1/a0 dr1

∫

∞

r1

r2 e
−2Zr2/a0 dr2 .

(14)

The remaining integrals are all elementary. I list the relevant integrals below:

∫

eAr dr =
1

A
eAr ,

∫

reAr dr =
1

A

(

r − 1

A

)

eAr ,

∫

r2eAr dr =
1

A

(

r2 − 2r

A
+

2

A2

)

eAr .

Integrating over r2 in eq. (14) yields:

∫

d3r1 d
3r2

1

r12
e−2Z(r1+r2)/a0 = (4π)2

a30
4Z3

∫

∞

0

r1 e
−2Zr1/a0 dr1

− (4π)2
a30
4Z3

∫

∞

0

r1

(

1 +
Zr1
a0

)

e−4Zr1/a0 dr1 .

Integrating over r1 then produces the final result,

∫

d3r1 d
3r2

1

r12
e−2Z(r1+r2)/a0 =

5π2a50
8Z5

.

It follows that:

(

Z3

πa30

)2 ∫

d3r1 d
3r2

e2

r12
e−2Z(r1+r2)/a0 =

5Ze2

8a0
=

5Z

4
Ry .

Inserting this result back into eq. (7) then yields:

E(Z) = −2 Ry
[

4Z − Z2 − 5
8
Z
]

= −2 Ry

[

27

8
Z − Z2

]

. (15)

We minimize E(Z) by taking the derivative and setting it equal to zero:

dE

dZ
= −2 Ry

[

27

8
− 2Z

]

= 0 ,
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or

Zmin =
27

16
.

Indeed 1 < Z < 2 as expected from our argument in Section 1 on the screening of
the nucleus. We now insert Z = Zmin into eq. (15) to obtain our estimate of the
ground state energy of the helium atom:

E0 = E(Zmin) = −2 Ry

[

27

8

(

27

16

)

−
(

27

16

)2
]

= −2 Ry

(

27

16

)2

≃ −5.695 Ry .

Using 1 Ry = 13.6 eV, we end up with:

E0 ≃ −77.4 eV ,

which should be compared with the measured value of Eg = −78.98 eV. As
expected from the variational principle, the ground state energy obtained by the
variational computation is slightly larger than the true answer.

REMARK: The ground state energy of helium could also be estimated using
first order perturbation theory, in which the repulsive interaction e2/r12 is taken
as the perturbation. This is Exercise 17.2.5 on p. 457 of Shankar. He finds a
ground state energy of −74.8 eV. Clearly, the variational estimate of the ground
state energy is better. The reason is easy to understand. One obtains the first-
order perturbative result by inserting Z = 2 into eq. (7), as this corresponds to
computing the energy shift E(1) = 〈ψ| e2/r12 |ψ〉 using the unperturbed ground
state wave function for ψ (which corresponds to Z = 2). We would then get

E(Z = 2) = −11

2
Ry = −5.5 Ry = −74.8 eV .

However, since the minimum of E(Z) occurs at Z = 27/16 (and not at Z = 2),
it follows that the variational estimate of the ground state energy of helium must
be better than the estimate based on first order perturbation theory.

III. The Ionization Energy

The ionization energy, I, is defined as the energy needed to remove one electron
from the helium atom. That is,

I = Ei − Eg ,

where Eg is the ground state energy of the helium atom and Ei is the energy of
the ionized helium atom with one electron removed and the second electron in its
ground state. The latter is equal to the ground state energy of a hydrogen-like
atom with Z = 2. Thus,

Ei = −Z2 Ry = −4 Ry .
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Our variational computation of the ground state energy of the helium in Section 2
yielded −5.695 Ry. Hence, we predict:

I = (−4 + 5.695) Ry = 1.695 Ry ≃ 23 eV .

This should be compared with the experimentally measured helium ionization
energy of

I = 1.807 Ry = 24.481 eV .
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