
Physics 216 Problem Set 4 Spring 2012

DUE: THURSDAY, MAY 24, 2012

1. (a) Consider the Born approximation as the first term of the Born series. Show
that:

(i) the Born approximation for the forward scattering amplitude [i.e. at θ = 0]
is purely real, and therefore

(ii) the Born approximation fails to satisfy the optical theorem.

Do not assume that the potential is spherically symmetric. However, you may assume
that the potential is hermitian.

(b) Consider the Yukawa potential:

V = −
ge−µr

r
.

In class, we computed the (first) Born approximation to the scattering amplitude.
Consider now the second Born approximation; i.e., the second term in the Born series.
Compute the scattering amplitude in the forward direction, θ = 0, in the second Born
approximation.1 Check to see whether the optical theorem is now satisfied.

HINT: You will need to evaluate 〈~k|V (E − H0 + iǫ)−1V |~k〉, where H0 = ~P
2/(2m).

In class, we inserted a complete set of position eigenstates in order to convert this
matrix element as a multiple integral over d3r1d

3r2. However, it is easier to evaluate
the matrix element by inserting a complete set of momentum eigenstates, |k′〉. You
will then only have to evaluate an integral over d3k′.

(c) Compare the magnitudes of the first and second terms of the Born series for the
forward scattering amplitude. What condition do you find if you require the second
term in the Born series to be smaller than the first term? Compare this condition
with the one you would get for the validity of the Born approximation based on the
formula derived in class.

(d) Using the first Born approximation for the scattering amplitude, compute the
s and p wave phase shifts. Under what circumstances does the s-wave phase shift
dominate? Is the Born approximation valid in this case?

1Do not attempt to compute the scattering amplitude in the second Born approximation for
θ 6= 0. It is extremely messy!



2. Consider the case of low-energy scattering from a spherical delta-function shell,

V (r) = V0δ(r − a) ,

where V0 and a are constants. Calculate the scattering amplitude, f(θ), the differen-
tial cross-section and the total cross-section, under the assumption that ka ≪ 1, so
that only s-wave scattering is important.

HINT: Solve the time-independent Schrodinger equation exactly in the case of ℓ = 0
for the radial wave function, R(r) ≡ u(r)/r. Consider separately the cases of r < a
and r > a. By integrating the Schrodinger equation from r = a − ǫ to a + ǫ (where
0 < ǫ≪ 1), show that
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Inserting your explicit solutions for u(r) for the two cases r < a and r > a into the
equation above, you should be able to determine the s-wave phase shift. In particular,
find an expression for tan δ0 in terms of V0 and the wave number k. Evaluate the
phase shift in the limit of ka≪ 1 to simplify your expression and then complete the
problem.

3. Low energy scattering is parameterized by two parameters: the scattering length

a and the effective range r0. In this problem, you will verify this statement.

(a) Show that in the limit of k → 0, (more precisely, for kb ≪ 1, where b is the
range of the potential V (r), i.e. V (r) ≈ 0 for r > b):

k cot δ0(k) = −1/a ,

where a is a parameter with units of length and δ0(k) is the s-wave phase shift. What
is the cross-section in the limit of zero energy?

(b) Obtain an expression for the partial wave amplitude:

a0(k) =
e2iδ0 − 1

2ik

in the limit of k → 0, using the results of part (a). For what values of k does a0(k)
have poles? Can one associate these poles with the existence of bound states? What
is the relation between the bound state energy Eb, and the scattering length? Obtain
an expression for the total cross-section as a function of the energy E = ~

2k2/(2m),
assuming that the low energy approximation is still valid. Express your result in
terms of Eb.

(c) Show that by considering the radial integral equation:

(i) Gℓ
−k(r, r

′) = Gℓ
k(r, r

′)∗ ,

(ii) Aℓ(−k, r) = (−1)ℓAℓ(k, r)
∗ ,

(iii) exp(2iδℓ(k)) = exp(−2iδℓ(−k)) .



You will need (i) and (ii) to prove (iii). Using (iii), show that cot δℓ(k) is an odd
function of k. Assuming it has a power series about k = 0, show that:

k2ℓ+1 cot δℓ(k) =
−1

aℓ
+ 1

2
rℓk

2 +O(k4) .

For the case of ℓ = 0, show that a0 and r0 each have dimensions of length.

(d) Obtain expressions for the partial wave amplitude a0(k) and low energy cross-
section in terms of the scattering length a ≡ a0 and the effective range r0 which
appear in the expansion obtained in part (c).

4. In this problem, I will lead you through the steps involved in solving the scattering
problem for a charged particle subject to the Coulomb potential. We shall first solve
the Schrodinger equation,

(

−
~
2~∇

2

2m
−
Ze2

r

)

ψ(~x) = Eψ(~x) , for E > 0 . (1)

(a) Define the dimensionless quantity,

γ ≡ −
mZe2

~2k
.

Let ψ(~x) = ei
~k·~rX(~x), with E ≡ ~

2k2/(2m). Inserting this result into eq. (1), derive
the following differential equation for X(~x),

~∇
2X + (2i~k· ~∇)X −

2γk

r
X = 0 , (2)

where r ≡ |~x|.

(b) Set up the coordinate system so that the beam is incoming along the z-

direction, so that ~k = kẑ. Define a new variable,

u = kr −~k·~x = kr(1− cos θ) . (3)

Assume that the form of the wave function can be chosen such that ψ(~x) = eikzX(u).
That is X(~x) is a function of u alone.2 In this case, show that eq. (2) now becomes

u
d2X

du2
+ (1− iu)

dX

du
− γX = 0 . (4)

HINT: Since X(u) is an implicit function of ~x [cf. eq. (3)], you can use the chain

rule to express ~∇X and ~∇
2X in terms of dX/du and d2X/du2. The analysis is

straightforward in Cartesian coordinates.

2Indeed, one can prove that this is the case for the scattering problem consisting of an incoming
wave along the z direction and an outgoing spherical wave. For the present purposes, you can assume
that this is true.



(c) Solve eq. (4) subject to the boundary condition that the solution for ψ(~x)
must be non-singular at the origin. Feel free to consult your favorite book on special
functions of mathematical physics.3 Show that the solution to eq. (4) is a confluent
hypergeometric function,

X(u) = C 1F1(−iγ, 1; iu) ,

where C is a constant to be determined.

(d) To determine the constant C, consider the asymptotic behavior of ψ(~x) as
r → ∞. Show that one can choose C such that:

ψ(~x) = ψinc(~x) + ψsc(~x) ,

where the incident wave function is

ψinc(~x) = exp {ikz + iγ ln[k(r − z)]}

(

1 +
γ2

ik(r − z)

)

,

with z = r cos θ, and the scattered wave function is

ψsc(~x) =
exp {ikr − iγ ln[k(r − z)]}

ik(r − z)

Γ(1 + iγ)

Γ(−iγ)
.

HINT: You will need to find the asymptotic expansion for the confluent hypergeo-
metric function 1F1(a, b; x) in an appropriate reference book (e.g., see footnote 3).

(e) Define the Coulomb scattering amplitude by:

ψsc(~x) =
ei[kr−γ ln(2kr)]

r
fc(θ), as r → ∞ .

Obtain an explicit expression for fc(θ). Express your answer in terms of the pure
phase factor, e2iδ0 ≡ Γ(1 + iγ)/Γ(1− iγ).

(f) Compute the probability currents jinc and jsc and following the same procedure
used in class, show that:

dσ

dΩ
= |fc(θ)|

2 .

Using the expression for fc(θ) obtained in part (d), compute the differential cross
section and verify that your result coincides with the Rutherford scattering formula.
Show that the total cross section σ diverges.

(g) Show that the poles of fc(θ) correspond to the bound states of a hydrogenic
atom with atomic number Z.

3One of my favorites is N.N. Lebedev, Special Functions and their Applications (Dover Publica-
tions, Inc., New York, NY, 1972). The Dover books are generally not very expensive, and this book
in particular is well worth the investment. Of course, you can solve eq. (4) using the standard series
technique for solving differential equations, but this will require an additional investment in time.



5. Tritium (the isotope H3), which is initially in its ground state, undergoes
spontaneous beta decay, emitting an electron of maximum energy of about 17 keV.
The nucleus remaining is He3.

(a) Calculate the probability that the electron of this ion is left in a quantum state
of principal quantum number n = 2.

(b) What is the probability that the electron of this ion is left in quantum state
with ℓ 6= 0 ?

In this problem, you should neglect nuclear recoil. Note the energy of the emitted
electron. What is the relevant approximation? Explain.


