
Physics 216 Problem Set 5 Spring 2012

DUE: MONDAY JUNE 11, 2012

FINAL EXAM ALERT: The final exam will be take place from 8–11 am on Wednesday
June 13, 2010 in ISB 235 (unless a more convenient time can be found). The exam will cover
the entire course. During the exam, you may consult Shankar and Baym (and any third
quantum mechanics book of your choosing), your class notes, and any of the homework
solutions and class handouts that are posted on the course website.

1. Consider a two-level system with E1 < E2. There is a time-dependent potential that
connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt (γ real) ,

where Vij = 〈i|V |j〉. At time t = 0, it is known that only the lower level is populated—that
is, c1(0) = 1 and c2(0) = 0. Note that a general state of the system can be expressed as
a linear combination of eigenstates of the unperturbed Hamiltonian (in the Schrodinger
picture):

|ψ(t)〉 =

2
∑

n=1

cn(t)e
−iEnt/~ |n〉

(a) Starting with the time-dependent Schrodinger equation, derive the following differ-
ential equation for ck(t):

i~
dck
dt

=

2
∑

n=1

Vkn(t)e
iωkntcn , (k = 1, 2) , (1)

where Vkn(t) ≡ 〈k|V (t)|n〉 and ~ωkn ≡ Ek−En. By solving the above system of differential
equations exactly, find |c1(t)|

2 and |c2(t)|
2 for t > 0.

HINT: It is convenient to define new coefficients,

c ′1(t) ≡ ei(ω21−ω)t/2 c1(t) , c ′2(t) ≡ e−i(ω21−ω)t/2 c2(t) .

Then, show that eq. (1) reduces to a matrix differential equation of the form

i~
d

dt

(

c ′1(t)
c ′2(t)

)

= A

(

c ′1(t)
c ′2(t)

)

, (2)

where A is a time-independent 2 × 2 traceless hermitian matrix. Verify that the solution
to eq. (2) is

(

c ′1(t)
c ′2(t)

)

= e−iAt/~

(

c ′1(0)
c ′2(0)

)

.



By writing A = ~a·~σ (where the vector ~a is uniquely determined), it is straightforward to
compute e−iAt/~ and complete part (a) of the problem.

(b) Do the same problem using time-dependent perturbation theory to lowest nonvan-
ishing order. Compare the two approaches for small values of γ. Treat the following two
cases separately: (i) ω very different from ω21, and (ii) ω close to ω21.

2. This problem provides a crude model for the photoelectric effect. Consider the hydrogen
atom in its ground state (you may neglect the spins of the electron and proton). At time
t = 0, the atom is placed in a high frequency uniform electric field that points in the
z-direction,

~E(t) = E0ẑ sinωt .

We wish to compute the transition probability per unit time that an electron is ejected into
a solid angle lying between Ω and Ω + dΩ.

(a) Determine the minimum frequency, ω0, of the field necessary to ionize the atom.

(b) Using Fermi’s golden rule for the transition rate at first-order in time-dependent
perturbation theory, obtain an expression for the transition rate per unit solid angle as a
function of the polar angle θ of the ejected electron (measured with respect to the direction
of the electric field).

HINT: The matrix element that appears in Fermi’s golden rule describes a transition of the
negative-energy bound electron in its ground state to a positive-energy “free” electron. The
wave function of the latter is actually quite complicated, since one cannot really neglect
the effects of the long-range Coulomb potential. Nevertheless, you should simplify the
computation by assuming the wave function of the ejected electron is a free-particle plane
wave, with wave number vector ~k. (Note that the direction of ~k corresponds to that of the
ejected electron).

(c) Integrate the result of part (b) over all solid angles to obtain the total ionization
rate as a function of the frequency of the field. Determine the value of ω [in terms of ω0

obtained in part (a)] for which the total ionization rate is maximal.

3. Consider the spontaneous emission of an E1 photon by an excited atom. The magnetic
quantum numbers (m andm′) of the initial and final atomic state are measured with respect
to a fixed z-axis. Suppose the magnetic quantum number of the atom decreases by one
unit.

(a) Compute the angular distribution of the emitted photon.

(b) Determine the polarization of the photon emitted in the z-direction.

(c) Verify that the result of part (b) is consistent with angular momentum conservation
for the whole (atom plus photon) system.

HINT: The material on pp. 282–285 of Baym should be helpful.



4. Consider the elastic scattering of photons off electrons in atoms, assuming that the
incident photon energies are large compared to the atomic binding energies. However, you
should assume that the photon wavelength is still substantially larger than a typical atomic
radius.

(a) Using the quantum theory of radiation, argue that the ~A field operator must occur
at least twice in the matrix element in order that there be a non-zero contribution in
perturbation theory.

(b) Treating the quadratic ~A· ~A term in the interaction Hamiltonian to first order in
perturbation theory, compute the differential cross-section in the dipole approximation.
Show that:

dσ

dΩ
= r20|~ǫλ ·~ǫ

∗
λ′ |2 ,

where r0 ≡ e2/(mc2) is the classical radius of the electron.

(c) Compute the total cross-section, assuming that the initial photon beam is unpolar-
ized and the polarization of the final state photon is not measured.

5. Consider a non-interacting gas of N fermions that occupies a cubical box of volume V .
Assume that V and N are macroscopically large. Let Ψs(~x) be the field operator that
annihilates a fermion of spin orientation s at position ~x. The particle number density
operator is given by

n(~x) =
∑

s

Ψ†
s(~x)Ψs(~x) ,

and the total number operator is N =
∫

d3xn(~x) . The Fourier transform of the number
density operator is defined by

n~q =

∫

d3xn(~x) e−i~q ·~x .

(a) Show that n~q can be expressed in terms of fermion creation and annihilation oper-
ators as follows:

n~q =
∑

~k

∑

s

a†~k,sa~k+~q , s
.

(b) The static structure function for non-interacting fermions is defined as:

S0(~q ) ≡
1

N
〈Φ0| n~q n−~q |Φ0〉 ,

where |Φ0〉 is the N -particle ground state of the fermion gas (cf. Baym pp. 424–425).
Evaluate S0(~q ) explicitly in the continuum limit.

HINT: Consider the cases ~q = 0 and ~q 6= 0 separately. In the former case, S0(~q ) can
be obtained by inspection. The latter case results in an integral that can be evaluated by
careful consideration of the limits of integration. One should find that S0(~q ) is a continuous
function for ~q 6= 0 but is not continuous at ~q = 0.


