
Physics 216 Final Exam Spring 2012

FINAL EXAM INSTRUCTIONS: This is an open book exam. You are permitted to
consult the textbooks of Shankar and Baym (and any third quantum mechanics text of your
choosing), your handwritten notes, and any class handouts that are posted to the course
website. One mathematical reference book is also permitted. No other consultations or
collaborations are permitted during the exam. In order to earn total credit for a problem

solution, you must show all work involved in obtaining the solution. However, you are not

required to re-derive any formulae that you cite from the textbook or the class handouts.
The exam consists of twelve individual parts (and one part extra credit at the very end),

each of which is worth ten points. Use this information to manage your time appropriately
during the exam.

1. Consider a positively-charged spin-1/2 particle in an external magnetic field, governed
by the Hamiltonian:

H = H0 I− γ ~B ·
~S ,

where I is the identity operator in spin space, ~S is the vector of spin-1/2 spin matrices,
and γ is a constant (for a positively-charged particle, γ > 0). H0 is spin-independent and

is independent of the magnetic field ~B. For simplicity, assume that H0 possesses exactly
one eigenvalue, which is denoted by E.

(a) If the magnetic field is given by ~B = Bẑ (where B > 0), determine the energy
eigenstates and eigenvalues of H .

(b) Assume that the magnetic field is given by ~B = Bẑ for time t < 0. The system
is initially observed to be in a spin-up state. At t = 0, a time-dependent perturbation is
added by modifying the magnetic field. The new magnetic field for t > 0 is given by:

~B = b (x̂ cosωt− ŷ sinωt) +Bẑ ,

where b > 0. Using first-order time-dependent perturbation theory, derive an expression
for the probability that the system will be found in a spin-down state at some later time
t = T . For what range of values of ω is this result reliable?

2. Consider the scattering of spinless particles in an attractive exponential spherically
symmetric potential:

V (r) = −V0 exp(−r/r0) ,

with V0 > 0. It is convenient to define two dimensionless variables for this problem: ξ ≡ kr0
and η ≡ 2mV0r

2
0/~

2, where ~
2k2/(2m) is the energy of the incoming beam.



(a) Compute, the scattering amplitude and the differential and total cross sections, in
the Born approximation, in terms of the variables ξ, η and r0. Evaluate the total cross
section in the low energy limit.

(b) Using the scattering amplitude obtained in part (a), calculate the s-wave and p-wave
phase shifts. [NOTE: it is sufficient to evaluate eiδℓ sin δℓ for ℓ = 0, 1.]

HINT: Expand the Born approximated scattering amplitude in a partial wave expansion,
and use the orthogonality of the Legendre polynomials to obtain expressions for eiδℓ sin δℓ
for ℓ = 0 and ℓ = 1 in terms of ξ and η.

(c) Using the results of part (b), compute both the s-wave and p-wave phase shifts in
the low energy limits. Do you find the expected behavior at low energies?

(d) At low energies, the angular distribution of scattering is approximately given by

dσ

dΩ
= A+B cos θ .

Using the results of parts (b) and (c), compute the leading behavior of B/A as k → 0. Are
your results consistent with the differential cross section obtained in part (a)?

3. Consider the hydrogen atom, where the fine structure and the Lamb shift are included,
but the hyperfine structure is neglected. The three lowest energy states (in order of in-
creasing energy) are: 1s1/2, 2p1/2, and 2s1/2, where the notation nℓj is used to label the
states. The latter two states are separated by the Lamb shift (ν = 1057 MHz).

(a) Using selection rules, determine to which state the 2s1/2 state can decay via an E1
transition.

(b) Compute the E1 transition rate for the decay of the 2s1/2 state and determine the
numerical value of the corresponding lifetime. Compare this result with the lifetime of the
2p state of hydrogen computed in class.

HINT: You can neglect the electron spin and treat this as a decay of the 2s state. However,
the resulting transition rate will be a factor of three too large. Explain.

(c) Can the 2s1/2 state decay via an E2 transition? Explain.

(d) Using selection rules, determine to which state the 2s1/2 state can decay via an M1
transition. By using explicit wave functions, evaluate the matrix element of the magnetic
dipole operator, 〈f |~µ|i〉, and show that the M1 transition rate vanishes.

HINT: Recall that ~µ depends on the electron spin operator. Thus, you will need to employ
hydrogenic wave functions that depend on the electron spin.



4. Two electrons are in plane wave states in a box of volume V . The Hamiltonian governing
this system is

H =
~p 2
1
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~p 2
2
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+
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|~x1 − ~x2|
,

where the last term above is a result of the Coulomb interactions of the electrons. The
second-quantized Hamiltonian for this system in terms of creation and annihilation opera-
tors is given by
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where the spin variables s and s′ can take on two possible values (±1
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〈

~p, ~p ′
∣

∣V
∣

∣~q ′, ~q
〉

=
1

V 2

∫

d3x d3x′ e2

|~x1 − ~x2|
e−i(~p−~q)·~x/~ e−i(~p ′−~q ′)·~x ′/~ .

A two-particle electron state is given by

∣
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〉
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where |0〉 is the state with no electrons.

(a) Compute the expectation value,
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in the case where e = 0 (i.e. where the Coulomb interactions are switched off). Explain
the behavior of your result in the case of ~p = ~p ′ and s = s′.

HINT: In order to compute the expectation value above, insert eqs. (1) and (2) into eq. (3)
[after setting e = 0] and then employ the anticommutation relations of the creation and
annihilation operators.

(b) Treating the Coulomb interactions to first-order in perturbation theory, compute
the energy difference of the parallel (s = s′) and antiparallel (s 6= s′) spin alignments of
the two electrons. Express your answer as a volume integral over the box.

HINT: Express the first-order energy difference in the coordinate basis. To evaluate the
resulting integrals, consider new variables ~R ≡ 1

2
(~x+~x ′) and ~r ≡ ~x−~x ′. Integrating over

the box of volume V , the integral over ~R is trivial, and one is left with a volume integral
over the box.

(c) [EXTRA CREDIT] Calculate the energy difference ∆E of the parallel and antipar-
allel spin alignments by evaluating the volume integral obtained in part (b) assuming that
|~p − ~p ′|L ≫ 1, where L is the length of a side of the cubical box. How does ∆E depend
on V in the limit of ~p = ~p ′?


