
Physics 216 Midterm Exam Spring 2012

This is a take home exam. You may refer to the textbooks by Shankar and Baym, the
class handouts and any third quantum mechanics textbook of your choosing. (If you do
consult a third text, please indicate which one you used.) Any reference for integrals or
other mathematical facts, and any personal handwritten notes are also OK. However, you
should not collaborate with anyone else. The point value of each problem is indicated
in the square brackets below; each part is worth 10 points. Completed exams should be
delivered to my campus mailbox no later than 5 pm on Wednesday May 16, 2012.

There is no need to rederive results that have been previously obtained in the textbook,
the class notes or the class handouts. But if you make use of any previously derived result,
please cite the source of the result.

1. [20] Consider the quantum mechanical position operator ~x. Denoting r = |~x|, we can
define the unit position operator,

r̂ ≡
~x

r
.

(a) Evaluate the matrix element

〈ℓ ′m′| r̂ |ℓm〉 , (1)

as a function of ℓ, ℓ ′, m and m′, where |ℓm〉 is a simultaneous eigenstate of ~L2 and Lz,

and ~L is the orbital angular momentum operator. Find the values of ℓ, ℓ ′, m and m′ for
which 〈ℓ ′m′| r̂ |ℓm〉 6= 0.

HINT: To evaluate eq. (1), work in the coordinate representation and write the compo-
nents of r̂ in terms of the appropriate spherical harmonics. It is then possible to explicitly
evaluate the corresponding integral and express the result as a product of two Clebsch-
Gordon coefficients. Cite any formulae that you use to perform the integration.

(b) The Wigner-Eckart theorem applied to eq. (1) introduces the reduced matrix
element,

〈ℓ ′‖r(1)‖ℓ〉 , (2)

where r
(1)
q (q = −1, 0, 1) are the elements of the vector r̂ in the spherical basis. Using the

result of part (a), find an explicit expression for the reduced matrix element 〈ℓ ′‖r(1)‖ℓ〉
as a function of ℓ and ℓ ′. In obtaining your final expression, you should evaluate any
Clebsch-Gordon coefficient that appears as a function of its parameters. Explain the
behavior of your expression in the case of ℓ = ℓ ′.



2. [40] The potential energy of a quantum mechanical elastic ball bouncing vertically on
the floor is is given by:

V (z) =

{

mgz , for z > 0 ,

∞ , for z = 0 .

Treat this as a one-dimensional problem.

(a) Using the WKB approximation, determine the (unnormalized) bound state wave
functions of the quantum ball.

(b) Using the WKB approximation, evaluate the bound state energy levels of the
quantum ball (corresponding to the ground state and all excited states). Express each
bound state energy as a numerical factor multiplied by an appropriate combination of m,
g and fundamental constants.

(c) Calculate the ground state energy using the variational principle by employing the
normalized trial wave function,

Ψ0(z) = Az e−az , for z ≥ 0 .

The constant A should be chosen such that Ψ0(z) is properly normalized. Treat a as a
variational parameter. Express the ground state energy as a numerical factor multiplied
by an appropriate combination of m, g and fundamental constants.

(d) In parts (b) and (c), you obtained two different estimates for the ground state
energy. Which of the two is the more accurate? Explain.



3. [40] In problem 3 of problem set 3, we considered the hydrogen atom in a uniform mag-
netic field which points in the ẑ-direction. The energy levels were obtained as a function
of B. This is the well-known Zeeman effect. However, the terms in the Hamiltonian that
are quadratic in B were neglected. We now want to see the effect of including the latter.
To make the analysis simple, you may ignore the effects of electron and nuclear spin (i.e.,
the fine-structure and hyperfine structure can be neglected).

(a) For simplicity, we shall first consider the n = 1 ground state of hydrogen. Evaluate

the first-order energy shift due to a uniform magnetic field ~B = Bẑ, assuming that the
term in the Hamiltonian that is quadratic in B can be neglected.

(b) Compute the quadratic Zeeman effect for the ground-state hydrogen atom, due

to the usually neglected e2 ~A 2/(2mc2) term in the Hamiltonian taken to first order in
perturbation theory. Assume that the external magnetic field is uniform and points in
the ẑ-direction. Writing the energy shift as ∆E ≡ −1

2
χ ~B 2, obtain an expression for the

diamagnetic susceptibility, χ.

(c) How large a magnetic field is required in order that the two contributions obtained
in parts (a) and (b) are of the same order of magnitude?

NOTE: The rest-mass of the electron is mec
2 ≃ 5.11× 105 eV. Other useful numbers are:

α =
e2

~c
≃

1

137
, µB =

e~

2mec
= 5.788× 10−9 eV/gauss .

(d) In the ground state of helium, the total Lz and Sz vanishes. Hence, at leading order
only the quadratic Zeeman effect is relevant. Compute the diamagnetic susceptibility of
the helium atom in its ground state, and compare with the measured value of −1.88 ×
10−6 cm3/mole.

HINT: For the ground state helium wave function, use the wave function obtained in
class by the variational method [recall that the variational ground state wave function
of helium is the product of two ground-state hydrogen atom wave functions, ψ(~r1,~r2) =
ψ100(~r1)ψ100(~r2), where

ψ100(~r) =

(

Z3

πa30

)1/2

e−Zr/a0 ,

with Zeff = 27/16]. Thus, with hardly any additional calculation, one can write down
the expression for ∆E by inspection using the results of part (b). Finally, recall that one
mole consists of 6.022× 1023 helium atoms.


