Diagonalization of a general 2×2 hermitian matrix

Consider a general 2×2 hermitian matrix

\[A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix}, \]

where a and b are real numbers and c is a complex number. The eigenvalues are the roots of the characteristic equation:

\[\begin{vmatrix} a - \lambda & c \\ c^* & b - \lambda \end{vmatrix} = (a - \lambda)(b - \lambda) - |c|^2 = \lambda^2 - \lambda(a + b) + (ab - |c|^2) = 0. \]

Noting that $(a + b)^2 - 4(ab - |c|^2) = (a - b)^2 + 4|c|^2$, the two roots can be written as:

\[\lambda_1 = \frac{1}{2} \left[a + b + \sqrt{(a - b)^2 + 4|c|^2} \right] \quad \text{and} \quad \lambda_2 = \frac{1}{2} \left[a + b - \sqrt{(a - b)^2 + 4|c|^2} \right], \]

where by convention we take $\lambda_1 \geq \lambda_2$. As expected, the eigenvalues of an hermitian matrix are real.

An hermitian matrix can be diagonalized by a unitary matrix U,

\[U^{-1}AU = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \]

where λ_1 and λ_2 are the eigenvalues obtained in eq. (1). Note that one can always transform $U \to e^{i\xi}U$ without modifying eq. (2), since the phase cancels out. Since $\det U$ is a pure phase, one can choose $\det U = 1$ in eq. (2) without loss of generality. The most general 2×2 unitary matrix of unit determinant can be written as:

\[U = \begin{pmatrix} e^{i\beta} \cos \theta & -e^{-i\chi} \sin \theta \\ e^{i\chi} \sin \theta & e^{-i\beta} \cos \theta \end{pmatrix}. \]

The columns of U are the normalized eigenvectors of A corresponding to the eigenvalues λ_1 and λ_2, respectively. But, we are always free to multiply any normalized eigenvector by an arbitrary complex phase. Thus, without loss of generality, we can choose $\beta = 0$ and $\cos \theta \geq 0$. Moreover, the sign of $\sin \theta$ can always be absorbed into the definition of χ. Hence, we will take

\[U = \begin{pmatrix} \cos \theta & -e^{-i\chi} \sin \theta \\ e^{i\chi} \sin \theta & \cos \theta \end{pmatrix}, \]

where

\[0 \leq \theta \leq \frac{1}{2} \pi, \quad \text{and} \quad 0 \leq \chi < 2\pi. \]

We now plug in eq. (3) into eq. (2). Since the off-diagonal terms must vanish, one obtains constraints on the angles θ and χ. It is convenient to define,

\[c = |c|e^{i\psi}, \] \quad where \(0 \leq \psi < 2\pi. \]
Then,

\[
U^{-1}AU = \begin{pmatrix}
\cos \theta & e^{-i\chi} \sin \theta \\
-e^{i\chi} \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
a & |c|e^{i\psi} \\
|c|e^{-i\psi} & b
\end{pmatrix}
\begin{pmatrix}
\cos \theta & -e^{-i\chi} \sin \theta \\
e^{i\chi} \sin \theta & \cos \theta
\end{pmatrix}
= \begin{pmatrix}
\cos \theta & e^{-i\chi} \sin \theta \\
-e^{i\chi} \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
|c|e^{i\psi} \cos \theta + be^{i\chi} \sin \theta & -|c|e^{-i(\psi + \chi)} \sin \theta + b \cos \theta \\
|c|e^{-i\psi} \cos \theta - a e^{-i\chi} \sin \theta & -|c|e^{i(\psi + \chi)} \sin \theta + a \sin \theta
\end{pmatrix}
= \begin{pmatrix}
\lambda_1 & Z \\
Z^* & \lambda_2
\end{pmatrix},
\]

where

\[
\lambda_1 = a \cos^2 \theta + 2|c| \cos \theta \sin \theta \cos(\psi + \chi) + b \sin^2 \theta, \\
\lambda_2 = a \sin^2 \theta - 2|c| \cos \theta \sin \theta \cos(\psi + \chi) + b \cos^2 \theta, \\
Z = e^{-i\chi}\left\{ (b - a) \cos \theta \sin \theta + |c| \left[e^{i(\psi + \chi)} \cos^2 \theta - e^{-i(\psi + \chi)} \sin^2 \theta \right] \right\}.
\]

The vanishing of the off-diagonal elements of \(U^{-1}AU\) implies that:

\[
(b - a) \cos \theta \sin \theta + |c| \left[e^{i(\psi + \chi)} \cos^2 \theta - e^{-i(\psi + \chi)} \sin^2 \theta \right] = 0.
\]

This is a complex equation. Taking real and imaginary parts yields two real equations,

\[
\frac{1}{2}(b - a) \sin 2\theta + |c| \cos 2\theta \cos(\psi + \chi) = 0, \\
|c| \sin(\psi + \chi) = 0.
\]

Consider first the special case of \(c = 0\). Then, eqs. (9) and (10) imply that:

\[
c = 0 \quad \text{and} \quad a > b \quad \Rightarrow \quad \theta = 0 \quad \text{and} \quad \chi \text{ is undefined}, \\
c = 0 \quad \text{and} \quad a < b \quad \Rightarrow \quad \theta = \frac{1}{2}\pi \quad \text{and} \quad \chi \text{ is undefined}, \\
c = 0 \quad \text{and} \quad a = b \quad \Rightarrow \quad \theta \text{ and } \chi \text{ are undefined}.
\]

In particular, if \(c = 0\) and \(a = b\), then \(A = I\) and it follows that \(U^{-1}AU = U^{-1}U = I\), which is satisfied for any unitary matrix \(U\). Consequently, in this limit \(\theta\) and \(\chi\) are undefined, as indicated above.

If \(c \neq 0\) then eq. (10) yields

\[
\sin(\psi + \chi) = 0 \quad \text{and} \quad \cos(\psi + \chi) = \pm 1.
\]

For the moment, we allow for the possibility of both signs in eq. (11).\(^*\) Hence, eq. (9) yields

\[
\tan 2\theta = \pm \frac{2|c|}{a - b}, \quad \text{for } c \neq 0 \text{ and } a \neq b.
\]

\(^*\)Below eq. (16), we shall verify that to be consistent with our convention that \(0 \leq \theta \leq \frac{1}{2}\pi\) [cf. eq. (4)], we must choose the positive sign.
Finally, in the case of $c \neq 0$ and $a = b$, eqs. (9) and (10) yield $\cos 2\theta = 0$, and χ is given by eq. (17). In light of our convention stated in eq. (4),

$$c \neq 0 \quad \text{and} \quad a = b \quad \implies \quad \theta = \frac{1}{4} \pi.$$

However, we have not yet used all the available information. In particular, eqs. (6) and (7) also provide some information on the possible values of θ, χ and β. Since $\lambda_1 + \lambda_2 = a + b = \text{Tr} \, A$ (as expected), we focus on the difference of the two diagonal elements,

$$\lambda_1 - \lambda_2 = (a - b) \cos 2\theta \pm 2|c| \sin 2\theta,$$

where we have used eqs. (6) and (7) with $\cos(\psi + \chi) = \pm 1$. Combining eqs. (1) and (13), we obtain

$$\lambda_1 - \lambda_2 = \sqrt{(a - b)^2 + 4|c|^2} = (a - b) \cos 2\theta \pm 2|c| \sin 2\theta. \quad (14)$$

Using eq. (12) to write:

$$a - b = \frac{2|c|}{\tan 2\theta} = \pm \frac{2|c| \cos 2\theta}{\sin 2\theta},$$

and inserting this on the left hand side of eq. (14), the latter reduces to:

$$(a - b) \cos 2\theta \pm 2|c| \sin 2\theta = \pm \left[2|c| \frac{\cos^2 2\theta}{\sin 2\theta} + 2|c| \sin 2\theta\right] = \pm \frac{2|c|}{\sin 2\theta}. \quad (15)$$

Substituting this result back into eq. (14) and solving for $\sin 2\theta$, we find:

$$\sin 2\theta = \pm \frac{2|c|}{\sqrt{(a - b)^2 + 4|c|^2}}. \quad (16)$$

In order to be consistent with our convention that $0 \leq \theta \leq \frac{1}{2} \pi$ [cf. eq. (4)], we must have $\sin 2\theta \geq 0$, which implies that one must choose the positive sign in eq. (16). This means that in eqs. (11)–(15), we must also choose the positive sign. In particular, $\cos(\psi + \chi) = 1$, so that $\psi + \chi = 2\pi n$ for some integer n. By the conventions established in eqs. (4) and (5), we assume that $0 \leq \psi, \chi < 2\pi$. Hence, it follows that

$$\chi = \begin{cases} 2\pi - \psi, & \text{for } c \neq 0 \text{ and } \psi \neq 0, \\ 0, & \text{for } c \neq 0 \text{ and } \psi = 0. \end{cases} \quad (17)$$

We therefore conclude that

$$\sin 2\theta = \frac{2|c|}{\sqrt{(a - b)^2 + 4|c|^2}}. \quad (18)$$

We can also obtain $\cos 2\theta$ using eqs. (12) and (18):

$$\cos 2\theta = \frac{a - b}{\sqrt{(a - b)^2 + 4|c|^2}}. \quad (19)$$

Eq. (19) implies that the sign of $a - b$ determines whether $0 < \theta < \frac{1}{4} \pi$ or $\frac{1}{4} \pi < \theta < \frac{1}{2} \pi$. The former corresponds to $a - b > 0$ while the latter corresponds to $a - b < 0$. The borderline case of $a = b$ has already been treated above.

To summarize, if $c \neq 0$, then eqs. (17), (18) and (19) uniquely specify the diagonalizing matrix U [in the convention specified in eq. (4)]. When $c = 0$ and $a \neq b$, χ is arbitrary and $\theta = 0$ or $\frac{1}{2} \pi$ for the two cases of $a > b$ or $a < b$, respectively. Finally, if $c = 0$ and $a = b$, then $A = I$, in which case U is arbitrary.
Diagonalization of a real symmetric 2×2 matrix

Finally, we can easily treat the special case in which the matrix A is real. In this case, we can diagonalize a real symmetric 2×2 matrix by a real orthogonal matrix. The two eigenvalues are still given by eq. (1), although the absolute values signs are no longer needed since for real values of c, we have $|c|^2 = c^2$. Moreover, since c is real, eq. (5) implies that if $c \neq 0$ then $\psi = 0$ or $\psi = \pi$. Eq. (17) then yields

$$
\chi = \begin{cases}
0, & \text{for } c \neq 0 \text{ and } \psi = 0, \\
\pi, & \text{for } c \neq 0 \text{ and } \psi = \pi.
\end{cases} \quad (20)
$$

It is therefore simpler to modify the convention established in eq. (4) by choosing

$$
0 \leq \theta < \pi, \quad \text{and} \quad 0 \leq \chi < \pi. \quad (21)
$$

In this convention, eq. (20) is replaced by $\chi = 0$, and we must allow for both signs in eqs. (11)–(16). It is easy to check that for real values of c, the proper choice of sign corresponds to the sign of c, i.e., $c = \pm |c|$. The diagonalizing matrix U is now a real orthogonal 2×2 matrix,†

$$
U = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}, \quad \text{where } 0 \leq \theta < \pi.
$$

Consequently in the case of c real, we can replace $\pm |c|$ with c in the numerator of eq. (16) in the convention where $0 \leq \theta < \pi$. Hence,

$$
\sin 2\theta = \frac{2c}{\sqrt{(a-b)^2 + 4c^2}}, \quad (22)
$$

$$
\cos 2\theta = \frac{a-b}{\sqrt{(a-b)^2 + 4c^2}}. \quad (23)
$$

Eq. (22) tells us in which quadrant θ lives. If $0 < \theta < \frac{1}{2} \pi$, then $\sin 2\theta > 0$, which implies that $c > 0$. If $\frac{1}{2} \pi < \theta < \pi$, then $\sin 2\theta < 0$, which implies that $c < 0$. Thus, the sign of c determines the quadrant of θ. Eq. (23) provides additional information. For $c > 0$, the sign of $a - b$ determines whether $0 < \theta < \frac{1}{4} \pi$ or $\frac{1}{4} \pi < \theta < \frac{1}{2} \pi$. The former corresponds to $a - b > 0$ while the latter corresponds to $a - b < 0$. Likewise, if $c < 0$, the sign of $a - b$ determines whether $\frac{1}{2} \pi < \theta < \frac{3}{4} \pi$ or $\frac{3}{4} \pi < \theta < \pi$. The former corresponds to $a - b < 0$ while the latter corresponds to $a - b > 0$. The borderline cases are likewise determined:

- $c = 0$ and $a > b \implies \theta = 0$,
- $c = 0$ and $a < b \implies \theta = \frac{1}{2} \pi$,
- $a = b$ and $c > 0 \implies \theta = \frac{1}{4} \pi$,
- $a = b$ and $c < 0 \implies \theta = \frac{3}{4} \pi$.

If $c = 0$ and $a = b$, then $A = I$ and it follows that $U^{-1}AU = U^{-1}U = I$, which is satisfied for any invertible matrix U. Consequently, in this limit θ is undefined.

†Using $\cos(\theta + \pi) = -\cos \theta$ and $\sin(\theta + \pi) = -\sin \theta$, it follows that shifting $\theta \to \theta + \pi$ simply multiplies U by an overall factor of -1. In particular, $U^{-1}AU$ is unchanged. Hence, the convention $0 \leq \theta < \pi$ may be chosen without loss of generality.