
Physics 195a
Course Notes
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1 Exercises

1. Show that the B field is as given in Eqn. 6, and that the vector potential
is as given in Eqn. 7, up to gauge transformations.

Solution: We wish to show that:

B =
{
0 outside solenoid
B0ez inside solenoid,

(1)

Use the form of Maxwell’s equations which states:∮
B · d� = 4πIenclosed. (2)

Consider a circle of radius r, centered on the solenoid and perpendicular
to the z axis, where r may be larger or smaller than the solenoid radius.
In either case the enclosed current is zero, and hence Bφ = 0 both inside
and outside the solenoid (using the circular symmetry to do the line
integral of the magnetic field). etc.

2. Verify that the wave function in Eqn. 17 satisfies the Schrödinger equa-
tion.

Solution: The Schrödinger equation is

i∂tψΦ =
1

2m
(−i∇− qA)2ψ (3)

We are given left and right solutions that satisfy the Schrödinger equa-
tion with A = 0:

i∂tψΦ = i∂tψ�e
iqs� + i∂tψre

iqsr

= − 1

2m
eiqs�∇2ψ� − 1

2m
eiqsr∇2ψr. (4)

Consider now

(−i∇− qA)2ψ�e
iqs� = (−i∇− qA) ·

[
(−i∇ψ�)e

iqs� + ψ�(q∇s�)e
iqs� − qAψ�e

iqs�

]
= (−i∇− qA) · (−i∇ψ�)e

iqs�

= −∇2ψ�e
iqs�. (5)
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Repeat for ψr and plug into the Schrödinger equation.

3. A number of assumptions have been made, possibly implicitly in the
discussion of this effect.

(a) Critique the discussion, pointing out areas where the argument
may break down.

(b) Resolve the problematic areas in your critique, or else demonstrate
that the argument really does break down.

Solution:

4. We have discussed the interesting Aharonov-Bohm effect. Let us con-
tinue a bit further the thinking in this example.

(a) Consider again the path integral in the vicinity of the long thin
solenoid. In particular, consider a path which starts at xxx, loops
around the solenoid, and returns to xxx. Since the BBB and EEE fields
are zero everywhere in the region of the path, the only effect on
the particle’s wave function in traversing this path is a phase shift,
and the amount of phase shift depends on the magnetic flux in the
solenoid, as we discussed in the note. Suppose we are interested
in a particle with charge of magnitude e (e.g., an electron). Show
that the magnetic flux Φ in the solenoid must be quantized, and
give the possible values that Φ can have.

Solution: We know that the total change in phase of the wave
function in traversing a loop is given by:

∆θ = e
∮
A · ds.

= eΦ,

where the second equality holds if the loop encloses the solenoid.
Single-valuedness for the wave function imposes the constraint
that ∆θ must be an integral muliple of 2π. Hence, we can only
have:

eΦ = 2πn, where n = . . . ,−2,−1, 0, 1, 2, . . . .

BUT SEE BELOW!!
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(b) Wait a minute!!! Did you just show that there is no Aharonov-
Bohm effect? We know from experiment that the effect is real.
So, if you did what I expected you to do in part (a), there is a
problem. Discuss!

Solution: We may see a hint of the problem by noticing that
the answer for the quantum of magnetic flux obtained in part
(a) seems to depend on the charge of the particle being used to
probe the vector potential. If we use a different charge, we’ll get
a different quantum – the answer isn’t intrinsic to the solenoid
alone.

We’ll discuss this further in class. It’ll motivate us into a discus-
sion of Berry’s phase.

(c) The BCS theory for superconductivity assumes that the basic
“charge carrier” in a superconductor is a pair of electrons (a
“Cooper pair”). The Meissner effect for a (Type I) supercon-
ductor is that when such a material is placed in a magnetic field,
and then cooled below a critical temperature, the magnetic field
is excluded from the superconductor. Suppose that there is a
small non-superconducting region traversing the superconductor,
in which magnetic flux may be “trapped” as the material is cooled
below the critical temperature. Ignoring part (b) above, what val-
ues do you expect to be possible for the trapped flux? [This effect
has been experimentally observed.] What is the value (in Tesla-
m2) of the smallest non-zero flux value. You may find the following
conversion constant handy:

1 = 0.3 Tesla-m/GeV, (6)

where the “0.3” is more precisely the speed of light in nanome-
ters/second.

Solution: In this case, the “basic” charge carriers have charge
magnitude 2e, and hence the quantization condition in part (a)
becomes:

Φn =
2πn

2e
, where n = . . . ,−2,−1, 0, 1, 2, . . . .

Let’s determine the value of the flux for n = 1. We have to be a
bit careful about our units here. If we were to blindly say e =

√
α,
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we would get:

Φ1 =
π

e
=

π√
1/137

0.3T-m/GeV× 10−3 GeV/MeV× 197MeV-fm× 10−15 m/fm

≈ 2.2× 10−15 T-m2. (WRONG) (7)

But this isn’t quite right for the MKS system. Actually,

e2

4πε0
= α, (8)

or, since ε0 = 1/µ0, and µ0 = 4π × 10−7 N/A2,

e2 =
107

137
A2/N. (9)

Thus,

Φ1 =
π

e
= π

√
137× 107 N/A2. (10)

So what is
√
N/A2, in T-m2 (or Webers)? Well,

√
N

A2 =

√√√√ kg-m/s2

(kg/T-s2)2

= T-m2

√
s2

m3kg

= T-m2

√
1

m-J

= T-m2

√
1

m-J
1.602× 10−19

J

eV
197× 10−9 eV-m

= 1.78× 10−13 T-m2. (11)

Hence,
Φ1 ≈ 2.07× 10−15 T-m2. (12)

(d) How can we reconcile the answer to part (c), which turns out to be
a correct result (even if the derivation might be flawed), with your
discussion in part (b)? Let’s examine the superconducting case
more carefully. Let us suppose we have a ring of superconducting
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material. We assume a model for superconductivity in which the
superconducting electrons are paired, and the resulting pairs are
in a “Bose-condensate”. Well, this precedes our discussion on
identical particles, but we essentially mean that the pairs are all
in the same quantum state. We may write our wave function for
the superconducting pairs in the form:

ψ(x) =

√
ρs

2
eiθ(x), (13)

where ρs is the number density of superconducting electrons, and
θ is a position-dependent phase. Note that we have normalized
our wave function so that its absolute square gives the density of
Cooper pairs. Find an expression for ρs

2
v, the Cooper pair number

current density. Use this with the expression for the canonical mo-
mentum of a Cooper pair in a magnetic field (vector potential A)
to arrive at an expression for the electromagnetic current density
of the superconducting electrons.

Now consider the following scenario: We apply an external mag-
netic field with the superconductor above its critical temperature
(that is, not in a superconducting state). We then cool this sys-
tem down below the critical temperature. We want to know what
we can say about any magnetic flux which is trapped in the hole
in the superconductor. Consider a contour in the interior of the
superconductor, much further from the surfaces than any pene-
tration depths. By considering an integral around this contour,
see what you can say about the allowed values of flux through the
hole.

Solution: We first look for an expression for the Cooper pair
number current density. The Schrödinger equation for a free par-
ticle is:

i∂tψ(x, t) = −∇2

2m
ψ(x, t), (14)

where m is the mass of the electron. Multiply this equation by
ψ∗. Take the complex conjugate of the Schrödinger equation, and
multiply by ψ. Finally, take the difference between the two results,
to obtain:

ψ∗i∂tψ − ψ(−i)∂tψ
∗ = −ψ∗∇2

2m
ψ − (−)ψ

∇2

2m
ψ∗ (15)
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i∂t|ψ|2 =
1

2m

(
−ψ∗∇2ψ + ψ∇2ψ∗) (16)

i∂t
ρs

2
=

1

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ) . (17)

This is of the form of a continuity equation (∂tQ+∇·J = 0), and
we read off the Cooper pair number current density:

ρs

2
v =

i

2m
(ψ∇ψ∗ − ψ∗∇ψ) , (18)

where v is the Cooper pair speed (assumed to be non-relativistic,
of course).

Now for the canonical momentum of a Cooper pair. For this
purpose, we see that a Cooper pair is a “particle” of charge −2e
and mass 2m. The canonical momentum is

p = −i∇, (19)

and is related to the kinematic momentum 2mv in a magnetic
field by

p = 2mv + 2eA. (20)

We take expectation values to find:

〈p〉 = ∇θ = 2m〈v〉+ 2eA. (21)

The electromagnetic current density carried by Cooper pairs is
thus:

〈Jem〉 = 2e
ρs

2
〈v〉 (22)

=
e2ρs

m

(
1

2e
∇θ − A

)
. (23)

Now for our scenario. The essential physical point, which makes
this example different from the Aharonov-Bohm situation, is that,
deep enough into the superconductor, the Cooper-pair current
density is zero. We integrate around the contour to obtain:

1

2e

∮
C
∇θ · ds =

∮
C

A · ds = Φ. (24)
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Single-valuedness of the wave function implies that

Φ =
1

2e

∮
C
∇θ · ds =

1

2e
2πk, (25)

where k must be an integer.

(e) So far, no one has observed (at least not convincingly) a magnetic
“charge”, analogous to the electric charge. But there is nothing
fundamental that seems to prevent us from modifying Maxwell’s
equations to accommodate the existence of such a “magnetic mono-
pole”. In particular, we may alter the divergence equation to:

∇ ·BBB = 4πρM ,

where ρM is the magnetic charge density.

Consider a magnetic monopole of strength eM located at the ori-
gin. The BBB-field due to this charge is simply:

BBB =
eM

r
r̂̂r̂r,

where r̂̂r̂r is a unit vector in the radial direction. The r̂̂r̂r-component
of the curl of the vector potential is:

1

r sin θ

∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ
.

A solution, as you should quickly convince yourself, is a vector
potential in the φ direction:

Aφ = eM
1− cos θ

r sin θ
.

Unfortunately(?), this is singular at θ = π, i.e., on the negative
z-axis. We can fix this by using this form everywhere except in
a cone about θ = π, i.e., for θ ≤ π − ε, and use the alternate
solution:

A′
φ = eM

−1− cos θ

r sin θ

in the (overlapping) region θ ≥ ε, thus covering the entire space.
In the overlap region (ε ≤ θ ≤ π− ε), either AAA or A′A′A′ may be used,
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and must give the same result, i.e., the two solutions are related
by a gauge transformation – that is, they differ by the gradient of
a scalar function.

Consider the effect of the vector potential on the wave function
of an electron (charge −e). Invoke single-valuedness of the wave
function, and determine the possible values of eM that a magnetic
charge can have. [This is sometimes called a “Dirac monopole”.]

Solution: Consider the gauge transformation relating the two
vector potentials in the overlap region:

AAA′ −AAA = − 2eM

r sin θ
êeeφ = ∇χ,

where χ is a scalar function. Since

∇χ =
∂χ

∂r
êeer +

1

r

∂χ

∂θ
êeeθ +

1

r sin θ

∂χ

∂φ
êeeφ,

up to an unimportant constant, we thus have the gauge function

χ = −2eMφ.

Under a gauge transformatin in AAA, the wave function undergoes a
corresponding transformation, in phase:

ψ → ψ′ = ψ exp(ieχ)

(Since
∫
AAA · ds→ ∫

AAA · ds+ ∫ ∇χ · ds, and ∫ ∇χ · ds = χ). Hence,
we have:

ψ′ = ψ exp(−2ieeMφ).

But this must be single-valued, giving the condition that

2eeM = n, where n = . . . ,−2,−1, 0, 1, 2, . . . .

Thus, the magnetic charge must be quantized in units of:

1

2e
=

137

2
e.
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