
CHAPTER O N E 

QUANTUM FIELD THEORY 
IN THE HEISENBERG PICTURE 

Quantum field theory is the fundamental theory of particle physics. 

In this chapter, we summarize its general features as the preliminaries 

for the succeeding chapters, though it is supposed that the readers are 

familiar with quantum field theory. 

1.1 GENERAL REMARKS ON Q U A N T U M FIELD THEORY 

In this section, we make some general remarks on quantum field theory. 

1.1.1 Basic concepts 

A quantum field, or simply a field, is a fundamental object in quantum field 
theory. Mathematically, a quantum field is a finite set of operator-valued gen­
eralized functions (distributions or hyperfunctions) of spacetime coordinates i " . 
When we discuss a field generically, it is denoted by f(x) (or <PA{X) if w e discuss 
many fields). For particular fields, we use various symbols such as </>(x), r/>(x), etc. 

Quantum field theory is formulated so as to meet the requirement of special 
relativity (except for quantum gravity). That is, the theory is invariant under 
translations and Lorentz transformations. The Poincare invariance of the theory 
is discussed in some detail in the next subsection. 

Quantum fields satisfy certain partial differential equations, which are called 
field equations. The field equation should be local, that is, every field involved 
in it depends only on one spacetime point. If a field by itself satisfies linear 
differential equations of the same number as that of its components, it is called 
free; otherwise it is interacting. That is, an interacting field satisfies nonlinear 
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differential equations, which necessarily involve some products of fields at the same 
spacetime point. Since, however, a field is, apart from its operator nature, not an 
ordinary function but a generalized function, which is not defined point by point, 
a product of fields at the same spacetime point is not well-defined in general. This 
causes a very difficult problem, called ultraviolet divergence. There are several 
attitudes for coping with this trouble. 

1. One gives up field equations, and discusses only the general framework of 
quantum field theory. This standpoint is called axiomatic field theory. 
This approach, however, makes it impossible to formulate the theory con­
cretely. 

2. One first replaces the singular product of fields by a well-defined one by 
means of point-splitting or some other regularization method. After applying 
a certain device of removing divergent pieces (called renormalization), one 
takes a limit to reproduce the original singular product formally. But this 
approach is successful only in some simple lower-dimensional models. 

3. In order to deal with realistic theories concretely, therefore, one must appeal 
to some approximation method. In perturbation theory, one can obtain an 
explicit solution in the form of a (non-convergent) series expansion. After 
making renormalization, one can define the singular product of fields in each 
order of the perturbation series. 

We do not wish to discuss this very difficult problem here. Since our primary 
interest is to develop concrete formalisms of realistic theories without approxima­
tion, we simply postulate that the product of fields at the same spacetime point 
exists uniquely without specifying how to define it explicitly. Here the uniqueness 
means that the ordering of field operators1 in the product is totally irrelevant apart 
from an overall statistical signature factor. We emphasize that this statement does 
not mean to neglect the (anti)commutators of fields at the same spacetime point, 
but claims that the operator ordering at the same spacetime point is meaning­
less. Only under this understanding, we can reasonably develop the Lagrangian 
canonical formalism, which is presented in Sec.1.2. 

Canonical quantization is carried out by using commutation relations or an-
ticomrnutation relations according as y>A is bosonic (i.e., obeying Bose statistics) 

The word "field operator" is used for emphasizing the operator nature of a field. 
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or fermionic (i.e., obeying Fermi one). Since any two fields at two different point 
(anti)commute at the equal time, Lorentz invariance implies that 

[PA{*),<PB{V)]*=0 for ( x - y ) 2 < 0 , (1 .1 .1-1) 

We call Eq. (1) local (anti)commutativity or Einstein causality, because it 
means that no action can propagate faster than light. 

The operand of field operators is called a state vector, or simply a state. 
It is denoted by | • ). For two states | /) and \g), their inner product is denoted 
by (g\f) and has the property 

(g\f) = {f\9)'- ( i . L i - 2 ) 

We sometimes write (/ | without considering the inner product. We call ( / | a 
bra-vector and correspondingly | / ) a ket-vector. 

The totality of states is called a state-vector space, and it is usually de­
noted by V. It is a complex linear space equiped with the inner product. If 

< / | / ) > 0 for any | / ) ? 0, (1 .1 .1-3) 

then V is a Hilbert space (completion should be understood). In this case, 
probabilistic interpretation is obvious. But one should note that probabilistic 
interpretability does not necessarily require the validity of Eq. (3) in the whole 
V. If there are some states in V which do not satisfy Eq. (3), V is called an 
indefinite-metric Hilbert space. Its properties are described in detail in the 
Appendix. In the indefinite-metric Hilbert space, (f\f) is called norm in abuse 
of language (positive norm if ( / | / ) > 0, zero norm if ( / | / } = 0, and negative 
norm if ( / | / ) < 0). We always assume that V is non-degenerate, that is, if | / ) 
is zero norm then there exists \g) in V such that {g\f) ^ 0. 

Field operators are represented in V. In general, there are infinitely many in-
equivalent representations. It is postulated that there exists a unique distinguished 
state, called the vacuum, which should be Poincare invariant. It is denoted by 
|0). Any state in V is essentially constructive by applying field operators on |0) 
(postulate of cyclicity). 

Given an operator A, (g\A\f) is called matrix element of A, though it docs 
not necessarily obey the matrix multiplication law if V is not a Hilbert space. If 

(9\A<\f) = (f\A\g)\ (1 .1 .1-4) 
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then A' is called hermitian conjugate of A. If A' = A, A is hermitian, and if 
A' = A""1, A is unitary. We do not strictly distinguish hermitian and self-adjoint 
because we hardly pay attention to the domain in which A is defined. 

1.1.2 Poincare invariance 

Quantum field theory is invariant under the Poincare group, which is the totality 
of translations and Lorentz transformations. Under a Lorentz transformation plus 
a translation 

x" -♦ x"1 = L\xv + a" (oix' = Lx + a) (1 .1 .2 -1) 

preserving the Minkowski metric {■q^L''<,L''T = r)„T), a field <p(x) transforms as 

<p(x)-*V>'(x') = a(L)<p{x), (1 .1 .2-2) 

where s(L) stands for a finite-dimensional matrix representation2 of the Lorentz 
transformation L £ 50(3 ,1) . The above transformation is induced by a unitary 
operator U(a, L) in the following way: 

U-l(a,L)<p(x)U(a,L) = tp'(x) = s{L)ip{L~\x - a)) (1.1.2 - 3) 

with the composition rule 

U(auL1)U(a2,L2) = U(L1a2+al,LlL2). (1 .1 .2 -4) 

It is convenient to consider the infinitesimal transformation, for which one 
can neglect higher order terms. The infinitesimal versions of Eqs. (1) and (2) are 

x'" = x" + £*>" + e" (1 .1 .2 -5 ) 

with e*" = - e " " and 

*'*(*') = I*/ - ^ " " K , ) / ] ^ * ) (1-1-2 - 6) 

For the fields having a half-odd spin, s(L) should be understood as the representation 

of the universal covering group, SL(2, C ) , of SO(3 ,1) . 
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with 5Ml/ = — svlt, respectively. Here, owing to the composition rule s(£n)s(L2) = 
s(L]L2), the matrices s^ satisfy 

[s„.o SXp] = t'(j7„;iS„,, - V^xSv,, + T]ppS„x - Vvi>s*\)- (1.1.2 - 7) 

Likewise, the infinitesimal version of U(a, L) is 

l + i £ * P „ - V ' M , , , , ; (1 .1 .2 -8) 

Ph and M( i„(= —Mvll) are called translation generators and Lorentz gener­
ators, respectively, and they are altogether called Poincare generators. Then 
the infinitesimal form of Eq.(3) becomes 

[iP„Va(*)] = 9*V»(*)< (1 .1 .2 -9) 

[iM,„<pa(x)] = [(x„d¥ -x,d,)6> -i(s^)f]Vl,(x). (1 .1 .2-10) 

Prom the composition rule, Eq.(4), we see that the Poincare generators satisfy the 
following commutation relations: 

[P„,P„] = 0, (1 .1 .2-11) 

[M„„, PA] = «(fj^PM - T)HXPr), (1-1.2 - 12) 

[M„„, MXp] = i{r\u\Mtip - rillxMvp + y^M^x ~ V»M»>>)- C1-1-2 ~ 1 3) 

This algebra is called Poincare algebra. One can confirm the consistency be­
tween Eqs. (9),(10) and Eqs. (11)-(13) in the sense of the Jacobi identity 

[A, [B, C}} + [B, [C, A}} + [C, [A, B}} = 0. (1.1.2 - 14) 

The operators which commute with all generators are called Casimir op­
erators. The Casimir operators of the Poincare algebra are P 2 and W = —w7, 
where we set 

wp=lt»*>PxMllv, (1 .1 .2-15) 

which commutes with P„. 
The representations of the Poincare group are constructed in the following 

way. Since the translation group is abelian, its irreducible representations are one-
dimensional. The representation is specified by the eigenvalue -p» of P^. Hence 
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the Lorentz transformations which change p„ should be excluded. The totality 
of Lorentz transformations which leave p,, invariant is called a little group on 
p„. Taking advantage of the technique of induced representations, we have only 
to construct the irreducible representation of the little group on p,,. According as 
p,, is timelike, lightlike, or spacelike, the corresponding little group is isomorphic 
to the three-dimensional orthogonal group SO(3), the two-dimensional Euclidean 
group E(2), or the three-dimensional Lorentz group 50(2 ,1) . 

The algebra corresponding to a little group can be found in the following 
way. Since P^ takes the value pM, we substitute P,, = pw into Eq. (12). Then, 
since the commutator vanishes, the rhs. also must vanish. Thus the generators of 
the little group are the linear combinations c^M^,, which are consistent with 

c""(r/„APM - n^Vv) = 0. (1 .1 .2-16) 

The commutators satisfied by them are calculated from Eq. (13). For example, if 
Pii = (Po 4" 0,0,0,0), the generators of the little group are M H , and they satisfy 
the algebra of 50(3); its representation defines spin. The case in which pM is 
lightlike is discussed in Sec.2.2.2. 

From the physical reason, it is postulated that p2 > 0 and p0 > 0. This 
requirement is called spectrum condition. Accordingly, the little group on a 
spacelike pM is unphysical. 
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1.2 LAGRANGIAN CANONICAL FORMALISM 

In this section, we review the general theory of Lagrangian canonical formalism, 
that is, starting with the Lagrangian density we define canonical variables, their 
canonical conjugates, and the Hamiltonian, and then set up the canonical com­
mutation relations. We also discuss the symmetry properties of the theory. 

1.2.1 Lagrangian density and field equations 

We consider a set of fields {tpA(x)}; they are called primary fields. The La­
grangian canonical formalism is based on an action 

/ ' 
/ = / d'xCix), (1 .2 .1 -1) 

where / is bosonic, hermitian, and Poincare invariant. The Lagrangian density 
C(x) is a local function of primary fields <pA(x), that is , it is constructed from 
ipA(x) and their derivatives at the same spacetime point.1 

In order for the canonical formalism to be applicable, C{x) is assumed to 
contain no second or higher derivatives of <pA(x) and to be at most quadratic with 
respect to .first derivatives of y>A(x). Furthermore, when C(x) is a polynomial in 
<pA(x), one always drops a constant term and eliminates linear terms by redefining 
fields. Then the quadratic part of C(x) is called free Lagrangian density, and 
the remainder is called interaction Lagrangian density. Parameters appearing 
in the latter are called coupling constants. 

In Eq.(l), the integration volume is the whole four-dimensional spacetime 
because any other spacetime region is non-invariant under translations. Hence in 
considering a variation of I, we need not take account of that of the integration 
volume. Then the variational principle SI = 0 yields 

[ <?x6C(. 

= / (tx U<pA-z— +<$dMv?„ , 

0 = 81 

dC „„ dC 
(1.2.1 - 2 ) 

If £ (x ) is not local, then we have a non-local theory, which is known to have funda­
mental difficulties. 
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where summation over A should be understood. Using Sd^ip^ = d^S^A and inte­
grating by parts, we obtain Euler-Lagrange equations, 

^ - 5 , ^ 1 ^ = 0, (1.2.1-3) 
Of A o(d^A) 

which are called field equations. 
In the above, an important assumption is that ^ ^ ( x ) is local and vanishes 

sufficiently rapidly at infinity in any direction. Hence any term in C(x) expressible 
as dh(-y, which is called total divergence, can always be discarded.2 It is 
therefore unreasonable to consider a surface term,3 which could arise from total 
divergence owing to the Gauss theorem, in the action / . 

1.2.2 Canonical quantization in the ordinary case 

In this subsection, we consider canonical quantization in the ordinary case. A 
more general case is discussed in the next subsection. The most general case is 
dealt with in Addendum I.A. 

We take ipA as canonical variables and define their canonical conjugates 
by 

TTA = (d/d<pA)C(<p,d<p,<p). (1.2.2 - 1) 

Since C is at most quadratic in <j>A = d0tpA, TCA is linear in <pB. We now assume 
that the simultaneous "linear" equations, Eq.(l), can be solved with respect to 
(pB. That is, we assume that it is possible to write 

ipA = $A{<fi,d<p,n). (1 .2 .2 -2) 

Then, since nA,s are independent, we can set up the canonical (anti)commuta-
tion relations 

[VA(*),V«(y)],l0 = 0 , (1 .2 .2 -3) 

[**(*),?*(»)],.„ = - « * V ( * - y ) . (1 .2 .2 -4) 
[ ^ ( x ) , 7 r B ( y ) ] f 0 = 0 . (1 .2 .2 -5) 

2 A total-divergence term may be meaningful in the "effective" Lagrangian density, 

which is a non-local function of primary fields. Any quantity F is total divergence in 

the sense F — dr (c?*Q~' F) if non-local quantities are admitted. 

It is true that it is often necessary to introduce surface terms, but one should note 

that such circumstances can arise only after the representation of field operators is 

considered. 
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Here we use the following notation: 

[VA(X), Vfl(y)]T,0 - <PA{X)VB{V) - HAB)<fiB(y)<fiA(x) (1-2.2 - 6) 

with C(AB) = —1 if both <pA and <pB are fermionic and «<AB) = +1 otherwise 
(indices in parentheses are irrelevant to the summation convention); the subscript 
0 of a bracket means to set x° = y° and 6(x — y) is the spatial three-dimensional 
delta function. 

The Hamiltonian H is defined by 

' - / ■ dxH(x) (1 .2 .2 -7) 

with 
H(x) = ^B(x)nB(x)-C(x). (1 .2 .2-8) 

Then the following Heisenberg equations hold: 

[iH,yA(x)) = <pA(x), (1 .2 .2 -9) 

[iH, TTA(X)] = -kA(x). (1.2.2 - 10) 

Their validity is shown in the following way. 
Prom Eqs.(2)-(5), we have 

[ ^ ( * ) W v ) ] , . , = - * a ^ « ( * - y ) , (1 .2 .2-11) 

[-*(*), *.(v)l,, = -i ( f £ + 5^*)''<*-*>• V™ -12> 
where the superscript y indicates that y should be used inside the parentheses. 
Noting Eq.(l), we obtain 

[C(x),VA(y)]0 = - ie(AB)^*B6(x- y), (1.2.2 - 13) 

\O<PA d(dkvA) J + 1 

and then 

[«(*). Mv)]o = - W » - y). (i-2-2 - 1 5 ) 

[*(.).,*(v)]. = -i ( ^ + ^ ^ ( x - y ) . (1.2.2-16) 
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Since the field equation, Eq.(1.2.1-3), is rewritten as 

4^-dk^C
 x = * A , (1.2.2-17) 

dyA o(dkifiA) 
Eqs.(15) and (16) yield Eqs.(9) and (10), respectively. 

Finally, we demonstrate that the canonical (anti)commutation relations, 
Eqs.(3)-(5), are invariant under field redefinition. Let {<PA} and {<pA} are two 
systems of canonical variables, each of which is expressible in terms of the other 
through a set of local relations involving no derivatives: 

<PA=IA(<P'), V>'A=9A(>P); (1 .2 .2-18) 

then the canonical quantizations induced by both systems are mutually equivalent, 
as shown below. 

The canonical conjugates are, of course, given by 

. 8C ,A dC 

Since Eq.(18) implies 

we have 

and therefore 

d<P A ' d&A 

., dfA ., . dgA 

dfc dgB dgc dfB &A 

dip'A dipc dip A fy'c Bl 

„A dSB ,B ,A dfB B 
7T = — 7T , 7T = ——— 7T . 

(1 .2 .2-20) 

(1 .2 .2-21) 

(1 .2 .2-22) 
"YA VfA 

Setting up the canonical (anti)commutation relations for {¥>,»}, w e calculate (anti) 
commutators with respect to {y?^}- We then have 

[<?!*(*).v'fi(y)lT.o = [9A (<p(x)),gB (»>(y))]?iG = 0, 

[*M(*),v>i(y)],.. = ~ { ^ ) ■ [«C{XUB M V ) ) ] T I . 

■dfc dgB 

(1 .2 .2-23) 

d<p'A d(pc 

= -i6A
Bb{x-y), 

S(x-y) 

[TM(*),*'fl(v)],.. = ?§■(«) M 
dfo, 

*c(*)>7nr(y) df'i 

(1.2.2 - 24) 

7r°(y) - *{AB)(A «-> B,x ♦-» y) 

dfc 9>fD 
dip'A dycd<pB 

£(AB){A *-* B) 7rD<S(x-y).(1.2.2-25) 
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Since 

Eq.(21) implies 

We thus obtain 

d'fD dgE d*fD 

dipcdifi'B dipc dtp'Ed<p'B' 

dfc d2io d2fo 

( 1 . 2 . 2 - 2 6 ) 

( 1 . 2 . 2 - 2 7 ) 
d(f/A dipcdip'B dtp'Adip'B' 

[ T M ( * ) , T ' B ( V ) ] , o = 0. ( 1 . 2 . 2 - 2 8 ) 

1.2.3 C a n o n i c a l q u a n t i z a t i o n w i t h mul t ip l i er fields 

It is ra ther stringent to assume tha t Eq. ( l .2 .2-1) is solvable with respect to <j>A; we 

often encounter the s i tuat ion tha t the rhs. of Eq.(1.2.2-1) does not involve some 

of PA'S, which we denote by y>a. Here a may run over only some of , bu t not all 

of, components of a field. In such a case, the trouble is resolved by considering a 

new Lagrangian density having the following form: 

C = C0(tp,dip,<p)+Fa(<p,dV,<p)ba + G(6), (1.2.3 - 1) 

where £ 0 corresponds to the previous Lagrangian density, Fa is linear in <p and 

det(d/dtj>0)Fo ^ 0. Since the new field 6" plays the role of a Lagrange multiplier, 

it is sometimes called a mul t ip l i e r field. We encounter such Lagrangian densities 

as E q . ( l ) in gauge theories and in quan tum gravity. 

The field equations are 

dipA o(dn<p A) 

F. + l£=0. (1.2.3-3) 

Canonical variables are <pA but not ba. The canonical conjugates are 

„<s"L = £ o + § ^ . (1.2.3.4) 
dfA d<pA d<pA 

By assumption, the mat r ix ((d/d(f0)Fa) is invertible. It is therefore possible 

to solve Eq.(4) with respect to <pA (A / a) and ba. Note tha t ipA (A = a) is 

expressible in terms of other variables through Eq.(3). We set up the canonical 
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(anti)commutation relations, Eqs.(l.2.2-3)-(1.2.2-5). In the following, we check 
the consistency with the Heisenberg equations, Eqs.(1.2.2-9) and (1.2.2-10). 

Since from Eq.(4) 6" is expressible as a function of y, dip, and ir, we can 
eliminate all b" from C and the field equations. Then we can write Eq.(1.2.2-2) 
for all A's, and hence proceed in the same way as before. That is, we obtain 
Eqs.(1.2.2-15) and (1.2.2-16), and therefore the Heisenberg equations. The only 
difference from the ordinary case is that the Heisenberg equations, Eq.(1.2.2-9), 
hold not as trivial identities <pA = (pA, but those corresponding to A = a are 
equivalent to field equations, Eq.(3). 

1.2.4 Noether theorem 

As discussed in Seel.1.2, the theory is invariant under the Poincare group. In 
general, the theory may have other invariance properties. If / is invariant under 
certain transformations of primary fields, the theory is said to have a symme­
try corresponding to those transformations. There are discrete symmetries and 
continuous ones, but we are interested only in the latter. 

A continuous symmetry can be discussed by considering the infinitesimal 
transformation, which is characterized by an infinitesimal parameter e. We set 

S"ipA(x) = ip'A(x')-<pA[x), (1 .2 .4 -1 ) 

6;<pA(x) = <p'A(x)-<pA(x), (1 .2 .4 -2 ) 

whence 
6'<pA = 6:lpA + 6'x"-d,lpA, (1 .2 .4 -3 ) 

where x'" = x" +S'x'x. The symmetry considered is called spacetime symmetry 
if S'x" ^ 0 and internal symmetry if vanishing; 6' — 8,' is called the orbital 
part of the symmetry. Poincare invariance is, of course, a spacetime symmetry. 

Although the invariance of / does not necessarily imply 

C'(x') = C(x), (1 .2 .4 -4 ) 

we here restrict our consideration only to this case.4 Correspondingly, the Jacobian 
det d^x'" is unity, whence d^'x11 = 0. We rewrite Eq.(4) as 

S'C=6;C+6'x" -d„C = 0 (1 .2 .4 -5 ) 

4 General case is discussed in Sec.5.2.4. 
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with 
dC dC 

6.'C = « . V A • ^ — + 6:d„VA ■ -rrr- r. (1.2.4 - 6) 

Here, from the definition, Eq.(2), d„ commutes with 6'. It is important to note 
that 8' is a particular case of a variation.5 Hence, the form invariance of / 
automatically implies the form invariance of the field equations. 

We now define the Noether current by 

eJ> = 6;VA- _ , ? £ +6'x*-C. (1 .2 .4-7) 

It satisfies the conservation law 

a „ J " = 0 . (1 .2 .4 -8) 

Indeed, with the help of Eqs.(1.2.3-2),(5), and (6), we have 

ed, J» = 6.'<pA ■ d dC + aM«.VA • *C + 6'x" ■ d,C d(d^A) d(d^A) 

= s;VA ■ ^- + s;a^A ■ - | ^ — - s;c 
= 0. (1 .2 .4-9) 

The existence of the conserved current J? is known as the Noether theorem. 
From Eq.(8), we obtain 

a„ fdxJ" = - f dxdkJk =0, (1 .2 .4-10) 

that is, the charge 
Q= IdxJ°(x) (1 .2 .4-11) 

is time-independent. Here, however, we have assumed that Jk vanishes at spatial 
infinity and that the integral in Eq.(ll) is convergent. 

If Eq.(l l) is not convergent, Q is ill-defined as charge operator, that is, we 
cannot consider eigenstates of Q nor expectation values of Q. But we can still 
meaningfully consider 

5 We forbid a non-local transformation of ipA , which causes a serious operator-ordering 

problem in the transformed Lagrangian density. 
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[tQ,F(y)]T = t |< fx [ .7° (z ) ,n2 / ) ] 7 (1 .2 .4-12) 

for any local quantity F(y), because [J°(x),F(y)] vanishes identically if |x| is 
sufficiently large. 

We now calculate [iQ, ¥>>»(y)L by means of the canonical (anti)commutation 
relations. Since Eq.(7) for p. = 0 is 

eJ° = 8,'ifB ■ TTB + <5ci° • £, (1 .2 .4-13) 

we have 

[teJ°(i),(/>A(y)]To =<5.VA •<5(x-y) + ze(>,B)[i5.'VB(^),¥'/4(j/)]ToTB(x) 

+ i'x°HAB)^*B6(x-y) (1 .2 .4-14) 

with the aid of Eq.( 1.2.2-13). Since 8'<pB can be written in terms of primary fields 
without using time derivatives, it (anti)commutes with <pA{y) at the equal time. 
Accordingly, we have 

[ ^ , V B ( I ) . ^ ( ! / ) I ? O = -o~'x" ■ [d*<pB(x),iPA(y)}^o 

= i6<x°-^6(x-y) (1 .2 .4-15) 

owing to Eqs.(3) and (1.2.2-11). Thus the last two terms of Eq.(14) cancel out. 
We therefore obtain 

e[tQ,V>A(y)]T =6;<pA(y), (1 .2 .4-16) 

that is, Q is the symmetry generator. 

1.2.5 Poincare generators 

Since the time coordinate plays a special role in the canonical quantization, one 
may feel uneasy about the manifest covariance of the theory. But Poincare invari-
ance is manifestly guaranteed in the canonical formalism as seen below. 

For translations, since 

S,'<PA = ~e"d><PA, S'x' = e»6" (1.2.5 - 1) 
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the Noether theorem implies that the canonical energy-momentum (or stress) 
tensor, 

T\ = d^A • ^ 1 ^ - 6\C, (1.2.5 - 2) 
d(d„<pA) 

is conserved: 
dvT\ = Q. (1 .2 .5 -3) 

Hence the translation generators 

P„ = JdxT\(x) (1.2.5-4) 

satisfy 
[iP^A{x)] = d^A{x). (1 .2 .5 -5) 

We expect that P^'s are well-defined. Then they are energy-momentum operators. 
Especially, P0 is nothing but the Hamiltonian H. 

For Lorentz transformations, since 

* . V A = - ( l /2 ) £ "" [ ( i , a„ - xvd>)6* - i(s„)*]ipB, (1.2.5 - 6) 

S'xx = ( 1 / 2 ) £ * " ( * X - xj\), (1.2.5 - 7) 

the Noether theorem implies that the angular-momentum tensor, 

M\v = [ ( 1 , 4 - xvd„)6A
B - i{s.v)A

B\VB ■ -^—-^ - (x„6\ - xvS\)C 

=xHT\ - xvT\ - lis^ffBg^j 

= -M\„, (1 .2 .5 -8) 

is conserved: 
d>M\„=0. (1 .2 .5 -9) 

Hence the Lorentz generators 

M„v = / dxM\„(x) = -Mr, (1.2.5 - 10) 

satisfy 

[iM„,<pA(x)\ = \{x,d„ - x„d,)6A
B - «(a„) * W * ) - (1-2.5 - 11) 
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Thus Eqs.(l. 1.2-9) and (1.1.2-10) have been reproduced in the framework of the 
Lagrangian canonical formalism. 

Since 7j,„ is not necessarily symmetric, it is convenient to symmetrize it in 
the following way. First, we set 

S\„ = - « ( ^ ) / V B ^ r = S\„, (1.2.5 - 12) 

and seek for the quantity Fx^ satisfying 

Tx^ = -TlkXv, (1 .2 .5-13) 

F\»v - ?\V,L = Sxix„- (1.2.5 — 14) 

The solution is 

^ M „ = (1 /2 ) (5 A ^-5 M »„+5„ M A ) - (1 .2 .5-15) 

Then, since Eqs.(9) and (8) imply 

0 =dxMXll„ = S\TXy - 6xJXlt + dxSXlit, 

=T„„ + dxFXli„ - {%» + &TXvil), (1.2.5 - 16) 

we see 
e(,„ = 0 ^ (1 .2 .5-17) 

if we set 
©„* = T„v + dxTXll„. (1.2.5 - 18) 

Furthermore, Eqs.(3) and (13) imply 

d"e„„ = 0. (1.2.5 - 19) 

We call 0„„ the symmetric energy-momentum tensor. By using ©,,„, we can 
rewrite Eqs.(4) and (10) as 

P„ = fdxe0ll(x), (1.2.5 - 20) 

M„„ = / dx[x„e0„(x) - x„0o„(x)], (1.2.5 - 21) 

respectively. 
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We now proceed to considering the Poincare algebra. Since Eq.(5) implies 

[iP„,F(i)] = <9„.F(z) (1.2.5 - 22) 

for any local operator F(x), we have 

[P^PA = -i f dxd^Qo,, = 0, (1.2.5 - 23) 

where use has been made of Eq.(19) for ft = 0. Likewise, we have 

[M^^Px] = i I dx(XlldxOo„ - x„dxe0ll). (1.2.5 - 24) 

For X = k, therefore, partial integrations lead us to 

[M„v,Pk\ = i(T7vtPM - r^P. , ) . (1.2.5 - 25) 

For A = 0, owing to Eq.(19) we have 

[M^,Po] =i fdx(-xlldkeki, + xt,dkekli) 

= 1 / dx(B^ - TkoGo,, - 0 „ „ + T7-O0oj 

=i(ri„0PM - TI^P,). (1 .2 .5-26) 

Thus Eqs.(1.1.2-11) and (1.1.2-12) have been reproduced in the framework of the 
Lagrangian canonical formalism. 

Unfortunately, however, a similar method does not work for establishing 
Eq.(1.1.2-13). But, except for [M0ic,Mol], we can reproduce it by direct calcula­
tion. Since 

M\, = [M - x,d„)6f - i{sk,)S\(>c ■ «B, (1-2-5 - 27) 

the canonical commutation relations yield 

[M°kl(x),*A(y)} = i[(xkd,' - x,dk*)6B
A - i(skl)B

A]6(x-y) ■ «B(x), (1.2.5 - 28) 

whence 
[iMkhnA] = [(xkd, -x,dk)SA +i(skl)B

A]wB. (1 .2 .5-29) 
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Because £ is Lorentz scalar, we should have 

[iMhV, £] = (x„d„ - x„d„)£. (1.2.5 - 30) 

Since 

M\, = [(xxdp - xpdx)SA
B - i{a,x)*\VB ■ nA - (xxS° - xpSx°)C, (1.2.5 - 31) 

we can calculate [Mki,MXp] by using Eqs.(ll), (29), (30). In this way, after inte­
grating by parts, we obtain 

i{Mkl,MXp] = / dx{[(xxdp -xpdx)(xkd, -xtdk) 

- (xkd, - xidk)(xxdp - x„dx)]tpA ■ irA 

+ [(sk,)f{*x,)S - (SXP)A
B(*»)B} VC*A 

+ [xk(r,lx6p° - *hA°) - x,{T)„6f - r,kpSx
0)} £■}• (1-2-5 - 32) 

Then, with the aid of Eq.( 1.1.2-7), it is straightforward to show that 

i[Mkh MXp] = -r]iXMkp + rikxMlp - ijkpMlx + T)ipMkx. (1.2.5 - 33) 
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1.3 FREE FIELD THEORIES 

In this section, after summarizing basic properties of the invariant singular func­
tions, we describe some free field theories as the simplest examples of quantum 
field theory. Since they are elementary, we here present main results only. 

1.3.1 Invariant singular functions 

A free field, <fi{x), having a mass m(> 0) usually satisfies the Klein-Gordon 
equation 

( □ + m 2 M x ) = 0. (1 .3 .1-1) 

There are two independent c-number Lorentz-invariant solutions to the Klein-
Gordon equation: 

A(x; m2) = ^ j <?pe(p0)6(p7 - m7)^'", (1.3.1 - 2) 

A<"(x; m7)=-^j <?p6{p> - m2) e->*. (1 .3 .1-3) 

They are called invariant delta functions. They are not ordinary functions but 
generalized functions, whence they are also called singular functions. Both are 
real; A(x; m2) is odd while A (1 '(x; m2) is even under the sign change of i*. The 
first one, A(x;m2), is the commutator function appearing in four-dimensional 
commutation relations, and correspondingly it vanishes in the spacelike region 
x2 < 0. Furthermore, it is the solution to the following (singular) Cauchy problem: 

(D + m2)A(x;m2) = 0, (1 .3 .1-4) 

A(x;m2) |0 = 0, (1 .3 .1 -5) 

a0A(x;m2) |0 = -<5(x), (1 .3 .1-6) 

where the symbol |0 means to set x° = 0. On the other hand, A ( 1 ,(x;m2) has no 
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such properties. The explicit expressions1 for the invariant delta functions are as 
follows: 

A(x ;m 2 ) = - i - e ( x ° ) ( 1 . 3 . 1 - 7 ) 

A ( 1 ) (x;m 2 ) = —^T=N,{mV^)e{x2) + 
47TVX2 2TT2 

-.Kl(mV^x^)6(-x2),(1.3.l - 8) 

where Jn and Nn are Bessel functions and Kn is a modified Bessel function. Near 
the lightcone x2 = 0, they behave like 

A(x; m2) = -(27r)-1e(x°) I A(x2) + m2 

1 f „ 1 m2 

i + 0(x2) 

A^(x2;m7 

2ir2 P — - [logm2 |x2 | + 0 ( l ) ] 

0(x2)J, (1.3.1-9) 

} , ( 1 .3 .1 -10 ) 

where P stands for the Cauchy principal value. 
The positive/negative-frequency delta functions A '+ ' (x ;m 2 ) and A ' ^ x j m 2 ) 

are defined by 

A^'fom2) = T(2TT)-3 I d*p6(±p0)6(p2 

They are related to A(x ;m 2 ) and A ^ ( a : ; m 2 ) through 

:A(x; m 2 ) = A ( + ) (x ; m 2 ) + A (-»(x; m 2) , 

A f l ) (x ;m 2 ) = A ( +>(z;m2) - A ( - ' ( x ; m 2 ) , 

and they are mutually related through 

A ( + ) ( - x ; m 2 ) = -A<->(x;m2) , 

[A<+>(x;m2)]' = - A ( " ' ( x ; m 2 ) . 

( 1 . 3 . 1 - 11) 

(1 .3 .1 -12 ) 

(1.3.1 - 13) 

(1 .3 .1 -14 ) 

(1.3.1 - 1 5 ) 

The expressions in the complex Z)-dimensional spacetime are as follows: 

*»(*;"»') = -g*?,"w?-",l(^;)l~(°/a)J»-(°/»)("'^?)g(«'). 
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Lorentz-invariant solution to the equation 

( □ + m2)G(x) = <54(x) (1 .3 .1-16) 

are called the Green's functions (of the Klein-Gordon operator). The following 
five Green's functions are of interest: 

A(x;m2) = - ( l / 2 )e ( i ° )A( i ;m 2 ) , (1.3.1 - 17) 

A«(z;m2) = -0(x°)A(x;m2) , (1.3.1 - 18) 

A„(x;m2) = 0(-x°)A(x;m 2) , (1.3.1 - 19) 

iAF(x; m2) = A(x; m2) + (i/2)A (1)(x; m2), (1.3.1 - 20) 

-iA¥(x;m2) = A(x; m2) - (z/2)A (1 )(x;m2). (1.3.1 - 2 1 ) 

We call A/j(x;m2) the retarded Green's function, AA(x;m2) advanced 
Green's function, and AF(x;m2) the causal Green's function or Feynman 
propagator. The causal nature of Ap(x;m2) becomes manifest by writing 

AF (x;m 2 ) = <9(x°)A(+)(x;m2) - e ( -x 0 )A ( - ) (x ;m 2 ) . (1.3.1 - 22) 

The momentum representation of some of Green's functions are as follows: 

A f l(x;m2) = - ( 2 7 r r / ^ p 2 ^ 7 ; z 0 p o , (1 .3 .1-23) 

A. (x ;m 2 ) = - ( 2 , ) - ] *P ? _ e J _ ^ (1-3-1 - 24) 

A f ( x ; m V » ( 2 T ) - ' ^ P p ; _ e J + i ( ) . (1 .3 .1-25) 

In the massless (m = 0) case, the invariant delta functions are particularly 
called invariant D functions, and expressed by using D in place of A. From 
Eqs.(9) and (10), we have 

D(x) = -(27r)-1e(x°)^(x2), (1.3.1 - 26) 

£>(,)(*) = - r V ^ . (1 .3 .1-27) 
In' x' 

In gauge theories, D{x) is very important; it is called the Pauli-Jordan D func­
tion. From Eqs.(26) and (27), it is straightforward to see 

D<*>(x) = T J - • , * „. (1.3.1-28) 
v ' T4TT2 x ' ^ t O x 0 V ; 
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As for the Green's functions, we have 

DR(x) = (27r)-]6l(x0)*(x2), (1.3.1 - 29) 

DA(x) = (2TT)-16I(-X0)<5(X2), (1.3.1 - 30) 

1.3.2 Free real scalar field 

We consider a free real (or neutral) scalar field <j>(x) having a mass m(> 0). Its 
Lagrangian density is given by 

£ s = I ( a ^ . a „ ^ - m V ) . (1 .3 .2 -1) 

Its field equation is, of course, the Klein-Gordon equation 

(n + m2)4>(x) = 0. (1 .3 .2 -2) 

The canonical conjugate of <j> is TT = <j>, and canonical quantization is carried out. 
Then it is easy to calculate the four-dimensional commutator 

[<t>(x), 4>{y)] = «A(i - y; m2). (1.3.2 - 3) 

The canonical energy-momentum tensor is 

T^ = dj ■ d„<j> - r,^Cs, (1 .3 .2 -4) 

which coincides with the symmetric energy-momentum tensor because <j> is spinless. 
Poincare generators are constructed in a straightforward way. In particular, the 
Hamiltonian is 

# = i / dx[w* + {diff + m2</>2]. (1.3.2 - 5) 

Since Eq.(2) is linear, it is solved by means of Fourier transform. That is, 
we have the momentum-space representation 

4>(x) = (27T)-3'2 J dp{2p0)-^ [a(p)e-** + a<(p)e'>*} , (1.3.2 - 6) 
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where p0 = s/p2 + TO2 and Pn = (PcPit), so that p2 = m2. The annihilation op­
erator a(p) and the creation operation a*(p) satisfy the commutation relations 

[a(p),a<(q)\ = 6(p-q), (1 .3 .2 -7) 

[a(p),a(q)\ = [a*(p),a*(q)]=0. (1 .3 .2 -8) 

The vacuum |0) is defined by 

a(p)\0) = 0 . (1 .3 .2-9) 

The Hamiltonian is rewritten as 

H = \ j dpp0 [a(p)a\p) + a'(P>(p)] . (1.3.2 - 10) 

Unfortunately, H\0) is divergent. Hence we subtract (0|if|0) from H; then the 
redefined Hamiltonian is 

H = f dpp0a\p)a(p), (1 .3 .2-11) 

which satisfies 
# |0) = 0, (1 .3 .2-12) 

and all other eigenvalues of H are positive definite. 
In a free field theory, one can count the absolute number of particles. The 

number operator N is defined by 

N = j < W ( p > ( p ) , (1 .3 .2-13) 

whose eigenvalues are positive semi-definite. The space spanned by all eigenstates 
of N is (after completion) called the Fock space. Fock representation is charac­
terized by the existence of a well-defined (absolute) number operator. 

1.3.3 Free complex scalar field 

We consider a free complex (or charged) scalar field ^(x) having a mass m. 
Its Lagrangian density is given by 

Ccs = d"^ ■ d^ - m2^<j>. (1 .3 .3 -1) 
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If we set v2<j> — <j>i + ifa, this theory reduces to the theory of two free real scalar 
fields 4>\ and <j>7, but it is more convenient not to do so. We regard tj> and # ' as 
independent canonical variables; we therefore have n = <̂ ' and JT' = <j>. 

The field equation is, of course, 

( □ + m2)<£ = 0. (1 .3 .3 -2) 

The four-dimensional commutation relations are 

[4>(x);^(y)} = iA(x - y; m2), (1.3.3 - 3) 

[*(*), * ( y ) ] = 0 . (1 .3 .3 -4) 

The canonical energy-momentum tensor is 

%v = d„<f> ■ dvtf + d„d>l ■ dv4> - T ? „ „ £ C S - (1-3.3 - 5) 

This theory has an internal symmetry; £cs is invariant under the phase 
transformation 

$ -> 4,' = e-i$4>, tf -*<t>'X = e ' V f , (1 .3 .3 -6) 

where 6 is a real parameter. The corresponding Noether current is 

J " = i{<j><d*<j> - <t>d*<j>'). (1 .3 .3 -7) 

Hence the generator of the phase transformation is 

Q = i [dx(<f><dod>-<l>d0d>l); (1 .3 .3 -8) 

indeed 

[iQ, #* ) ] = - i * ( * ) , (1 .3 .3 -9) 

[iQ,d>*(x)] = i<t>](x). (1 .3 .3-10) 
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1.3.4 Free Dirac field 

The field of spin 1/2 is called a Dirac field or a spinor field. Usually, it is a 
complex field2 and consists of four components.3 It obeys Fermi statistics. The 
free Dirac field xp(x) satisfies the Dirac equation 

(iy*dh-m)il> = 0, (1 .3 .4-1) 

where the gamma matrices 7*1 are 4 x 4 matrices satisfying 

{ 7 " , 7 , ' } = 2 i r , (1 .3 .4-2) 

so that x\> satisfies the Klein-Gordon equation. We employ the convention 7°' = 70 

and 7 l t = —7*, whence 707>'t-y° = ^w. We set 

75 = ■(4!) - 1 e»». r 7 ' /7*7 ' = W T V , (1-3-4 - 3) 

whence {75,7''} = 0 and 75 = 75, and 

a"" = ( l /4 ) (7*7" - 7 " 7 " ) . (1 .3 .4-4) 

The sixteen matrices 
{1, 7", 2ia-\ 7" 7 5 , -ilh) (1 .3 .4-5) 

are linearly independent. Hence the representation of Eq.(2) by 4 x 4 matrices is 
irreducible.4 

The Dirac equation is derived from the Lagrangian density 

£ D = ^(i7"a„ - m)if), (1 .3 .4-6) 

where xj> = ^ ' 7 ° . Although £ D 'S n ° t hermitian, we can hermitize it by integrating 
one half of the first term by parts.5 The canonical variables are %l>a (a = 1,2,3,4) 

2 If it is a real field, it is called a Majorana field. 

If massless, it can consist of only two components. 

4 In D dimensions, the irreducible representation of Eq.(2) is given by 2 ' D ' 2 ) x 2 ' D ' 2 ' 

matrices, where [k] denotes the largest integer not larger than k. If D is odd, there is 

no 7 6 . For D even, 7B = J T D
= 0 ' 7 ' if D / 2 is odd and 7B = ii J j _ 7" otherwise. 

In the hermitized case, canonical quantization should be carried out by means of the 
Dirac method (see Addendum I.A). 
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only, and their canonical conjugates are ira = —xpj (the minus sign is due to the 
fermionic nature of ip). The four-dimensional anticommutation relations are 

{rpa(x), ^ ( y ) } = iSa„(x - y; m), (1.3.4 - 7) 

{</>„(*),tMy)} = { ^ ( x ) , ^ ( y ) } = 0, (1.3.4 - 8) 

where 
S(z\m) = (i7*dM + m)A(z;m2). (1.3.4 - 9) 

The infinitesimal Lorentz transformation matrix 5tfl/ of the Dirac theory is 
given by iu^. Since CQ vanishes when the Dirac equation is used, the Poincare 
generators simply become 

Plt=i f dx^d^, (1 .3 .4-10) 

M„„ = i / dx^ix^ - x„aM + a^)xl>. (1.3.4 - 11) 

The Dirac theory is invariant under the phase transformation 

^ _, ^' = e-isi/>, </>' -> V" = V , , e ' e , ( 1 . 3 . 4 - 1 2 ) 

and if m = 0 under the chiral transformation 

xl> -> V' = exp(-i6j!,)rp, ^ -» ip'1 = ip< exp(i6-ys). (1 .3 .4-13) 

The corresponding Noether currents are 

J"=^ 7 *V>, (1 .3 .4-14) 

J / = V;7"75t/>, (1.3.4 - 15) 

respectively. 
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1.4 GENERAL CONSIDERATION IN THE 
HEISENBERG PICTURE 

In Sec. 1.2, we have discussed the general framework of the operator formalism of 
quantum field theory. In this section, we introduce state vectors to represent field 
operators. Of course, it is natural that the notion of states should have no explicit 
dependence on spacetime coordinates, as long as the theory contains no external 
force. Nevertheless, it is often made to describe the theory by transferring the time 
dependence of field operators to state vectors totally (Schrodinger picture) or 
partially (interaction picture, etc.). The original description is, correspondingly, 
called Heisenberg picture in order to discriminate it from other pictures. One 
should not forget, however, that only the Heisenberg picture is fundamental and 
that any other picture is derived from it. In this sense, the construction of the 
theory in the Heisenberg picture is the most important from the theoretical point 
of view. 

1.4.1 Two-point functions 

As mentioned in Sec.1.1.1, we postulate the unique existence of a distin­
guished state, called vacuum, which is denoted by |0). It is a state belonging to 
discrete spectrum, normalized to unity, i.e., 

(0|0) = 1, (1 .4 .1 -1 ) 

and is Poincarc-invariant, i.e., 

Pli\0)=0, M„„ |0)=0 . (1 .4 .1 -2) 

We admit the case in which Eqs.(l) and (2) do not uniquely characterize |0). Its 
precise characterization is given later. 

As shown in Sec.1.3, the four-dimensional (anti)commutator of field opera­
tors can be explicitly calculated in free field theories. It is no longer possible to 
do so if the interaction Lagrangian density is present. It is, however, possible to 
investigate the structure of the vacuum expectation value, (0| • • • |0), of the 
four-dimensional (anti)commutator by means of the general postulates of quantum 
field theory. 
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For simplicity of description, we consider a (non-free) real scalar field <f>(x). 
We first investigate 

W(x,y) = (0Mx)<Ky)\0), (1 .4 .1 -3) 

which is called the two-point function. From Eq.(l.1.2-3) we can write 

<j>{x) = U(x, l)<t>(0)U-l{x, 1). (1.4.1 - 4) 

Furthermore, since P^s are mutually commuting, Eq.(l.1.2-8) leads us to 

U(x, 1) =expz'x"P(, (1 .4 .1 -5) 

for any finite value of xM. Substituting Eqs.(4) and (5) into Eq.(3) and using 
Eq.(2), we obtain 

W(x,y) = (0|<!>(0)e-i(l-!')'V(0)|0). (1 .4 .1 -6 ) 

If the state-vector space V is a Hilbert space, the eigenstates of P^ form a complete 
set, that is, we can formally write1 

PM=P,ln)\n), (1 .4 .1 -7 ) 

] T > ) ( n | = l, (1 .4 .1 -8) 
n 

where Y2n includes integration over p£nK Inserting Eq.(8) into Eq.(6), we have 

W(x,y) = £ > x P H ( * - y)?(n)] l<«|^(0)|0)|2. (1.4.1 - 9) 
n 

Because of the spectrum condition (p (n))2 > 0 with p0 > 0, we may write Eq.(9) 
as 

W{x,y) = jd*pe-«*-^(27ry38(p0)p(p2), (1 .4 .1-10) 

p(p2) = f ds 6(s - p7)p(s) > 0. (1.4.1 - 11) 

Using Eq.(1.3.1-11), we obtain 

W(x,y)= dsA(+\x-y;s)p(s). (1 .4 .1-12) 
Jo 

Strictly speaking, we should consider wave-packet s tates rather than non-

normalizable eigenstates of P^. 

where 
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This formula is called the spectral representation of W(x, y), and p(s) is called 
a spectral function. 

From Eq.(12), we immediately obtain 

<0|Mx),<Ky)]|0) = i / dsA(x-y;s)p(s). (1 .4 .1-13) 
Jo 

The time-ordered product is defined by 

TfaWy) = 8(x° - y'MxMy) + d(y° - x °My )*(*), (1.4.1 - 14) 

for which 

(0|T</>(x)<%)|0) = / dsAF(x-y;s)p(s). (1 .4 .1-15) 
Jo 

We differentiate Eq.(13) by i° and set x° = y°. Then, owing to the canonical 
commutation relation2 and Eq.(1.3.1-6), we have 

-i6(x-y) = -i I ds8(x-y)p(s), (1 .4 .1-16) 
Jo 

namely, 

/ dsp{s) = l. (1 .4 .1-17) 
Jo 

If particle contents of the theory are known, the spectrum condition can be 
made more precise. If there are only one kind of scalar particles having a physical 
mass ror, which is generally different from m, then we have p2 = mr

2 for one-
particle states and p2 > (2m r)2 for many-particle states. In this case, we can 
write 

p(s) = Z6(s - mr
2) + a(s)0{s - 4mr

2) (1.4.1 - 18) 

with Z > 0 and a(s) > 0. Substituting Eq.(18) into Eq.(17), we find 

Jroo 

' dscr(s), (1 .4 .1-19) 

whence 
0 < Z < 1 . (1 .4 .1-20) 

We assume that the interaction Lagrangian density does not contain <f>. 



30 1. QUANTUM FIELD THEORY IN THE HEISENBERG PICTURE 

If Z = 1, then a(s) = 0, that is, we have 

(0\4>(x)<j>(y)\Q) = A ( + ) ( x - y; m r
2 ) , (1.4.1 - 21) 

whence 
(0|(D + m?)<j>{x) • ( □ + mr

2)^(y)|0) = 0. (1.4.1 - 22) 

The metric positivity, Eq.(1.1.1-3), therefore, implies 

( D + m r
2 ) ^ ( x ) | 0 ) = 0 . (1.4.1-23) 

Then the separating property of vacuum (see Corollary .4.2-6 in Appendix A.2 ) 
implies 

{n + m?)<f>{x) = 0. (1 .4.1-24) 

Thus 4>{x) is a free field, that is, as long as <f>{x) is non-free, we have Z < 1. 
Since the coefficient of the discrete spectrum is Z < 1, it is convenient to 

re-normalize it to unity. We therefore consider 

^r)(x) = Z-"^{x), (1 .4 .1-25) 

and call it a renormalized field. Correspondingly, Z is called a (wave-function) 
renormalization constant. 

In the above discussion, we have assumed that the canonical commutation 
relations arc consistent with the general principles of the theory including the 
metric positivity of V. But such an optimistic standpoint may cause troubles. 
Consider a current 

j"=^"^. (1 .4 .1-26) 

If we naively apply the canonical anticommutation relations, we find 

[>°(*),J t(y)]o=0. (1 .4 .1-27) 

On the other hand, the spectral representation consistent with d^j" = 0 is 

(0|[;"(*), j"(y)]|0) = i ^ ds *(«)(-«,"» - d"d")A(x - y;a), (1.4.1 - 28) 

where the metric positivity implies 

ir(s) > 0 (w(s) ^ 0). (1.4.1 - 29) 
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Hence we have 
t°° 

(0\b°(x),Jk(y)\o\0)=i / dsir(s)dk8(x-y) 
Jo 

# 0 (1.4 .1-30) 

in contradiction with Eq.(27)[Got 55, Sch 59]. 
The widely accepted resolution of the difficulty is to distrust the canonical 

result, Eq.(27). Indeed, if one calculates [i°,j*]o by point-splitting, one finds that 
it does not vanish at the coinciding limit. Such a non-canonical term as Eq.(30) 
is generally called a Schwinger term [Sch 59]. However, the Schwinger term 
is a very pathological concept; it violates the Jacobi identity [Joh 66] and its 
expression is generally dependent on the method of calculation. Furthermore, no 
physical result follows from the Schwinger term. In Sec.5.8.3, a possible resolution 
which respects the canonical result is proposed: The appearance of the Schwinger 
term is due to the negligence of gravity. Only in the two-dimensional spacetime, 
the Schwinger term is significant [cf. Eq.(2.5.3-15)] because it is finite and because 
there is no gravity. 

1.4.2 Asympto t i c fields 

In particle-physics experiments, what are really observed are not fields but par­
ticles. In the scattering experiments, two particles collide with each other and 
after complicated interactions some particles are observed. Both before and after 
the collision, particles are so distantly located from each other that they can be 
regarded as free.3 That is, in the remote past and in the remote future com­
pared with the interaction time, we encounter only free particles. It is thus quite 
important to describe free particle nature in the asymptotic regions x° —> ±oo. 

As a simple example, we consider a scalar field (£(r' = Z_1/2</> satisfying a 
(renormalized) field equation 

( □ + m „ V > ( x ) = J(x), (1 .4 .2 -1) 

where we assume that J(x) has no discrete spectrum on mass shell. We can 
integrate Eq.(l) as 

*<r)(x) = <t>'n(x) + Jc?yAR(x - y; mr
2).7(y), (1.4.2 - 2) 

If there are massless particles, special care is required. 



3 2 1. QUANTUM FIELD THEORY IN THE HEISENBERG PICTURE 

*<'>(*) = r " ( x ) + j<?yAA{x - y; m r
2)J(y), (1.4.2 - 3) 

where 
( D + m r

2 ) ^ " ( i ) = 0 (1 .4 .2 -4 ) 

with <j>" = <j>]a or <j>oM. The integral equations, Eqs.(2) and (3), are called Yang-
Feldman equations [Yan 50], 

From the definitions, Eqs.(1.3.1-18) and (1.3.1-19), of AR and A^, we can 
infer that 

4>(r)(x) -► <t>in(x) as x° -+ - c o , (1 .4 .2-5) 

^ ( r )(x) -> <t>oat(x) as x° -> +oo. (1 .4 .2 -6 ) 

In this sense, (j>'n(x) and (^out(x) are called an in-field and an out-field, respec­
tively. They are altogether called asymptotic fields and denoted by </>M(x). 

From Eq.(l.3.1-18) we have 

d0AR(x - y;mr
2) = -0(x° - y°)d0A(x - y;m?) - S(x° - y°)A(x - y;m r

2), 
(1 .4 .2 -7 ) 

but the last term vanishes identically. Hence we can infer 

d0^r)(x) -> d0<f>in(x) as x° -» - c o . (1 .4 .2 -8) 

It should be noted, however, that the same thing is no longer true for d 0 V r ' 
because we then encounter a non-vanishing term 

-<5(x° - y°)3„A(x - y; mr
2) = 6\x - y). (1.4.2 - 9) 

The equal-time commutators concerning ft" and d0<j>m are the same as those con­
cerning ^ ( r ) and d0</>(r) because the second term of Eq.(2) essentially vanishes as 
x° —» - c o . Combining this result with Eq.(4), we obtain 

[*'»(*), *'»(»)] = iA(x - y; m r
2). (1.4.2 - 10) 

Likewise'for <j>out. Thus <f>*" is a free field. But we must remember that (ff is a 
non-local field in the Heisenberg picture. 

Although the above reasoning clarifies what the asymptotic field is, the math­
ematical meaning of Eqs.(5) and (6) is not clear. The asymptotic equality between 
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<£(r)(x) and 0M(x) can be defined in the following sense [Leh 55]: For any two states 
I/) and \g) 6 V, 

(f\<f>lr)(x) - 4>"(x)\g) -> 0 as x° -» ^oo. (1 .4 .2-11) 

Such convergence as above is called weak convergence in mathematics, in order 
to discriminate it from the norm convergence in the mathematical sense (strong 
convergence). It should be noted that weak convergence is meaningful even if V 
is an indefinite-metric Hilbert space. Weak convergence is really "weak" because 
the weak limit of a product of two operators is not, in general, equal to the product 
of the weak limits of those operators. Indeed, a product of primary fields may have 
an asymptotic field different from any primary-field's asymptotic fields. In general, 
if the two-point function (0|$1(x)$2(y)|0) for local operators $i(x) and $i(y) has 
a discrete spectrum, then there exist asymptotic fields $ j M and ^^ such that 

(0|$1
as(x)$2

as(y)|0) = discrete spectrum of (0|$,(x)*,(y)|0). (1.4.2 - 12) 

Since [^" (x ) , "^"(y)] is a c-number [Gre 62, Rob 62], it is equal to the discrete 
spectrum of (0| [$,(1), *2(y)] |0). 

The (anti)commutator between a symmetry generator Q and a local operator 
"^(x) is not spoiled by taking weak limit, provided that the symmetry is not broken. 
That is, if 

[ •Q ,* (x ) ] T =*(x) , (1 .4 .2-13) 

then we have 

[i<?, * " ( * ) ] , = * " ( x ) . (1 .4 .2-14) 

In particular, from the commutators with the Poincare generators, we obtain the 
covariance of asymptotic fields under the Poincare algebra. From Eq.(14) we see 
that Q is expressible as an integral over a quadratic function of asymptotic fields. 

1.4.3 Asymptotic states and asymptotic completeness 

Since asymptotic fields are free fields, we can construct their Fock representation 
on the basis of the vacuum |0). Since the vacuum of the Fock space is unique, this 
fact uniquely characterizes |0) even when its Poincare invariance cannot do so. 
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The state-vectors of the above Fock space are called asymptotic states. 
We call an in-field asymptotic state an in-state and an out-field one an out-
s ta te . The Fock space spanned by all in-states is denoted by V"1; Vout is similarly 
defined. In the axiomatic field theory [Haa 58, Haa 59, Rue 62], it is rigorously 
proved that the (wave-packet) asymptotic states exist as strong limits of some 
states in V, provided that V is a Hilbert space and that there exists a finite gap 
between the discrete spectrum and the continuous one. Therefore, both V'n and 
Vout are subspaces of V. 

We now introduce a very crucial postulate, called asymptotic complete­
ness: We postulate that Vin = V. Then the PCT theorem (see Appendix A.2) 
implies Vout = V. We thus have 

Vil, = V = V o u t . (1 .4 .3 -1 ) 

The asymptotic completeness is important because it is the only known general 
principle which uniquely determines the representation space of field operators. 
We may say that the asymptotic completeness is a certain minimality require­
ment because any other representation space must be larger, that is, it contains 
non-asymptotic extra states in addition to all asymptotic states. The choice of 
such extra states is not only necessarily model-dependent but also often "author-
dependent" (see Sec.2.5). This fact may lead authors to futile controversy. Fur­
thermore, extra states are usually devoid of particle contents, whence it is quite 
questionable in what way they are observed, unless one can invent a mechanism 
by which they become unobservable. 

Under the asymptotic completeness, any operator is (at least formally) ex­
pandable into a series of normal products of asymptotic fields, where normal 
product is a product of free fields such that any annihilation operator lies on 
the right of any creation operator. This is because we can always choose expan­
sion coefficients in such a way that all matrix elements of that operator in terms 
of asymptotic states coincide with those of that series. In this sense, under the 
asymptotic completeness, any operator is expressible in terms of asymptotic fields. 

Since V"1 = Vout, the transformation between the in-states |in) and the 
out-states |out) is a unitary transformation S, called S-matrix, because it is 
symbolically written as 

5 = {(out|in)}. (1 .4 .3 -2 ) 
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More precisely, S should be called S-operator; it is defined by 

<^ou,(x) = S - y n ( x ) S , (1 .4 .3 -3 ) 

with S"1 = S< and 
S|0) = |0>. (1 .4 .3 -4) 

The S-operator S commutes with any symmetry generator Q because of the 
time independence of Q. Especially, S commutes with the Poincare generators. 
Since one-particle states are uniquely specified by the eigenvalue of PM and spin 
component, the one-particle restriction of S is a unit operator. The expression for 
Q in terms of iponi has the same form as that in term of ifi'n, because if Q = F(ip'") 
then 

F{v°ul) = F ( S " V i n 5 ) = 5 - ' F ( ^ i n ) S 

= S~lQS = Q. (1 .4 .3 -5) 

Hence we may write Q = F (v a s ) . 

1.4.4 Reduction formula 

The S-operator introduced in Sec.1.4.3 is the concept of practical importance be­
cause the transition probabilities of particle reactions are essentially given by the 
absolute squares of its matrix elements. It is therefore very important to express 
S in terms of field operators in a more direct way. The most standard way of 
doing this is called Lehmann-Symanzik-Zimmermann (or LSZ) formalism 
[Leh 55, Leh 57]. 

For simplicity of description, we consider only a real scalar field 4>{x). The 
Klein-Gordon operator Q + mr

2 is denoted by K. We intoduce a complete set of 
orthonormal positive-frequency solutions, /*(x), to the Klein-Gordon equation: 

Kfk = 0, (1 .4 .4 -1) 

i f dx[rk(x)d0f,(x) - d0fk(x) ■ /,(*)] = S„„ (1.4.4 - 2) 

£ / * ( * ) / ; ( y ) = A'+»(x - y ; m r
J ) . (1.4.4 - 3) 

k 
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We then define 

^ ( x ° ) = t j dx \4>{x)dafk{x) - d0<t>(x) ■ /*(*)], (1.4.4 - 4) 

and introduce the asymptotic-field creation operators <j>ln
k and <^ouV as the weak 

i ° —> :f oo limits of <^(x°); of course, <j>k is independent of time. 
The t ime-ordered p roduc t of field operators is defined by 

T ^ ( x 1 ) - - ^ n ) = E 
n - 1 

^ < . ( i ) ) - ^ . ( « ) ) , (1.4.4-5) I I eix«i) - x'U+i)) 
J'=> 

where a stands for a permutation of {1,2, • • •, n} and the summation runs over all 
permutations. The vacuum expectation value of Eq.(5) is called a T-function: 

T ( X „ • •• ,*„) = (0 |T^(i , ) • • • </>(xn)|0). (1.4.4 - 6) 

We first prove that 

( O l T ^ x , ) - - - ^ . ) - t{V\0) = i J fy K* T(XU- ■ ■ ,xn,y) ■ fk(y). (1 .4 .4-7) 

We substitute 

* 'V = i „lim / dy{<j>(y)d0fk(y) - d0<f>{y) ■ f„(y)] (1.4.4 - 8) 
V° — - o o J 

into the lhs. of Eq.(7). Since x^0 > y° for any j , 4>(y) can be included under the 
T symbol. Then, by using 

( 0 | ^ O U V T ^ ( X I ) - - ^ ( X „ ) | 0 ) = 0 , (1 .4 .4 -9) 

we can rewrite the integral as follows: 

lim idy[.-\ = - I*™d*yd>[•••]. (1 .4 .4-10) 

We thus obtain 

<0|T<Hx1)--^(xn)-<6 iV|0) 

= -xJ<?y [(OlTtfx,) • • • 4>(xn)<j>(y)\0)(d0)2fk(y) 

- (doy(0\T^Xl)- ■ ■ 4>(xn)<j>(y)\0) ■ fk(y)}, (1.4.4 - 11) 
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from which Eq.(7) immediately follows by using Eq.(l) and by integrating by parts. 
If no indices coincide with each other, the above reasoning can be easily 

generalized to proving the formula 

a T 

<oin*ov*(z1)"-*(xn)-n*ivio) 
= • f*yK'{0\f[F'\iTrt*i)---*(*nMv)rj[JVi\0)-fkM 

J >= i i = i 

= t / ^ y ^ ^ 0 | j i ^ . T ^ ( y ) ^ ( x 0 - - - ^ x O n A ! | 0 ) - / ; . ( y ) . ( 1 . 4 . 4 - 1 2 ) 

This formula is called reduction formula. By using Eq.(12) repeatedly, we can 
express 

<°iipni, •5n*iMi°>=<°in*o"t'i - n ^ w a.4.4-13) 
in terms of r-functions. 

Taking account of the possible coincidence of indices, we can write the result 
in a simple operator form: 

5 =: e x p ( | d*y *m(y)K'jj^) : (0|Texp i J <Px J(x)4>(x)\0)\J=0 , 

(1 .4 .4- 14) 
where the pair of double dots stands for normal product and J(x) is a c-number 
source function. 

For further discussions on asymptotic fields and asymptotic states, especially 
in the indefinite-metric cases, see Appendix AA. 
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1.5 SPONTANEOUS B R E A K D O W N OF SYMMETRY 

Spontaneous breakdown of symmetry is the breakdown of symmetry at the 
level of the representation of field operators. It is a very interesting phenomenon 
which cannot occur in a system of finite degrees of freedom. It was originally found 
in solid-state physics, and then by analogy it was brought into quantum field theory 
by Nambu and Jona-Lasinio [Nam 61]. The central subject in the spontaneous 
breakdown of symmetry is the Goldstone theorem claiming the existence of a 
massless mode [Gol 61]. 

1.5.1 Goldstone theorem 

A symmetry generator Q, of course, commutes with P^, but the vacuum |0) need 
not be a simultaneous eigenstate of Q and P„ in quantum field theory. That is, 
we may have 

Q|0) + |0)(0|Q|0). (1 .5 .1-1) 

Although Eq.(l) most clearly characterizes the spontaneous breakdown of the 
symmetry generated by Q, it is problematic to write Eq.(l) explicitly because 
<5|0) does not exist at least in the positive-metric case. Indeed, if Q\0) were well-
defined, we would have 

<0|Q Q\0) = jdxjdy(0\Ja(x)J°(y)\0) 

= I dx I dyf(x -y) = oo (1.5.1 - 2) 

because of translational invariance and metric positivity. 
Instead of Eq.(l), the spontaneous breakdown of symmetry is characterized 

by the Goldstone commutator 

(0 | [ iQ,x(*)] , |0)*0 (1 .5 .1-3) 

for some operator x(*)- Indeed, if Q\0) = |0)(0|Q|0), the lhs. of Eq.(3) would 
vanish; that is, if Q|0) is sensible, Eq.(3) implies Eq.(l). 

The simplest example of Eq.(3) is found in the free massless scalar field 
theory. This theory is invariant under the transformation <j> —> <f>' = <j> + a, a 



1.5 SPONTANEOUS BREAKDOWN OF SYMMETRY 39 

being a c-number constant. The corresponding generator is given by 

Q= I dxd0(t>(x). (1 .5 .1 -4) 

Since 
[iQ,<Kx)\ = l, (1 .5 .1 -5) 

this symmetry is spontaneously broken. Here, the fact that <j>{x) is massless is 
crucial. 

In general, the following theorem, which is called Goldstone theorem, 
holds: / / Eq.(S) holds, then x{x) contains a massless discrete spectrum. Here, as 
remarked in Sec. 1.2.4, Eq.(3) should be understood as 

j dx(0\[J°(x), X(y% |0) = c + 0, (1.5.1 - 6) 

where c is a constant because of translational invariance. Proof goes as follows 
[Gol 62]. (Proof can be made more rigorously [Kas 66, Eza 67, Ree 68].) 

Because of translational invariance, we can write 

(0\[J°(*),x(y)U\0) = J d<pf(P)e->«*-»\ (1 .5 .1 -7 ) 

Combining Eq.(7) with Eq.(6), we have 

c = (2TT)3 J d4pf(p)6(P)e-'**-»\ (1.5.1 - 8) 

whose Fourier transform is 

c6<(p) = (2nff(p)6(p). (1 .5 .1-9) 

Since c ^ 0, f(p) must become proportional to 8(p0) when p = 0, that is, it 
contains a one-dimensional 8- like singularity. This fact implies that / (p) has a 
massless discrete spectrum in its spectral representation. 

This massless spectrum is called Goldstone mode. In the covariant field 
theory, it must represent a particle, which is called Goldstone boson or Nambu-
Goldstone (NG) boson (or NG fermion if x ' s fermionic). For the internal 
symmetry, Q is Lorentz invariant, whence x must be spinless, that is, the NG 
boson is spinless. 
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It is quite instructive to provide an alternative proof of the Goldstone the­
orem by means of asymptotic fields [Ume 65, Sen 67]. Let {^",,(1)} be the 
totality of independent asymptotic fields. Since y ^ satisfies a free-field equation, 
[iQ,<p"A]^ also does, whence it must be linear with respect to asymptotic fields; 
that is, 

[iQ,<P~A(*)U=°f<f>"B(*) + PA> (1 .5 .1-10) 

where aA is a differential operator with c-number constant coefficients, 0A being 
a c-number constant. Of course, aA = 0 if the quantum numbers of <p"A and 
ifi"B are not common. 

Since 
(0\<f>»A(x)\0) = 0 (1.5.1 - 11) 

for any ifi"A, Eq.(10) yields 

<0|[ tQ,^"A(x)] , |0)=i9 i l . (1 .5 .1-12) 

Comparing Eq.(12) with Eq.(3), we find that a necessary and sufficient condition 
for the spontaneous breakdown of symmetry is that we do not have 0A = 0 for 
all A's. Let j3A = c ^ Q for some A, and Xa3(a;) D e the corresponding asymptotic 
field: 

( 0 | [ iQ ,x" (* ) ] , | 0 )= C ? 4 0. (1 .5 .1-13) 

Since ^ M is a free field, it satisfies a linear differential equation K\!ia = 0- Then 
Eq.(13) implies that Kc = 0, that is, the differential operator K cannot have a 
constant term. Thus x M must contain a massless mode. 

Since any (anti)commutator of asymptotic fields is a c-number (see Appendix 
.4.4), Eq.(10) shows that Q consists of quadratic terms and linear ones of asymp­
totic fields. From the above result, we see that the existence of a linear term in Q 
characterizes the spontaneous breakdown of symmetry. 

Mathematical discussions on the spontaneous breakdown of symmetry in the 
indefinite-metric cases are given in Appendix .4.3. 

1.5.2 Goldstone model 

Whether or not the spontaneous breakdown of symmetry occurs is often dependent 
on the values of the parameters involved in the theory. 
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We consider a complex scalar field having a (j>* interaction. Its Lagrangian 
density is given by 

£ G = d'tf ■ d„<i> - u<t>]<j> - ( A / 4 ) ( ^ < / . ) 2 . (1-5.2 - 1) 

Here we assume A > 0 because if A < 0 there is no vacuum, but we do not prescribe 
the sign of the mass term. The field equation which follows from Eq.(l) is 

( □ + u ) ^ + (A/2)(«^ </>)<£ = 0. (1 .5 .2-2) 

If <j> is expanded in powers of its asymptotic field, the zeroth order term is 

(0\(j>(x)\0)=v/\/2. (1 .5 .2-3) 

Hence, in the zeroth-order approximation, Eq.(2) yields 

(4u + X\v\7)v = 0. (1 .5 .2-4) 

Since A > 0, the solution to Eq.(4) is v = 0 only, if u > 0. This solution is 
consistent with the phase invariance of CQ, that is, the phase symmetry is not 
spontaneously broken. On the other hand, if u < 0, then Eq.(4) has infinitely 
many solutions 

M = v/-4u/A (1 .5 .2-5) 

in addition to v = 0. The corresponding potential energy becomes 

E0 = u\v/s/2\2 + (A/4)|v/v/2|4 

= - u 2 / A < 0 . (1 .5 .2-6) 

That is, it is lower than the energy corresponding to v = 0. Thus the vacuum 
should realize Eq.(3) with Eq.(5). Since 

[iQ,<j>(x)] = -i<t>(x) (1 .5 .2 -7) 

for the phase-transformation generator Q [see Eq.(1.3.3-8)], Eq.(3) with Eq.(5) 
shows that this symmetry is spontaneously broken. The theory given by £ G with 
u < 0 is called the Goldstone model [Gol 61], which is a very instructive example 
of spontaneous breakdown. 
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Although v is, in general, complex, we can make it real positive by redefining 
<f> by the phase factor of v _ 1 . Hence, without loss of generality, we may assume 
v > 0. It is convenient to write 

y/2<t>(x) = v + tp(x) + iX(x), (1 .5 .2 -8) 

where both real scalar fields ip(x) and x( x ) have a vanishing vacuum expectation 
value. Substituting Eq.(8) into Eq.(l), we have 

CG = i ( d V • 0Mv> - M V ) + \d*X ■ d.X 

- \gM<p^ + x2) - i f f V + x2)2 - E0, (1.5.2 - 9) 

where 

M2 = -2u > 0, (1.5.2 - 10) 

g=^/\/2>0, (1 .5 .2-11) 

whence 
v-M/g. (1 .5 .2-12) 

The above zeroth-order approximation will be good if g is very small. In this case, 
ip is a massive scalar field having a mass M, while x is massless. Of course, the 
mass of ip receives quantum correction, but x remains exactly massless because of 
the Goldstone theorem. The asymptotic field, xM> of x satisfies 

{x*s(xlx*s(y)} = iD(x-y). (1 .5 .2-13) 

The generator Q can be expressed as 

Q = Z~1/2v f dxd0x^(x), (1 .5 .2-14) 

where Z denotes the renormalization constant of x-
In the above, the representation of the field operator has been constructed 

on the basis of a particular choice of the phase of v. For various choices of it , we 
have physically equivalent but unitarily inequivalent representations. There is no 
need for considering all irreducible representations simultaneously so as to recover 
the invariance under the phase transformation. 
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1.5.3 Nambu-Jona-Lasinio model 

In the Goldstone model, the NG boson x{x) >s a P81^ of a primary field <j>(x). 
But, in general, x(x) m a y be a composite field. Such a simple example is the 
Nambu-Jona-Lasinio model [Nam 61]. 

The Lagrangian density of this model is given by 

£NJL S iWdrf + g[{Wf - (hs4>)2} 

It is invariant under the chiral transformation 

t/> -> V' = exp(-^ 7 5 )V ' , 4> -> 7p' = 7pexp(-i6^i), (1 .5 .3-2) 

as is easily confirmed by using 75
2 = 1 and exp (—i#7j) = cos 9 — 175 sin 6. If this 

invariance is not broken, TJ> must be massless. But, according to the analysis based 
on the self-consistent self-energy equation (though it suffers, unfortunately, from 
serious divergence difficulty), it is possible for if> to acquire a non-zero mass if the 
coupling constant g is negative and sufficiently large. 

The chiral transformation, Eq.(2), is generated by 

Q 5 = f dx^^rp. (1 .5 .3-3) 

Indeed, the canonical anticommutation relation yields 

[iQs,ip} = -ilsTp 

Hence, for the pseudoscalar density 

p = -irj>ysxp, ( 1 .5 .3 - 5) 

we have 
[iQs,p] = -2$1>. (1 .5 .3-6) 

Therefore, if 
(0[^(x)^(x)|0> # 0, (1 .5 .3 -7) 

then the chiral invariance is spontaneously broken, and p(x) contains the Goldstone 
mode. That is, the NG boson is a composite particle of xp and tp. 

(1 .5 .3 - 1) 

(1 .5 .3-4) 
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A d d e n d u m l . A D I R A C M E T H O D O F Q U A N T I Z A T I O N 

We describe the D i r a c m e t h o d of q u a n t i z a t i o n for a singular system and show 

tha t it is independent of the choice of canonical variables. 

For simplicity of description, we consider a system of finite degrees of bosonic 

freedom only. Canonical variables <fr (»' = 1 , . . . , n ) are functions of t ime r , and 

the Lagrangian L is a function of g; and qt = dqi/dr. One wishes to define the 

canonical conjugates p; by dL/dqi, b u t , in general, the s imultaneous equations 

Pi = dL/dq; (l.A - 1) 

are solvable with respect t o qt only partially. T h a t is, E q . ( l ) may yield some 

relations involving no g,. Such relations are called c o n s t r a i n t s , and the system 

having constra ints is called a s ingu lar s y s t e m . Dirac [Dir 64] presented a general 

me thod for quantizing such a singular system. 

As ment ioned above, we suppose t h a t E q . ( l ) implies the existence of inde-

pedent constra ints 

* . = 0 , ( l . A - 2 ) 

where <j>a (a = 1 , . . . , r < n) are functions of g< and p*. We consider a variation 

of the Hamil tonian p ^ — L: 

6(piqi - L) = qiSpi - -z-6qi + (ft - -K^)s9i- 0 - A - 3) 
dq{ dqi 

If E q . ( l ) is used, Eq.(3) shows tha t the Hamil tonian is expressible in terms of g, 

and pi. Of course, this s ta tement is valid under the validity of the constraints , 

Eq.(2) . Hence we should consider a generalized Hamil tonian 

H = p^i - L + va<j>a, ( 1 - ^ - 4 ) 

where va (a = 1 , . . . , r) are undetermined functions. 

The t ime development of a quant i ty \ is given by 

X = (X,H)P, ( l . A - 5 ) 

where (A, B)j> is the P o i s s o n bracket defined by 

dAdB dAdB , 
(A, B)p = — — - — — . l . A - 6 

dqi dpi dpi dqi 
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Since the constraints must hold for any r , consistency requires to have 

(<j>a, H ) P = 0, M - 7 ) 

Some of Eq.(7) may be satisfied by choosing va appropriately, but the remain­
der may be new conditions, which must be regarded as constraints. We should 
therefore consider Eq.(7) for these new constraints. Repeating this procedure until 
we no longer obtain new constraints, we obtain a set of independent constraints 
Eq.(2) with a = 1 , . . . ,s (r < s < 2n). 

K (4>a, X)P (<* = l>--->5) are all written as linear combinations of con­
straints, x >s called of first class. Otherwise, x is of second class. Let A be the 
s x s matrix formed by (<^0, 0/j)p. If det.A = 0, certain combinations 4>' of <j>a 

are first-class constraints. When quantized, these first-class constraints are inter­
preted as conditions restricting state vectors in such forms as 4>'\f) = 0, because 
there exist some quantities x such that (<j>', X)P f^ 0- When apphed to quantum 
field theory, however, such conditions are generally inconsistent with the existence 
of the vacuum (see Sec.2.2.3). We therefore do not wish to have any first-class 
constraints. 

Since the first-class constraints are nothing but the generators of gauge trans­
formations (i.e., canonical transformations which leave H and all constraints in­
variant), they become of second class by adding gauge-fixing constraints. Indeed, if 
we start with the Lagrangian modified by gauge fixing in such a way that no gauge 
invariance remains, then we encounter no first-class constraints. In the following, 
therefore, we assume that all constraints are of second class. 

In this case, the matrix A is invertible, whence s is even because A is anti­
symmetric. We then define the Dirac bracket of two quantities A and B by 

(A, B) D = (A, B)P - (A, 4>a)p(A->)aP(<f>p, B)P. (l.A - 8) 

The Dirac bracket has the same properties as those (antisymmetry, Leibniz rule, 
and Jacobi identity) of the Poisson bracket. Furthermore, the Dirac bracket be­
tween <j>a and any quantity x vanishes: 

(*-, X)D = 0. (l.A - 9 ) 

Quantization is carried out by replacing the Dirac bracket by — i times a 
commutator: 

(A, B)D -» -i[A, B}. ( l . A - 1 0 ) 
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Here, because of Eq.(9), we can regard Eq.(S) as operator identities. We no longer 
need to worry about the existence of constraints. The Dirac method of quantiza­
tion is thus quite useful for quantizing a singular system. 

Now, there arises a question: Is the Dirac bracket independent of the choice 
of canonical variables? It is well known that the Poisson bracket is invariant under 
the canonical transformation. In the following, we show that the Dirac bracket is 
also invariant under the canonical transformation [Kug unp.c]. 

The Dirac bracket can easily be expressed in terms of the Lagrange 
bracket, which is defined as follows. Let z, (j = l , . . . , 2 n ) be functions of 
qt and p, such that qt and Pi are expressible in terms of z,. Then the Lagrange 
bracket between z;- and zk is 

_ dq{ dPi dq{ dp{ 
(Zj, Zk)L = ^— -x -z— - j — • ( l . A - 1 1 ) 

azj azk dzk dz, 
The 2n x 2n matrix formed by (2,, z*)L is the inverse matrix of the one formed 
by the corresponding Poisson brackets: 

(zjy z^Zj, zt)P = Skt. ( 1 . A - 12) 

Thus, as is well known, the Lagrange bracket is invariant under the canonical 
transformation. 

We choose Zj = <j>a for j = 2n — s + a and z ; = za for j = a — 1,2,... ,2n — s. 
Then, with the aid of Eqs.(9), (8) and (12), we have 

( z« . Zb)h(Za, Z C ) D = (*<., ^ ) L ( Z « , ZC)D + (</>C 2 J ) L ( ^ < » , Z C ) D 

= (Z>, Zb)h{Zj, Zr)D 

= 6bc. ( l . A - 1 3 ) 

Thus the (2n — s) x (2n — s) matrix formed by the Dirac brackets (z0, ZC)Q 
is the inverse matrix of the restricted one of the Lagrange brackets (zB) Z»)L-
It follows from this fact that the Dirac bracket is invariant under the canonical 
transformation. 

Finally, we present two important examples of the invariance of the Dirac 
brackets [Kug unp.c]. The action is not altered by adding total divergence. In the 
present formulation, this amounts to considering a change of L by F, where F is 
a function of q{ only (i.e., involving no q{). In this case, the canonical variables 



l.A DIRAC METHOD OF QUANTIZATION 47 

Pi change by dF/dqi. Thus the Poisson brackets remain invariant, and so are the 
Dirac brackets. 

The second example is the situation in which multipliers are present as dis­
cussed in Sec. 1.2.3. Corresponding to Eq.(1.2.3-1), we consider the Lagrangian 

L = L0(q,q) + Fa{q, q) ba + G{b). (l.A - 14) 

Here L0 involves no qa,1 Fa is linear in qA and detdFa/dqe / 0. In the Dirac quan­
tization, not only qa but also ba are taken as canonical variables. The'canonical 
conjugates of qa and ba are 

»- = %r = irh» (1A"15) 

oqa oqa dL 
7r„ = - j - = 0. ( l . A - 1 6 ) 

dba 
They are constraints because dFe/dqa involves no qA. Hence we write 

Then, since 

we have 

dF„ 
— % , * , „ = * „ . ( l . A - 1 7 ) 
oqa 

(*»., * V ) P = 0, ( l . A - 1 8 ) 

(*i-, Mr = -9F0/dqa, ( l . A - 19) 

det A = (det dF0/dqa)2 # 0, (l.A - 20) 

that is, A is invertible. Thus the constraints <£lct and (f>2a are of second class. 
Because (8Fp/dqa) is invertible, {qA,ba,pB, ftp} is expressible in terms of 

{<JA,PB, '/'la,'^/?}, which we adopt as zr Then Eq.(13) implies that 

{QA, 9B)D = {.PA, PB)D = 0, (l.A - 2 1 ) 

{qA, Pl))D = &AB- ( l .A - 2 2 ) 

We thus obtain the canonical commutation relations which are exactly the same 
as those in which canonical variables are qA only but not ba. The validity of this 
result is crucially due to the fact that L involves no ba, that is, it is not correct to 
regard a primary variable ba as non-canonical if L involves ba. 

{qa} is a subset of {<1A} and has a one-to-one correspondence wi th .{6 a } . 




