
Physics 217 Problem Set #3 Fall 2016

DUE: THURSDAY NOVEMBER 10, 2016

1. Consider a massive spin-1/2 particle with four-momentum pµ = (E; ~p) and helicity λ
(where 2λ = ±1). The spin four-vector is defined as:

sµ =
1

m

(

|~p| ; E
~p

|~p|

)

.

Verify that s · p = 0 and s · s = −1.

(a) Show that both the particle and antiparticle helicity spinors u(p, λ) and v(p, λ)
are eigenstates of γ5s/ with eigenvalue equal to 2λ.

(b) Using the results of part (a), derive the following formulae:

u(p, λ)ū(p, λ) = 1

2
(1 + 2λγ5s/)(/p+m) ,

v(p, λ)v̄(p, λ) = 1

2
(1 + 2λγ5s/)(/p−m) .

These are called the helicity spinor projection operators. Check the above formulae by
evaluating both sides of the equations in the rest frame.

HINT: Starting, e.g., with
∑

λ u(p, λ)ū(p, λ) = /p + m, multiply both sides of this
equation by a suitable operator that projects out one term in the sum over λ. Using
the results of part (a), it should be easy to discover the required operator.

(c) Show that in the high energy limit, E ≫ m, sµ = pµ/m+O(m/E). Using this
result and the result of part (a), show that in the massless limit, u(p, λ) and v(p, λ)
are also eigenstates of γ5. What are the corresponding eigenvalues?

(d) Following the limiting procedure of part (c), deduce the helicity spinor projec-
tion operators [see part (b)] for the case of massless spin-1/2 particles.

2. For a four-component Dirac field, the transformations

Ψ(x) → Ψ′(x) = exp(iαγ
5
)Ψ(x) , Ψ†(x) → Ψ′†(x) = Ψ†(x) exp(−iαγ

5
) ,

where α is an arbitrary real parameter, are called chiral phase transformations.

(a) Show that the Dirac Lagrangian density, L = Ψ(x)(iγµ∂µ − m)Ψ(x), is only
invariant under chiral phase transformations in the zero-mass limit, m = 0. Using
Noether’s theorem, prove that the corresponding conserved current (in the m = 0
limit) is the axial vector current Jµ

A(x) ≡ Ψ(x)γµγ
5
Ψ(x).
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(b) Introduce the left-handed and right-handed fields:

ΨL(x) ≡
1

2
(1− γ

5
)Ψ(x) , ΨR(x) ≡

1

2
(1 + γ

5
)Ψ(x) .

Noting that Ψ(x) = ΨL(x) + ΨR(x), rewrite the Dirac Lagrangian in terms of the two
independent fields ΨL(x) and ΨR(x). Use the hint below to simplify this Lagrangian
(by removing any terms that vanish). Starting from the resulting Lagrangian, deduce
the (Lagrange) field equations for the left and right-handed fields in the case of non-
vanishing massm, and show that the two field equations decouple in the limit ofm = 0.

HINT: Show that ΨL ≡ Ψ†
Lγ

0 = 1

2
Ψ(1 + γ

5
), etc. Then, prove that ΨLγ

µΨR = 0 and

ΨLΨL = 0, and use these and similar results to simplify your Lagrangian.

(c) Compare the results of part (b) to the Dirac equation in two-component nota-
tion. Discuss the relation between the two-component and four-component treatments.

3. In class, we wrote down an expression for the momentum operator P µ in the two
cases of a non-interacting scalar and Dirac field theory, respectively. We then inserted
the mode expansions for the corresponding quantum fields and obtained P µ as a sum
over modes.

(a) Fill in the steps in the case of Dirac field theory; i.e., derive the expression for
P µ as a sum over modes {~p, s}, where s is the spin quantum number.

(b) Prove that P µ |0〉 = 0, where |0〉 is the vacuum state. Interpret the result.

4. In Dirac field theory governed by the Lagrangian L = Ψ(i/∂ −m)Ψ, the conserved
angular momentum tensor operator is given by:

Jµν =

∫

d3xψ†(x)
[

i(xµ∂ν − xν∂µ) + 1

2
Σµν

]

ψ(x) ,

where Σµν ≡ 1

2
i(γµγν − γνγµ) and Ψ(x) is the Dirac (four-component) field operator.

As usual, we define the corresponding vector angular momentum and boost operators
by J i = 1

2
ǫijkJjk and Ki = J0i.

(a) Prove that ~J is an hermitian operator.

(b) Derive the following form for ~K:

~K = x0 ~P −
i

2

∫

d3x~xΨ†(x)
↔
∂0 Ψ(x) , (1)

where ~P is the three-vector momentum operator of Dirac field theory and

Ψ†(x)
↔
∂0 Ψ(x) ≡ Ψ†(x)

∂Ψ(x)

∂t
−
∂Ψ†(x)

∂t
Ψ(x) .
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HINT: To derive eq. (1), it is very convenient to make use of the following identity

i

2

∫

d3x ∂k [x
i Ψ(x)γkΨ(x)] = 0 ,

which is valid under the assumption that the field Ψ(x) vanishes at spatial infinity.
Further simplification can be achieved by noting that Ψ(x) satisfies the free-field Dirac
equation.

(c) Prove that ~K is an hermitian operator.

(d) Verify that d ~K/dt = 0.

5. This problem concerns the discrete symmetries P , C and T .

(a) Let Φ(x) be a complex-valued scalar field previously considered in problem 2 of
Problem Set #2. The unitary operators P , C and an antiunitary operator T act on
the quantized free complex scalar field as follows,

PΦ(t ; ~x)P−1 = Φ(t ; −~x) ,

CΦ(t ; ~x)C−1 = Φ∗(t ; ~x) ,

TΦ(t ; ~x)T−1 = Φ(−t ; ~x) ,

where Φ∗ is the complex conjugate of the field Φ. Determine the action of P , C
and T on the annihilation operators a~p and b~p for the charged scalar particles and
antiparticles, respectively.

(b) Consider the conserved current operator Jµ,

Jµ = i :
[

Φ∗(∂µΦ)− (∂µΦ∗)Φ
]

:

where :O: indicates that the operator O is normal ordered. Determine the transforma-
tion properties of Jµ under P , C and T . Why is the normal ordering in the definition
of the operator Jµ necessary?

(c) Consider a theory of a charged scalar field Φ(x) and a Dirac fermion field Ψ(x).
Show that any Lorentz invariant hermitian local operator∗ built from products of Φ(x),
Ψ(x) and their conjugates has CPT = +1.

∗By definition, a local operator is a product of fields in which each field is evaluated at the same

spacetime point.
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