
Physics 217 Problem Set #4 Fall 2016

DUE: TUESDAY NOVEMBER 29, 2016

1. Consider the following Lagrangian density involving two real scalar fields φ and χ,

L = 1

2
(∂µφ)

2 + 1

2
(∂µχ)

2 − 1

2
m2

φφ
2 − 1

2
m2

χχ
2 − µφχχ , (1)

where µ is a parameter with units of mass (in units of ~ = c = 1). Due to the term
in eq. (1) proportional to µ, a φ particle can decay into two χ particles provided that
mφ > 2mχ. Assuming that this latter condition is satisfied, calculate the lifetime of the
φ particle to lowest order in µ.

2. Consider the decay: µ− → e−νµν̄e. The lifetime (τ) of the muon in its rest frame can
be computed from the following formula:

τ−1 =
1

2M

∫
|M|2 (2π)4 δ4(p− p1 − p2 − p3) dLips , (2)

where M is the muon mass, p is the muon four-momentum, p1 is the electron four-
momentum and p2 and p3 are the neutrino four-momenta. The notation dLips is short-
hand for Lorentz invariant phase space:

dLips ≡
∏

j

d3pj
(2π)3(2Ej)

. (3)

The theory of weak interactions yields the following leading-order prediction for square
of the invariant matrix element (after averaging over initial spins and summing over final
spins):

|M|2 = 64G2

F (p · p2) (p1 · p3) , (4)

where GF = 1.16638 × 10−5 GeV−2 is Fermi’s constant. Note that the dot products in
eq. (4) involve four-vectors.

(a) Insert eq. (4) into eqs. (2) and (3) and carry out all integrations. Work in the
approximation that the electron and neutrino masses are zero. Here are some tricks to
make the calculation simple. First, we shall integrate over the neutrino four-momenta.
Define q = p− p1 and consider:

Iµν(q) ≡

∫
d3p2
2E2

d3p3
2E3

pµ2 p
ν
3 δ

4(q − p2 − p3) . (5)

Since d3p/E is Lorentz invariant, it follows that Iµν transforms like a second-rank tensor.
Clearly Iµν is a function of the four-vector q. Noting that gµν and qµqν are the only
second-rank tensors that can be constructed using the four-vector q, it follows that

Iµν(q) = A(q2) gµν +B(q2) qµqν , (6)

where A and B are functions of the Lorentz scalar quantity q2.
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Thus, we have reduced the problem of computing Iµν to the problem of evaluating
the scalar functions A and B. One can evaluate A and B by the following trick. First
multiply both sides of eqs. (5) and (6) by gµν (summing over µ and ν). The δ-function in
eq. (5) requires that q = p2+p3. From this relation and using the fact that the neutrinos
are massless (i.e., p22 = p23 = 0), we can evaluate p2 · p3 in terms of q2. The result is that
one can express a linear combination of A and B in terms of the integral:

I ≡

∫
d3p2
2E2

d3p3
2E3

δ4(q − p2 − p3) . (7)

Next, multiply both sides of eqs. (5) and (6) by qµqν (summing over µ and ν). This
yields a second equation for A and B in terms of the integral I. We now have two
equations for A and B in terms of I. Thus, once we know the value of I, we can trivially
evaluate A and B. To evaluate I, first note that it is a Lorentz invariant, so we can
choose any frame of reference to perform the calculation. Choose the center-of-mass
frame of the two neutrinos (where ~p2 + ~p3 = 0). In particular, note that in this frame
(due to the fact that the neutrinos are both massless), E2 = E3. The integration over ~p2

is immediate by using three of the four δ-functions. Converting to spherical co-ordinates,
the remaining integrals can be done almost by inspection. You should find that I is a
simple constant.

Now that Iµν has been computed, we are left with:

τ−1 =
1

2M
(2π)−5 64G2

F

∫
d3p1
2E1

pµpν1 Iµν(q) . (8)

Inserting the result for Iµν obtained from the above calculation, and recalling that q =
p − p1, we can complete the computation by performing the last set of integrals in
eq. (8). Again, we are free to choose an arbitrary frame. This time, the simplest choice
is the muon rest frame, where p = (M ;~0). Since the electron is massless, we can take
p1 = E1(1; 0, 0, 1); that is, we choose the z-axis to be the electron direction in the
muon rest frame. Converting again to spherical coordinates, the remaining challenge
is to determine the range of integration for the “radial” variable |~p1| ≡ E1. Clearly,
0 ≤ E1 ≤ Emax. The maximum value of E1 is determined from the inequality q2 ≥ 0
(since q = p2+p3 is the sum of two light-like four vectors); hence, (p−p1)

2 ≥ 0. Inserting
the explicit forms for the four-vectors given above, we easily obtain Emax. Complete the
evaluation of the remaining integrals, and obtain a formula for τ−1 in terms of GF and
the muon mass.

(b) Using M = 105.66 MeV, evaluate the muon lifetime (in seconds). To accomplish
this last step, you will have to relate the energy unit of electron volts (eV) to the
time unit of seconds. Effectively, this requires that you restore the appropriate factors
of ~ and c (which have been set to one throughout the above calculation). Compare
your result with the muon lifetime listed in the 2016 Review of Particle Physics [see
http://www-pdg.lbl.gov/2016/tables/rpp2016-sum-leptons.pdf] compiled by the
Particle Data Group.
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3. The cross section for scattering of an electron by the Coulomb field of a nucleus
can be computed to lowest order in the electromagnetic coupling e without quantizing
the electromagnetic field. Instead, we shall treat the electromagnetic field as a given
classical potential Aµ(x). The interaction Hamiltonian is

Hint = −

∫
d3x eΨ(x)γµΨ(x)Aµ(x) ,

where Ψ(x) is the quantized four-component Dirac field and the charge of the electron
is −e.

(a) Show that the T -matrix element for the electron scattering off a localized classical
potential, to lowest order in e, is given by

〈p′|iT |p〉 = ieu(p′)γµu(p) Ãµ(p
′ − p) ,

where Ãµ(q) is the four-dimensional Fourier transform of Aµ(x).

(b) If Aµ(x) is time-independent, its Fourier transform contains a delta function of
energy. It is then natural to define,

〈p′|iT |p〉 ≡ 2πiδ(Ef −Ei)M , (9)

where Ei and Ef are the initial and final energies of the electron, and to adopt a new
Feynman rule for computing M,

= ieγµÃµ(~q)

where Ãµ(~q) is the three-dimensional Fourier transform of Aµ(x). Given the definition
of M given in eq. (9), show that the cross section for scattering off a time-independent,
localized potential is

dσ =
1

vi

1

2Ei

d3pf
(2π)3

1

2Ef

|M|2(2π)δ(Ef − Ei) , (10)

where vi is the magnitude of the initial velocity of the electron. Integrate over the final
state three momentum pf to find a simple expression for dσ/dΩ.

(c) Specialize to the case of electron scattering from a Coulomb potential,

~A(~x) = 0 , A0(~x) =
Ze

4πr
, where r ≡ |~x|,
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Using eq. (10) and working in the nonrelativistic limit, average over the initial electron
spins and sum over the final electron spins. Derive the Rutherford formula,

dσ

dΩ
=

Z2α2

4m2v4 sin4(θ/2)
,

where α ≡ e2/(4π) and v is the magnitude of the electron velocity.

4. Spin-1 helicity wave functions (sometimes called polarization vectors) are four-vectors

denoted by ǫµ(k, λ), where kµ = (Ek ; ~k) is the four-momentum of the particle. The
helicity λ can take on three possible values (λ = −1, 0, 1) if the particle is massive, and

two possible values (λ = ±1) if the particle is massless. Suppose ~k points in a direction
specified by polar and azimuthal angles θ and φ with respect to the z-axis. Then the
transverse (λ = ±1) polarization vectors are given by:

ǫµ(k,±1) =
√

1

2
e±iφ (0 ; ∓ cos θ cosφ+ i sinφ,−i cosφ∓ cos θ sinφ,± sin θ) .

The above result holds for both massless and massive spin-one particles. If m 6= 0, one
also needs the polarization four-vector of the longitudinal (λ = 0) state:

ǫµ(k, 0) =
1

m

(
|~k| ; Ek

~k

|~k|

)
.

(a) Show that the spin-one polarization vectors satisfy:

k · ǫ(k, λ) = 0 ,

ǫ(k, λ) · ǫ(k, λ′)∗ = −δλλ′ .

(b) If m 6= 0, prove that the polarization sum is given by:

∑

λ

ǫµ(k, λ)ǫν(k, λ)
∗ = −gµν +

kµkν
m2

.

(c) For photons, m = 0, and the polarization sum is taken only over transverse
polarizations, λ = ±1. Define a fixed four vector, nµ ≡ (1; 0, 0, 0). Show that the
photon polarization sum is given by:

∑

λ

ǫµ(k, λ)ǫν(k, λ)
∗ = −gµν +

kµnν + kνnµ

k · n
−

kµkν
(k · n)2

.
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You are not required to hand in problem 5 below, and it will not be graded. However,

the results below should be a part of your mathematical toolkit. In particular, these

results play an important role in scattering theory and the theory of dispersion. Thus,

I include it here for future reference.

5. Prove the following identity:

1

x± iǫ
= P

1

x
∓ iπδ(x) ,

where ǫ > 0 is an infinitesimal quantity. This identity formally makes sense only when
first multiplied by a function f(x) that is smooth and non-singular in a neighborhood
of the origin, and then integrated over a range of x containing the origin. That is, prove
that: ∫

+∞

−∞

f(x)dx

x± iǫ
= P

∫
+∞

−∞

f(x)dx

x
∓ iπf(0) ,

where the principal value integral is defined as:

P

∫
+∞

−∞

f(x)dx

x
≡ lim

δ→0

{∫
−δ

−∞

f(x)dx

x
+

∫
+∞

+δ

f(x)dx

x

}
,

assuming f(x) is regular in a neighborhood of the real axis and vanishes as |x| → ∞.
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