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Motivation

Super symmetry needs two Higgs doublets

SM cannot explain the observed baryon asymmetry, possible in 2HDM

CP Violations

Candidates for dark matter

Many more..
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Review of SM

Part I: Review of SM
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Review of SM

SM Higgs

In the SM, we have one complex scalar doublet

Φ =

(
φ1
φ2

)
(1)

The scalar potential is given by

V = −µ2Φ†Φ+
1

2
λ
(
Φ†Φ

)2
where µ2 and λ are real.

Figure: Scalar Potential in SM
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Review of SM

SM Higgs (Continued)

We assume that the scalar potential has a non-zero vev:

〈φ〉 = 1√
2

(
0
v

)
(2)

Expanding about the vev

Φ =

(
G+

(v + H + iG 0)/
√
2

)
(3)

where G− is a complex field and H, G 0 are real fields

The potential becomes

V = −µ
4

2λ
+ µ2H2 + LInt

Only H gets a mass and it’s mass matrix, ∂2V
∂H∂H = 2µ2 is trivial
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Review of SM

SM Higgs (Continued)

We thus have a charged goldstone boson: G+, a nuetral goldstone
boson: G 0 and a Higgs: H

This scalar field couples to the gauge fields via the covariant derivative

Dµ = ∂µ + igT aAa
µ + ig ′ 1

2
YBµ (4)

This gives us the W ′s, the Z and the photon field

W± =
1√
2

(
A1
µ ∓ iA2

µ

)
; Z 0

µ =
gA3

µ − g ′Bµ√
g2 + g ′2

; (5)

Aµ =
g ′A3

µ + gBµ√
g2 + g ′2

(6)

We then couple the scalar field to the fermions to give them mass via
Yukawa couplings

LYukawa = −λeψ̄L2ΦψE − λuψ̄Q1Φψu − λd ψ̄Q2Φψd − · · · (7)
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2HDM Formalism

Part 2: 2HDM Formalism
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2HDM Formalism 2HDM Potential

Two-Higgs Doublet Model (2HDM)

Now we add a second Higgs doublet

The most general, renormalizable two-doublet scalar potential is [1]

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(
m2

12Φ
†
1Φ2 +H.C.

)
(8)

+
1

2
λ1

(
Φ†
1Φ1

)2
+

1

2
λ2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
1

2
λ5

(
Φ†
1Φ2

)2
+ λ6

(
Φ†
1Φ1

)(
Φ†
1Φ2

)
+ λ7

(
Φ†
2Φ2

)(
Φ†
1Φ2

)
+H.C.

]
where m2

11,m
2
22 and λ1,2,3,4 are real and m2

12 and λ5,6,7 are in general
complex
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2HDM Formalism 2HDM Potential

Two-Higgs Doublet Model (2HDM)

The potential can be written more compactly as

V =
2∑

a,b=1

µab

(
Φ†
aΦb

)
+

1

2

2∑
a,b,c,d=1

λab,cd

(
Φ†
aΦb

)(
Φ†
cΦd

)
(9)

where

µ11 = m2
11

µ12 = −m2
12

µ21 = −
(
m2

12

)∗
µ22 = m2

22

λ11,11 = λ1

λ11,22 = λ22,11 = λ3

λ12,12 = λ5

λ11,12 = λ12,11 = λ6

λ22,12 = λ12,22 = λ7

λ22,22 = λ2

λ12,2 = λ22,11 = λ4

λ21,21 = λ∗5

λ11,21 = λ21,11 = λ∗6

λ22,21 = λ21,22 = λ∗7
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2HDM Formalism 2HDM VEVs

2HDM VEVs

There are three types of vevs in the 2HDM

”Normal” vacua (neutral, CP conserving, v =
√
v21 + v22 ≈ 246GeV )

〈Φ1〉 =

(
0
v1√
2

)
and 〈Φ2〉 =

(
0
v2√
2

)
(10)

CP breaking vacua: where the vevs have a relative phase

〈Φ1〉 =

 0
v̄1e

iθ

√
2

 and 〈Φ2〉 =

 0
v̄2√
2

 (11)

Charged vacua:

〈Φ1〉 =
1√
2

(
α
v ′1

)
and 〈Φ2〉 =

1√
2

(
0
v ′2

)
(12)

(These vevs are bad: they give the photon a mass)
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2HDM Formalism Characters in the theory

Higgs Masses

For illustration and simplicity, we will work with a CP conserving
vacua and a scalar potential which is CP conserving, in which the
quartic terms obeys a Z2 symmetry:

Z2 : Φ1 → −Φ1 and Φ2 → Φ2 (13)

Under these assumptions, the scalar potential is

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†
1Φ2 +Φ†

2Φ1

)
(14)

+
1

2
λ1

(
Φ†
1Φ1

)2
+

1

2
λ2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+
λ5
2

((
Φ†
1Φ2

)2
+
(
Φ†
2Φ1

)2)
Expanding about these vev’s the fields are

Φa =

(
φ+a

(va + ρa + iηa)/
√
2

)
, a ∈ {1, 2} (15)
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2HDM Formalism Characters in the theory

Higgs Masses (continued)

There are 8 fields. Three fields get ”eaten” up by the W±
µ and the Z 0

µ

The remaining content is: two neutral scalars, a pseudo scalar and a
charged scalar.

To determine mass matricies, one needs to enfore extrema of the
potential: ∂V

∂v1
= ∂V

∂v2
= 0, which occurs only when

0 = m2
11v1 − Re

(
m2

12

)
v2 + v31

λ1
2

+ v1v
2
2

λ345
2

(16)

0 = m2
22v2 − Re

(
m2

12

)
v1 + v32

λ2
2

+ v2v
2
1

λ345
2

(17)

where λ345 = λ3 + λ4 + λ5
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2HDM Formalism Characters in the theory

Charged Higgs

For the charged scalars, the mass matrix is

(
M2

φ±

)
ij
=

∂2V

∂φ−i ∂φ
+
j

=

[
m2

12 − (λ4 + λ5) v1v2

] v2
v1

−1

−1
v1
v2


This matrix has one zero eigenvalue corresponding to the charged
Goldstone boson (which gets eaten by the W ). The mass of the
charged Higgs is

H+ =
v2φ

+
1 − v1φ

+
2√

v21 + v22

M2
H+ =

v2

v1v2

[
m2

12 − v1v2(λ4 + λ5)

]
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2HDM Formalism Characters in the theory

Pseudo Scalar Higgs

The mass matrix for the pseudo scalar Higgs is

(
M2

A

)
ij
=

∂2V

∂ηi∂ηj
=

(
m2

12

v1v2
− λ5

)(
v22 −v1v2

−v1v2 v21

)
Diagonalizing this, we find one massless pseudo scalar (which gets
eaten by the Z boson) and a massive pseudo scalar with mass M2

A :

A =
v2η1 − v1η2√

v21 + v22

M2
A = (v21 + v22 )

(
m2

12

v1v2
− λ5

)
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2HDM Formalism Characters in the theory

Neutral Scalar Higgs

Lastly we have the mass matrix for the neutral scalar Higgs(
M2

h

)
ij
=

∂2V

∂ρi∂ρj
=

(
A C
C B

)
where

A = m2
11 +

3λ1
2

v21 +
λ345
2

v22 (18)

B = m2
22 +

3λ2
2

v22 +
λ345
2

v21 (19)

C = −m2
12 + λ345v1v2 (20)

This can be diagonalized by and angle α, resulting in the physical
fields h and H:

H = (−ρ1 cosα− ρ2 sinα) h = (ρ1 sinα− ρ2 cosα) (21)
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2HDM Formalism Characters in the theory

The masses of the two neutral scalar Higges are [2]

Mh = v2
[
λ− λ̂ cos(β − α)

sin(β − α)

]
(22)

MH = v2
[
λ+

λ̂ sin(β − α)

cos(β − α)

]
(23)

where β is defined by tanβ ≡ v2/v1 and

λ = λ1 cos
4(β) + λ2 sin

2(β) +
1

2
λ345 sin

2(2β) (24)

λ̂ =
1

2
sin(2β)

[
λ1 cos

2(β)− λ2 sin
2(β)− λ345 cos(2β)

]
(25)
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Flavor Changing Neutral Currents

Part 3: Flavor Changing
Neutral Currents
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Flavor Changing Neutral Currents Higgs Basis

Higgs Basis

To examine FCNCs it is convenient to work in the Higgs Basis
To get to the Higgs Basis, we rotate our basis {Φ1,Φ2} such that
〈Φ1〉 6= 0 and 〈Φ2〉 = 0. Assuming the general vevs of the form

〈Φ1〉 =
(

0

v1/
√
2

)
, 〈Φ2〉 =

(
0

v2e
iδ/

√
2

)
(26)

The Higgs basis is achieved by rotating via a unitary matrix U

Ha =
2∑

b=1

UabΦb =
e−iδ/2

v

(
v1e

iδ/2 v2e
−iδ/2

−v2e
iδ/2 v1e

−iδ/2

)(
Φ1

Φ2

)
(27)

where v =
√
v21 + v22 . This is the Higgs Basis.

Expanding about the vev the fields are

H1 =

(
G+

(v + H + iG 0)/
√
2

)
, H2 =

(
H+

(R + iI )/
√
2

)
(28)

where R, L,H are neutral, G 0,G+ and are Goldstones
Logan A. Morrison (UCSC) 2HDM March 18, 2016 19 / 27



Flavor Changing Neutral Currents Yukawa Coupling

Coupling to Fermions: Yukawa Couplings

The most general gauge invariant coupling we can have between
spinors and the Higges are

LY = −
2∑

j=1

[
Q̄L

(
ΦjY

D
j nR + Φ̃jY

U
j pR

)
+ L̄LΦjY

e
j `R

]
+H.C. (29)

where QL, LL, nR , pR and `R are flavor three vectors and Φ̃j = iσ2Φ
∗
j

and Y D
j ’s and Y U

j ’s are 3× 3 coupling matrices.

Rotating into the Higgs basis and defining mass matrices Mn and Nn

Φ1 =
1

v
(ṽ1H1 + ṽ∗2H2) Φ2 =

1

v
(ṽ∗1H1 − ṽ2H2)

Mn =
1√
2

(
ṽ1V

d
1 + ṽ2Y

d
2

)
Nn =

1√
2

(
ṽ∗2Y

d
1 − ṽ∗1Y

d
2

)
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Flavor Changing Neutral Currents Yukawa Coupling

Yukawa Couplings (Continued)

In terms of the mass matrices, Mn and Nn, we have

2∑
j=1

Q̄LΦjY
d
j nR =

√
2

v
Q̄L(MnH1 + NnH2)nR (30)

In general, we can bi-diagonalize Mn by rotating the flavor basis’ of
QL and nR

QL = ULQ
′
L nR = Un

Rn
′
R

We when have new mass matrices

Md = U†
LMnU

n
R and Nd = U†

LNnU
n
R (31)

where Md is diagonal: Md = diag(md ,ms ,mb)

In general, Nd will not be diagonal. If it is not, there will be flavor
changing neutral currents
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Flavor Changing Neutral Currents Yukawa Coupling

Yukawa Couplings (Continued)

If FCNCs were allowed, we could have, for example, H → ds̄ which
would give rise to K -K̄ oscillations at tree level [1]

d

s

d

s

H
K 0 K

0

Figure: FCNC lead to effects such a Kaon osc. at tree level

This affects the rate of Kaon oscillation and thus require the neutral
flavor changing mediator to have a mass of 10 TeV

Theories with FCNC can still are still viable
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Flavor Changing Neutral Currents Removing FCNCs: Type 1 and Type II 2HDM

Removing FCNCs: Type I and II 2HDMs

It is possible to rid our theory of FCNC by requiring that all particles
with same quantum numbers couple to the one Higgs (for example
Mn ∝ Nn)

There are two ways to do this, called: Type I and Type II models

Type I: all quarks couple to the same Higgs doublet. This can be
achieved by imposing a Z2 symmetry:

Z2 : Φ1 → −Φ1 and Φ2 → Φ2 (32)

Type II: all Q = 2/3 couple one doublet (say Φ1) and all Q = −1/3
quarks couple the other double Φ2. This type is enforced using

Φ1 → −Φ1 and d i
R → −d i

R (33)

The type II model uses the same Yukawa couplings as MSSM
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Flavor Changing Neutral Currents Removing FCNCs: Type 1 and Type II 2HDM

Yukawa Couplings in Type I and II models

Recall that the neutral scalars and pseudo scalar are given by

H = (−ρ1 cosα− ρ2 sinα) h = (ρ1 sinα− ρ2 cosα) (34)

A =
1√

v21 + v22

(v2η1 − v1η2) (35)

In the Type I model (tanβ ≡ v2/v1)

h A H

up-type quarks cosα/ sinβ cotβ sinα/ sinβ

down-type quarks and
leptons

cosα/ sinβ − cotβ sinα/ sinβ

In the Type II model
h A H

up-type quarks cosα/ sinβ cotβ sinα/ sinβ

down-type quarks and
leptons

− sinα/ cosβ − tanβ cosα/ cosβ
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Flavor Changing Neutral Currents Removing FCNCs: Type 1 and Type II 2HDM

Charged Higgs Couplings in Type I and II models

The charges Higgs Largrangian is

LH± = −
√
2

v
H+

[
Vij ūi

(
XumuiPL + XdmdjPR

)
dj +m`X`v̄`PL`

]
+H.C.

(36)

where Vij is the CMK matrix

The couplings Xu,Xd and X` are

Type I Type II

Xu cotβ cotβ

Xd cotβ tanβ

X` cotβ − tanβ
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Application Rare B meson decays

Application

The 2HDM makes testable predictions such as the decay width of B
mesons (B̄ → D∗τ−ν or B̄ → Dτ−ν)

In the SM, theses decay are mediated via W’s

SM doesn’t predict correct decay rate of the B̄

In the 2HDM, this process can also occur through a charge Higgs
boson

It is still unclear if the 2HDM can explain the discrepancy in the
decay rate of the B̄ [3]

b

d̄

τ−

ν̄τ
c

d̄

H−

B̄0

D∗+
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Application Rare B meson decays
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