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The general analysis of binary reactions involving particles with arbitrary spin is refor-
mulated in such a way, that it applies equally well to relativistic particles (including photons).
This is achieved by using longitudinal spin components (``helicity states'') not only in the
initial and final states, but also in the angular momentum states which are employed as usual
to reduce the S-matrix to a simpler form. Expressions for the scattering and reaction-amplitude,
intensity and polarization are given. They involve fewer vector-addition coefficients than the
customary formulas, and no recoupling coefficients. The application to some examples is
sketched, and in the Appendix some formulas are given that may be of use in the applications.
� 1959 Academic Press

I. INTRODUCTION

The general theory of collisions of the type a+b � c+d for polarized particles
has been discussed several times [1�5], but until recently not much attention has
been paid to the relativistic features of the problem. At first sight, the principles
employed in the customary discussion (unitarity, conservation laws, composition
law for angular momenta) are so general that nothing further has to be said. The
relativistic description of the spin-states of a particle, however, involves certain well-
known complications, which must be handled carefully. This has been done by
Stapp [6] for collisions between spin-1�2 particles and by Chao and Shirokov [7]3

for particles of arbitrary spin. In either case, the authors assume that the particles
concerned have a nonvanishing rest-mass and then show that for suitably defined
(but somewhat complicated) spin operators the customary analysis of the initial (or
final) state in states of definite orbital momentum L and resultant spin S can be
carried out in the usual manner, the only departure from the nonrelativistic case
being in a somewhat subtle difference in the interpretation of the spin direction of
a particle. We shall examine here the same problem by a different method, which
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in our opinion is somewhat simpler. This method also has the advantage that it
applies equally well to massless particles, e.g., photons. The interpretation of the
spin direction for a massive particle is, however, the same as in the method of Chao
and Shirokov.4

In the customary treatment, one uses the component of the spin along a fixed
direction, say the z-axis, to classify the possible polarized states of a particle. The
states used in our treatment are labeled with the component of the spin along the
direction of motion of the particle, which may be called the helicity quantum
number (*) or briefly helicity. Thus we avoid the problem of the separation of the
angular momentum operator into a spin- and an orbital-part (* may also be defined
as the component, in the direction of motion, of the total angular momentum of the
particle) which leads to complications in the relativistic case. In particular, * has a
well-defined meaning also for massless particles.

Independent of any relativistic considerations, * as a quantum number has also
another convenient property; it is invariant under ordinary rotations, so that it is
possible to construct states of definite angular momentum J, in which all particles
involved have definite helicities. Thus in describing a reaction a+b � c+d in a
center-of-mass frame, we may use E, J, M (=Jz) together with the helicities *a , *b

as quantum numbers for the initial state, and similarly E, J, M, *c , *d for the final
state. E is of course the total energy. The S-matrix for the process has then the form

(E$J$M$*c *d | S |E J M *a*b) =$(E&E$) $JJ$ $MM$ (*c*d | SJ (E) |*a*b). (1)

The reduction of the S-matrix to submatrices SJ (E), belonging to definite values of
E and J, is of course an essential step in any general analysis of a collision. In the
ordinary scheme, the diagonalization of J and Jz is achieved by successive addition
of the spin vectors and relative orbital momentum vector. As a result an element
of the submatrix SJ (E) is labeled

(L$S$| SJ |LS) , (2)

where LS (L$S$) are orbital and total spin quantum-numbers for the initial (final)
state. Since the total spin S (S$) is not a suitable quantity to describe any possible
polarization measurements on the initial (final) state, the ordinary scheme must shuttle
back and forth between two different representations, one being the representation in
which the simple form (2) obtains, and the other being a representation in which the
states are labeled with individual spin components. Our scheme avoids this complica-
tion, since the helicity quantum numbers appearing in Eq. (1) are also directly related
to individual polarization properties of the particles. This leads to a certain simplicity
and neatness of the formulae for the scattering and reaction amplitudes, which may
well constitute a practical advantage over the conventional formulae.
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The general plan of the paper is as follows. In Section 2, we give some explana-
tions about helicity states and in particular about the conventions adopted about
the relative phases of the various spin components. These conventions, of course,
become important in the calculation of transverse polarizations. The reader who is
not too interested in mathematical detail may, however, skip the first part of this
section entirely. Next we give the transformation formulas Eqs. (18) and (24) from
plane-wave states to states of definite J and Jz (=M). In Section 3 we then intro-
duce the states just described into the general S-matrix formalism. The main result
is the formula (31) for the scattering- or reaction-amplitude in the c.m. system. Like
the formulas usually given,5 Eq. (31) is a simple and obvious generalization of the
elementary scattering formula for spinless particles

f (%)=(1�2ip) :
J

(2J+1)(SJ&1) PJ (cos %). (3)

Our formula, however, contains no Clebsch�Gordan coefficients and a single sum-
mation index, instead of the five of the usual formula. It may be argued, of course,
that some of the complexity is hidden in the presence of the functions dJ

mm$(%) in
place of the more elementary PJm(%). Some of the d J-functions most likely to occur
are tabulated in the Appendix for greater convenience. Actually, the appearance of
these functions in our formulas has a simple intuitive meaning. As is well known,
the function dJ

mm$(%) can be regarded as the wave function of a symmetrical top, m
being the component of angular momentum along a fixed (``z'') axis and m$ being
the component along the symmetry (``z$'') axis of the top. The presence of a resultant
spin-component +=*c&*d along the direction of motion of the two final particles
relative to each other imparts to the two particles properties somewhat similar to those
of a symmetrical top spinning about its symmetry axis. The identification m$=+ is
therefore obvious. Similarly *=*a&*b=m follows from the fact that the Jz value
of the outgoing wave is determined by the initial resultant spin along the z-axis.

In Section 4, we give some general intensity and polarization formulas derived
from Eq. (31). The calculation is no more difficult than in the usual case; in fact the
formulas now contain some Clebsch�Gordan, but no recoupling, coefficients. The
point is that this slight gain in simplicity is not only attained at no cost, but on the
contrary while achieving a somewhat wider range of application of the formulas.

The simplifications arising from parity conservation and other symmetry considera-
tions are discussed in Section 5. Finally, in Section 6 we consider some examples.

II. ANGULAR MOMENTUM STATES

In order to describe the states of a free particle of arbitrary spin s and mass m
it is fortunately unnecessary, for our purposes, to write down an explicit relativistic
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wave equation. It is instead sufficient [8] to know that such equations exist, and
that their plane-wave solutions, representing states of definite linear momentum p
and corresponding positive energy |=(m2+ p2)1�2, have the following properties:

(a) for each p, and assuming m{0, there are 2s+1 linearly independent
solutions (states), which may be chosen to be solutions of definite helicity:

*=s, s&1, ..., &s. (4)

If m=0, and if the wave equation is ``irreducible,'' the independent solutions are
only two, corresponding to

*=\s, (4$)

e.g., for a photon *=\1.

(b) When the transformation corresponding to an ordinary rotation of the
xyz system of axes is applied to one of the above solutions, one obtains a state with
a different direction of p, but * remains unchanged.

(b$) When a space reflection is applied, * changes sign.

(c) When a Lorentz-transformation in the direction of p is applied, one
obtains a state with the same (or the opposite) direction but a different magnitude
of p. Assuming the direction of p is not reversed, again * remains unchanged.

(d) The states referred to under (a), and characterized by p and *, form a
complete orthogonal set of states for a free particle. The transformations induced
within the set by rotations, reflections and proper Lorentz transformations are
represented by certain operators or matrices, which must obey well-known com-
mutation relations; the explicit form of these operators needs not be specified here,
except that certain specifications are implied in the statements (b), (b$), and (c).

A minor complication involved in working without an explicit wave equation is
that the relative phases of the basic states defined above have to be specified by
some special convention. This is easily done, however. In the first place, according
to statement (b), the states with momentum p$ in an arbitrary direction specified by
polar angles %, ,, may be defined by means of a suitable rotation applied to states
�p* having a momentum p in the positive z-direction. The rotation is conveniently
defined to be a rotation through an angle % in the positive direction about the axis
p_p$. If Jz , Jy , Jz are the angular momentum operators for the particle, a finite
rotation with Euler angles :, ;, # is given by the operator

R:;#=e&i:Jx e&i;Jy e&i#Jz. (5)

One easily sees that the state with momentum p$ ( |p$|=|p|#p) and helicity * as
defined above is given by

| p%,; *)=R,, %, &,�p*=ei*,R,%0�p* . (6)
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We have now only to specify the relative phases of the states �p* with momentum
in the positive z-direction. Owing to (c) and in analogy to Eq. (6) we may generate
all the states �p* with a fixed * and variable p by applying Lorentz transformations
in the z-direction (x$=x, y$= y, z$=z&;t, t$=t&;z) to a fixed state �p0 * . If
m{0, we may moreover go to the limit p0=0; even in this limit the quantization
axis for angular momentum remains, of course, the z-axis. Since for a particle at
rest the angular momentum is equal to the spin we may specify the relative phases
of the states �0* by the requirement

(Jz\iJy) �0*=[(s�*)(s\*+1)]1�2 �0*\1 (7)

meaning that in this case Jz Jy Jz reduce to the standard spin matrices. For a
massless particle, no finite Lorentz transformation can reduce p0 to zero, but we
have only two values of *, Eq. (4$), to compare. Owing to (b$) this may be done
by means of a reflection. If for example P is the ``parity'' operator, corresponding
to the reflection in the origin (xyz � &x, &y, &z), then the reflection in the xz
plane

Y=e&i?Jy P (8)

transforms �ps into �p, &s apart from a phase factor '

Y�p, s='�p, &s . (9)

Since Y commutes with a Lorentz transformation in the z-direction, it is easy to see
that owing to our previous conventions, ' is independent of p. It is therefore a
constant which we shall call the ``parity factor'' of the particle. For example it is
customary to define the *=\1 solutions for a photon as having a vector potential
A=�2&1�2(ex\iey) exp(ipz). Furthermore Y applied to A reverses the sign of Ay .
One sees that with these conventions '=&1.

We may further cheek that Eq. (9) is compatible with the conventions (7) for
m{0. In this case we know that P transforms �0* into itself apart from a phase-
factor which must be independent of * (P commutes with J). Hence we write

P�0*='�0* . (10)

Furthermore

e&i?Jy�0*=:
*$

d s
*$*(?) �0*$ , (11)

where the matrix d*$*(;) is well known. In particular

ds
*$*(?)=(&1)s&* $*$, &* . (12)
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Combining (10) and (11) and applying a Lorentz transformation in the z-direction
on both sides we get

Y�p*='(&1)s&* �p, &* , (9$)

which for *=s reduces to (9). Equations (9) (9$) will turn out to be extremely
useful later.

We now go over to the description of the states of two free particles 1 and 2 with
masses m1 and m2 and spins s1 and s2 . These states may, of course, be constructed
as direct products

R (1)
,1%1&,1

�p1 *1
(1) R (2)

,2 %2&,2
�p2 *2

(2)

of individual states of the above described type for particles 1 and 2. We are,
however, mostly interested in states of zero total linear momentum, for which say
p1=&p2=p (direction %, ,). Then %1=%, ,1=, and %2=?&%, ,2=,\? and the
two rotations R(1) and R(2) may be replaced by a single rotation R involving the
total angular momentum J=J1+J2 of the two particles. To this end we first define
for particle 2, states /p*2

with momentum in the negative z-direction as follows:

/p*2
=(&1)s2&*2 e&i?J y

(2)
�p*2

. (13)

The phase factor in front is not really necessary; it is introduced for convenience
in such a way that for a particle at rest ( p=0), /0* reduces simply to �0, &* (the
change of sign of the helicity may be understood if one assumes that the direction
of p is reversed before going to the limit p=0). We then define a product state for
the two particles

�p*1*2
=�p*1

(1) /p*2
(2), (14)

in which state the relative momentum p is in the positive z-direction. States with
other directions of p may be obtained, as in Eq. (6), by applying a rotation

| p%,; *1 *2)=R,, %, &, �p*1*2
=ei*,R,, %, 0�p, *1*2

, (15)

where *=*1&*2 is the resultant angular momentum of the two-particle system in
the direction (%, ,) of the relative momentum.

It is now easy to construct states with zero linear momentum and definite total
angular momentum J and component Jz=M. Since the magnitude p of the relative
momentum and the helicities *1 and *2 are invariant against rotations, one can
assign definite values to them, together with J and M. Let | p; JM; *1*2) be the
ket-symbol for such a state. The prescription we employ is well known [9, 10];
introducing a suitable normalization factor R, we write

| p; JM; *1*2) =
N

2? | dU D*M, *(:;#) R:;#�p*1*2
,

(16)
dU=sin ; d: d; d#,
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where the integral extends to the region6 0<:<2?, 0<;<?; 0<#<2? and where
the star means complex conjugation. Furthermore

DMM$(:;#)=e&iM: dJ
MM$(;) e&iM$# (17)

is the matrix corresponding to R:;# in the irreducible representation DJ. Alter-
natively D*MM$ may be described as the wave function of a symmetrical top,
whereby M$ is the angular momentum of the top with respect to the symmetry axis.
Two particles moving in opposite directions and spinning with a resultant angular
momentum *=*1&*2 about the direction of their relative momentum p, present
certain kinematical features in common with a symmetrical top, the symmetry axis
being of course replaced by p. Therefore the appearance of DM* in Eq. (16) is hardly
surprising.

The dependence of the integrand in (16) on # is simply a factor exp i_(*&*1+*2) #.
The integration over # is therefore trivial (hence also the condition M$=*#*1&*2).
Remembering (15) we can write

| p; JM; *1*2)=N | D*M*(,, %, &,) | p%,; *1*2) d0, (18)

where d0=sin % d% d,. This exhibits our angular momentum states as superposi-
tions of the plane-wave states (15).

Let us now examine some questions of normalization. For a product state
|p1 p2 *1*2) with independent momenta for the two particles, we assume at first a
conventional normalization

(p1 $p2 $*1 $*2 $ | p1p2*1*2) =(2?)6 $(p1&p1 $) $(p2&p2 $) $*1*$1
$*2*$2

(19)

then introduce as new variables the total energy-momentum four-vector

P+=(P, P0),

with components P=p1+p2 , P0=|1+|2 , and two polar variables %, , to specify
the direction7 of the relative momentum p=(m1+m2)&1 (m2p1&m1p2). Then on
the right-hand side of Eq. (19), and more generally in the matrix-element of any
operator A which commutes with the four components of P+ , we can separate out
a ``center-of-mass factor''

$4(P+&P+ $)#$3(P&P$) $(P0&P0 $).
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Introducing some additional normalization factors for convenience, we shall write

(p1 $p2 $*1 $*2 $| A |p1p2 *1*2) =(2?)4 $4(P+&P+ $) } (2?)2 vp&2

_(%$,$*1 $*2 $| A(P+) |%,*1*2) , (20)

where A(P+) represents, of course, the submatrix of A belonging to a given four-
momentum P+ . The left-hand side of (20) reduces to (19) when A is the unit
operator, in which case A#1 and A(P+) may be omitted on the two sides. The
additional normalization factors are chosen in such a way that in the special case
P=0 (center-of-mass frame of reference) one has, as one easily verifies,

(%$,$*1 $*2 $ | %,*1*2)=$2(%,; %$,$) $*1*1$
$*2*2$ , (21)

where $2 is the two-dimensional $-function on the unit sphere:

$(cos %&cos %$) $(,&,$).

With a slight modification (see the discussion preceding Eq. (15)) amounting
only to a phase factor, which does not affect the normalization, the ket-symbol
|%,*1*2) of Eqs. (20) and (21) may be identified with the states of Eqs. (15) (18).
If then Eq. (21) is assumed for the normalization, and if we choose

NJ=[(2J+1)�4?]1�2 (22)

and pay attention to the orthogonality relations

|
?

0
d j

m+(;) d j $
m+(;) sin ; d;=$jj $ 2�(2j+1), (23a)

1
2 :

j

(2j+1) d j
m+(;) d j

m+(;$)=$(cos ;&cos ;$), (23b)

we easily find that the angular momentum states Eq. (18) are normalized in a
standard fashion

(J$M$*1 $*2 $ | JM*1 *2) =$JJ$ $MM$ $*1*1$
$*2*2$

and moreover that the transformation matrix

(%,; *1*2 | JM; *1 $*2 $) =NJ $*1*1$ $*2*2$ D*M*(,, %, &,) (24)

satisfies the unitarity conditions

| d0(%,*1*2 | JM*1*2)(%,*1*2 | J$M$*1*2)*=$JJ$ $MM$ ,

(25)
:
JM

(%,*1*2 | JM*1*2)(%$,$*1*2 | JM*1*2)*=$2(%,; %$,$).

781GENERAL THEORY OF COLLISIONS



These conditions are, of course, useful in the discussion of the S-matrix, to which
we now turn our attention.

III. S-MATRIX

An element of the S-matrix for the reaction a+b � c+d can be designated by

(pcpd ; *c*d | S |pa pb ; *a*b) (26)

in terms of initial and final states normalized as in Eq. (19). Let us designate by P+

and P+ $ the initial and final momentum four-vectors

P+=( pa+ pb)+ ; P+ $=( pc+ pd)+ (27)

and similarly by p, p$, v, v$ the initial and final relative momenta and velocities
measured, as we have said, in a c.m. frame (P=P$=0).

Apart from the introduction of helicity quantum numbers, the discussion
proceeds along conventional lines. Owing to energy- and momentum-conservation,
one can split out a ``center-of-mass factor,'' introducing polar coordinates %0 , ,0 for
the initial- and %, , for the final-relative momentum, and one can write the matrix-
element (26) in analogy to Eq. (20)

(pcpd ; *c*d | S |pa pb ; *a *b) =(2?)6 $4(P+&P+ $)(vv$)1�2 ( pp$)&1

_(%,*c*d | S(P+) |%0,0*a *b) , (28)

whereby the normalization of the states of relative motion has been properly taken
into account, in such a way that the unitarity of the S-matrix takes a simple form,
which the reader can easily write down.

In practice, we are interested in the case: P=0 and we shall write S(E) instead
of S(P+), E being the invariant (&P+P+)1�2 or the value of the total energy P0 in
a center-of-mass frame. Moreover we assume that the initial direction of relative
motion is along the positive z-axis; we set then %0=0 and ,0 arbitrary, for example:
,0=0. A familiar calculation then gives for the differential cross section

d_=(2?�p)2 |(%,*c*d | T(E) |00*a*b) |2 d0, (29)

where d0=sin % d% d, is the final solid angle in a c.m. frame and the operator T
is related to S by the usual equation

S&1=iT, (29$)

where 1 is the unit operator, which, of course, contributes to the matrix element
(28) only in the case of elastic scattering (a=c, b=d ). The cross section as given
refers to given values of the initial and final helicities, but can be easily generalized
to the case of arbitrary polarization (see Section 4).

782 JACOB AND WICK



We now transform, as usual, to a J, M representation, which in our case may be
done by means of the transformation matrix (24). We notice that, since %0=0,

(JM; *a*b | %0,0 ; *a*b)=NJD*M*(,0 , 0, &,0)=NJ ei(M&*) ,0 dJ
M*(0)=NJ $M*

(independent of ,0 !). Furthermore recalling the structure of S in the J, M represen-
tation, Eq. (1), we find, using (22) and (24)

(%,*c*d | S(E) |00*a*b)= :
J, M

(%,*c*d | JM*c*d)

_(JM*c*d | S(E) |J$M$*a*b)(J$M$*a *b | 00*a*b)

=(1�4?) :
J

(2J+1)(*c*d | S J (E) |*a*b) D**+(,, %, &,),

(30)

where *=*a&*b , +=*c&*d . Inserting (30) into (29) (29$) we have

d_=| f*c*d ; *a*b
(%, ,)|2 d0;

f*c*d ; *a *b
(%, ,)=(1�p) :

J

(J+1�2)(*c*d | T J (E) |*a *b) ei(*&+) , dJ
*+(%); (31)

(*=*a&*b ; +=*c&*d).

T J (E) is the same as &iS J (E) except in the case of elastic scattering (a=c, b=d),
when in view of Eq. (29$)

(*c*d | S J (E) |*a*b) &$*a*c
$*b*d

=i (*c*d | T J (E) |*a *b). (31$)

IV. GENERAL INTENSITY AND POLARIZATION FORMULAS

When only small J values contribute, it may be convenient to calculate the amplitudes
f directly, by mens of the d J functions given in the Appendix. Just as in former treat-
ments, it is possible, however, to square the amplitudes directly, expressing the product
of two d-functions by means of the Clebsch�Gordan series,

dJ
*+ dJ$

*$+$=:
l

C(JJ$l; *, &*$) C(JJ$l; +, &+$)(&1)*$&+$ d l
*&*$, +&+$ , (32)

where we use the notation

( j1 j2 m1m2 | j1 j2 jm)=C( j1 j2 j; m1 m2) $m, m1+m2

for the Clebsch�Gordan coefficients.
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For example the unpolarized cross section is obtained by squaring the amplitude,
summing over the final- and averaging over the initial-helicity quantum numbers.
In this case one uses (32) with *=*$, +=+$ so that

d l
*+ � d l

00(%)=Pl (cos %).

One finds8

(d_)unpol=I(%) d0;

I(%)=[(2sa+1)(2sb+1) p2]&1 :
(*)

:
JJ$

(J+1�2)(J$+1�2)(&1)*&+ (33)

_(*c*d | T J |*a*b)* (*c*d | T J$ |*a*b)

_:
l

C(JJ$l; *, &*) C(JJ$l; +, &+) P l (cos %),

where �(*)=�*a*b *c*d
. In this formula as well as in subsequent ones, the statistical

weight (2s+1) must be replaced by 2 for a massless particle.
In a similar way we may compute cross sections for arbitrary polarization of the

particles. It is quite easy to write down ``the most general cross section'' involving
density matrices \a , ..., \d or the corresponding statistical tensors. Even in these
general formulas no elimination of magnetic sums by means of recoupling of
angular momenta occurs, because all the simplifications arising from rotational
invariance have already been taken into account implicitly.

We shall, however, limit ourselves with a single exception to the cases of
longitudinal (circular) and transverse polarization of an initial (say a) or final (say c)
particle. Longitudinal polarization (total or partial) can obviously be introduced by
attributing different weights to the positive and negative values of the helicity quantum
number. The ensuing modification of Eq. (33) is immediate and need not be discussed
in detail. In particular it is easy to see that, if parity is conserved in the reaction (see
Section 5), and if the initial particles are unpolarized, then in the final state values
of *c (or *d) differing only in sign are equally probable. No circular polarization is
therefore produced in the reaction, as one expects.

If parity nonconserving reactions of practical interest exist, then the present
formalism is obviously well suited to their discussion.

Transverse polarization is usually defined by means of the expectation value of
a transverse component of the spin. As we have mentioned earlier, the definition of
transverse components of the spin is somewhat arbitrary in the relativistic case. In
fact, in the case of a massless particle, transverse polarization cannot be defined in
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this way at all. The following formulas are derived, therefore, for a particle of finite
mass. Consider for example the assumption that particle a is initially in a pure state

�=:
*

a*�p* (34)

(we write here * instead of *a for simplicity). A convenient way to define the trans-
verse polarization is to assume that the particle is first ``transformed to rest'' by
means of a Lorentz transformation along the z-axis. That is we assume that the
transverse components of the spin sx and sy are measured in a Lorentz system of
reference, obtained from the original system xyz by the above mentioned Lorentz
transformation. According to Section 1, statement (c), * remains unchanged in the
transformation, hence also the probability |a* |2. In fact one can see that, with our
phase conventions, the amplitudes a* also are unchanged. Hence with the above
definition and using the known form of the nonrelativistic spin-matrices, see Eq. (7), we
can write, after an obvious simplification

(sy)=:
**$

(sy)**$ a* *a*$=:
*

[(s+*)(s&*+1)]1�2 Im(a*&1 a**), (35)

where Im( } } } ) means imaginary part of } } } , and where, following usage, one can
recognize a Clebsch�Gordan coefficient

[(s+*)(s&*+1)]1�2=[2s(1+s)]1�2 C(s 1 s; *, &1)

=&[2s(1+s)]1�2 C(s 1 s; *&1, +1). (36)

Conversely if a particle is partially polarized in the y-direction the density matrix
has the form

(\)**$=(2s+1)&1 [$**$+3[(sy)�s(s+1)](sy)**$+ } } } ], (37)

where } } } represents the contribution of higher order statistical tensors, which we
neglect in the following. It is now an easy matter to calculate the ``polarized cross
section'' i.e., the part of the cross section d_�d0 which is proportional to (say); it
is

3 - 2 (say)[sa(sa+1)]&1�2 [ p2(2sa+1)(2sb+1)]&1 sin %

_:
JJ$

(J+1�2)(J$+1�2)

_:
(*)

Im[(*c*d | T J |*a*b)(*c*d | T J$ |*a&1, *b)*ei,]

_:
l

C(JJ$l; *, 1&*) C(JJ$l; +, &+)(&1)*&+ C(sa 1 sa ; *a , &1)

} [l(l+1)]&1�2 Pl $(cos %). (38)
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TABLE I

j=l (Integer)a

d (l)
m0(3)=(&1)m d (l )

0m(3)=[4?�(2l+1)]1�2 Plm(3)

Examples:

d (l )
00(3)=Pl (cos 3)

d (l )
10(3)=&[l(l+1)]&1�2 sin 3 P l$(cos 3)

d (l )
20(3)=[(l&1) l(l+1)(l+2)]&1�2 [2P$l&1(cos 3)&l(l&1) Pl (cos 3)]

d (l )
m1(3)=[l(l+1)]&1�2 [&m[(1+cos 3)�sin 3] d (l)

m0(3)&[(l&m)(l+m+1)]1�2 d (l )
m+1, 0(3)

= 1
2 [l(l+1)]&1�2 [&[(l&m)(l+m+1)]1�2 d (l )

m+1, 0+[(l+m)(l&m+1)]1�2 d (l )
m&1, 0

+[(l&m)(l&m&1)]1�2 d (l&1)
m+1, 0+[(l+m)(l+m&1)]1�2 d (l&1)

m&1, 0].

a P l$ means dP l�d(cos 3).

Here Eq. (32) has been used, and a function d l
10(%) has been expressed as Pl $; see

Table I. Furthermore it will be shown in Section V that owing to parity conserva-
tion the ei, may be replaced by cos ,.

Turning now to the polarization of the final particles, we notice that the basic
states of our representation Eqs. (6) and (15) are most obviously interpreted as the
analogs of the states �p* and �p*1*2

with regard to a system of axes x$y$z$, which is
obtained from the original axes xyz by a rotation with Euler angles (,, %, &,) or
alternatively (,, %, 0) if one suppresses a factor ei*, in the definition of the basic
states. The second choice is somewhat preferable, because in that case the y$ axis
is perpendicular to both z and z$, i.e., to the reaction plane.

Let us therefore compute the expectation value sy$ for particle c, assuming
unpolarized incident particles. If c was in a pure state �# c#R,%0 �p# , the desired
expectation value would, of course, be given by (35) with s, * and a* replaced by
sc , # and c# , respectively. Our final state is similarly expanded in terms of
R,%0�p*c*d

, the coefficient being f*c*d ; *a *b
(%, ,) ei+, (where +=*c&*d). Hence one

easily calculates for the outgoing state

I(%)(scy$) =&- 2 sin %[sc(sc+1)]1�2 [ p2(2sa+1)(2sb+1)]&1

_:
JJ$

(J+1�2)(J$+1�2)

_:
(*)

Im[(*c*d | T J |*a *b)* (*c&1, *d | T J$ |*a*b)]

_:
l

C(JJ$l; *, &*) C(JJ$l; +, 1&+) C(sc 1 sc ; *c , &1)(&1)*&+

_[l(l+1)]&1�2 Pl $(cos %). (39)

A similar formula may be obtained for (scx$) and may be shown to vanish (as
one expects) if the scattering matrix satisfies the symmetry condition for parity-
conservation discussed in the next section.
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Finally, as an example of more general formulas, we may write the density matrix
\c

##$ for outgoing particle c, assuming no initial polarization, and using the ``R,, %, &,

representation,'' in the form

\c
##$=[ p2(2sa+1)(2sb+1)]&1 (&1)#&#$ :

JJ$l

(J+1�2)[?(2l+1)]1�2

_ :
*a*b*d

(#*d | T J |*a*b)(#$*d | T J$ |*a*b)*

_C(JlJ$; *0) C(JlJ$; +, #$&#) Yl, #$&#(%, ,), (39$)

where +=#&*d , and where some trivial rearrangements of the Clebsch�Gordan
coefficients have been made. Some properties of this formula will be discussed later.

V. SYMMETRY PROPERTIES OF THE SCATTERING MATRIX
AND SELECTION RULES

We must now examine the restrictions to the form of the S-matrix and the
simplifications in the formulas (33) etc., which arise from various symmetry
considerations, and in the first place from parity conservation, if it applies.

The states of each of our particles a, ..., d will obey an equation (9$) with intrinsic
phase-factors 'a , ..., 'd . From (8) and (9$) one sees that the corresponding equation
for the parity operator P is

P�p*=ei?JyY�p*='(&1)s&* ei?Jy �p, &* . (40)

A similar equation may be derived for /p* and combining the two we get, for a
two-particle state,

P�p*1*2
='1'2(&1)s1+s2&*1+*2 e i?Jy�p, &*1 , &*2

. (40$)

We now apply the operator P to an angular-momentum state, Eq. (16), remem-
bering that P commutes with the rotation operators

P |JM*1*2) ='1'2(&1)s1+s2&*1+*2 | dU D*M*(:;#) R:;# R0, &?, 0 �p, &*1, &*2
.

We notice that the equation

R:;#R0, &?, 0=R:$;$#$
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defines an element :$;$#$ in such a way that the transformation from :;# to :$;$#$
preserves the volume element in group space,9 i.e., dU=dU$. Furthermore, using
the known value of d J (?), one has

DM*(:;#)=:
+

DM+(:$;$#$) D+*(0 ? 0)=(&1)J&* DM, &*(:$;$#$).

With these substitutions one easily gets

P |JM; *1 *2)='1'2(&1)J&s1&s2 |JM; &*1 , &*2) , (41)

where it should be noticed that J&s1&s2 is necessarily an integer.
If parity is conserved

P&1SP=S, (42)

and applying this to the submatrix S(E) in the JM-representation and using (41)
one finds

(&*c , &*d | S J |&*a , &*b)='g(*c*d | S J |*a*b);
(43)

'g=('c'd �'a'b)(&1)sc+sd&sa&sb,

i.e., apart from a constant phase factor, an element of the submatrix SJ does not
change if one reverses the sign of all the helicity quantum numbers. It is easy to see
what this means for the reaction-amplitude (31). Using the symmetry property
(A.1) of the Appendix, we find easily

f&*c&*d ; &*a&*b
(%,)='g f*c*d ; *a*b

(%, ?&,) (44)

which can also be obtained directly by a reflection in the xz plane.
Equation (43) means that the submatrix SJ has, roughly speaking, only half as

many independent elements as it could otherwise have;10 the equation plays the
same role as the L-selection rule of the usual formulation. For example in Eq. (33)
we may notice that changing *a , ..., *d to &*a , ..., &*d does not affect the product
of the two C�G coefficients. Hence Eq. (43) tells us that, in the sum �(*) , two terms
with opposite helicities give the same contribution to the sum. The sum may thus
be reduced to roughly half as many terms.
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The simplification that applies to Eq. (38) is the following. Rewrite (38) inter-
changing J and J$ and replacing *a , *b , *c , *d by &*a+1, &*b , &*c , &*d . Then
using (43) and the symmetry properties of the C�G coefficients with respect to the
interchange of two angular momentum states one sees that �(*) } } } in (38) is
replaced by

&:
(*)

Im[(*c*d | T J |*a*b)* (*c*d | T J$ |*a&1, *b)ei,]...,

the dots indicating that the remainder of the expression is unchanged. This shows
that expanding ei,=cos ,+i sin , the terms in sin , cancel out, as mentioned
before.

No change occurs in (39), the simplification in the polarization of the outgoing
particle being expressed instead by the condition (scx$) =0. The generalization of
these considerations to polarization tensors of higher order is immediate.

For example if in Eq. (39$) we set ,=0 for simplicity, then applying condition
(43) together with well-known properties of the C�G coefficients we see that

\c
&#, &#$=(&1)#&#$ \c

#, #$ . (44$)

This means, of course, that certain statistical tensors for particle c vanish. In order
to see this more precisely, we recall that according to our conventions if we com-
pute statistical tensors by the standard formulas [11] they will be referred to a
rotated system of axes in which the z-axis is parallel to pc=&pd while (since ,=0)
the y-axis is unchanged and perpendicular to the reaction plane. Let us now
perform a further rotation of the statistical tensors by means of the formula11

T $q, }=:
*

i* dq
}*(?�2) Tq, * ,

which corresponds to the replacement, in any tensor operator, of sx , sy , sz , with
sz , sx , sy . In other words we refer the tensors to a system of axes in which the z-axis
is perpendicular to the reaction plane. One sees easily by means of Eq. (A-2) and
the Wigner�Eckart theorem that the tensors T $ have the symmetry property

(T $q, })&#, &#$=(&1)#&#$+} (T $q, })#, #$ .

Then Eq. (44$) shows that

T $q, }=(&1)} T $q, } , (44")

i.e., all tensors with odd } vanish. This is one of the selection rules of Shirokov [5].
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Identical Particles

Let us now see how the symmetry or antisymmetry of the wave functions for
identical particles is expressed in our formalism. Indicating by P12 the operator
which interchanges particles 1 and 2, we may cast the equation which expresses the
effect of P12 on the basic state (14) in a form quite similar to Eq. (40$) for the
operator P. To this end one must use simply the definition (13) and the identities
e&i?J (1)

y=(&1)2s ei?J (1)
y and (&1)*1&*2=(&1)*2&*1 (since *1&*2 is an integer in

this case). One easily sees that

P12 �p*1*2
=(&1)2s&*1+*2 e i?Jy�p*2*1

, (45)

whereupon, remembering that P12 commutes with the rotation operators, the same
calculation that follows (40$) will obviously give for the angular momentum states

P12 |JM; *1*2) =(&1)J&2s |JM; *2*1). (46)

The well-known connection between spin and statistics now tells us that the state
of the correct symmetry with respect to P12 is

[1+(&1)2s P12] |JM; *1*2) =|JM; *1*2)+(&1)J |JM; *2*1). (47)

It should be noticed that, owing to the particular conventions we have used, the \
factor which distinguishes Bose�Einstein and Fermi�Dirac statistics has been
canceled by a spin-factor (&1)2s!

One should notice that, according to Eq. (47), for odd J only *1 {*2 is allowed.
Another restriction to be remembered in counting possible states is, of course,
Je |*1&*2 |. A by-product of Eq. (47), for example, is a very easy derivation of the
Landau�Yang enumeration of the possible states for two photons [12, 13]. The
corresponding parities, of course, are immediately obtained from (41).

A simpler case is that of two protons. Writing for brevity �RR for |JM; +1�2+1�2)
and so on (R or L means +1�2 or &1�2) we find the following possible states

�RR , �LL (J even),

�RL+�LR (J even 1), (48)

�RL&�LR (J odd).

The states of the third and fourth type have odd parity (assuming '2=1), while the
first two must combine in the form �RR\�LL if one wants states of (odd�even)
parity. Finally the states thus obtained may be expressed in terms of the customary
1S0 , 3P0, 1, 2 , ... states in the nonrelativistic limit by means of the expansion coef-
ficients of Appendix B. The result for the first few states is given in Table III.
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Time Reversal

In order to examine the consequences of time-reversal invariance, let us assume
as usual that our theory admits an antiunitary (Wigner) time reversal operator T.
When T operates on our basic one-particle state �p* , it obviously generates a state
with the same helicity and the same momentum, but in the negative z-direction.
Since such a state can also be generated by a rotation about the y-axis, we can
write

T�p*==e&i?Jy�p* , (49)

where = is a phase factor, which may depend on p and *. It is easy to see that it
does not depend on p. Consider a Lorentz-transformation L along the z-direction,
which changes p to p$: L�p*=�p$* . Multiplying (49) on the left by L&1, and
noticing that according to well-known commutation relations

L&1T=TL; L&1e&i?Jy=e&i?JyL, (50)

one finds immediately that �p$* obeys the same equation (49) with the same value
of =, and since p$ is arbitrary, this proves the assertion. It is also easy to see that
= does not depend on *. If the mass is not zero, we may consider the limiting case
p � 0, in which case (49) must reproduce the well-known time-reversal properties
of the spin-functions of a particle at rest [14, 15]. Using Eq. (14) one sees that

T�0*==(&1)s&* �0, &*==i2(*&s)�0, &* (51)

has the required form, if = is independent of *. In particular if ==&i2s one gets the
Wigner�Eisenbud prescription, for ==(&1)2s one gets the Coester prescription, etc.
The value of = may of course (since T is antiunitary) be altered at will, by multiply-
ing all our states by a suitable common phase-factor. Let us assume for example
==1. We still have to show that the same conclusion applies to a massless particle.
We use then Eq. (9) assuming for simplicity that ' is real (for a photon '=&1 as
we have seen). Furthermore TY=YT. Then applying Y on both sides of Eq. (51)
for *=+s, one finds the same equation for *=&s. Q.E.D.

From Eq. (13) and (50) one finds that /p* obeys the same T-transformation as �p* ,
Eq. (49). Hence the two-particle state also

T�p*1*2
=e&i?Jy �p*1*2

, (52)

where we have set ==1. We can now easily calculate, since T commutes with R:;#

T |JM; *1 *2)=(N�2?) | dU DM, *(:;#) R:;#T�p*1*2
. (53)
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Using (52) and writing R:;#R0?0=R:$;$#$ we proceed like in the derivation of (41)
and transform (53) into

(N�2?) | dU$(&1)J+* DM, &*(:$;$#$) R:$;$#$�p*1*2
.

Furthermore DM, &*(:$;$#$)=(&1)&*&M D*&M, *(:$;$#$) and finally

T |JM; *1 *2)=(&1)J&M |J&M; *1 *2). (54)

As is well known, from (54) and the time-reversal property of the S-matrix
T &1ST=S&1, one easily gets the result that the S J-matrix is symmetric

(*c*d | S J |*a*b)=(*a*b | S J |*c*d) , (55)

where the matrix element on the right refers of course to the inverse transition
c+d � a+b. Since (55) by the customary form, there is no problem in applying to
our formalism the customary conclusions about phases of the matrix elements in
photomeson production and so on.

VI. ILLUSTRATION OF THE METHOD BY SOME SIMPLE EXAMPLES

Elastic Scattering of a Spin-One-Half by a Spin-Zero Particle

If particle b (=d ) has zero spin, the indices *b , *d may be suppressed. For *a and
*c we use the abbreviation \ for \1�2. Assuming conservation of parity, Eq. (43),
two of the matrix-elements S++ , S+& , ... of the submatrix S J can be expressed in
terms of the other two, and it is easy to express all four in terms of the two eigen-
values of SJ. Since the submatrix is unitary the eigenvalues are of the form e2i$

where $ is a real phase. A commonly used notation12 is $l+ or $ l& , depending on
whether J=l+1�2 or l&1�2, l being the orbital quantum number. Although l
has no place in our description, we may identify these states by their parity. For
simplicity we consider in the following the ``orbital'' parity (i.e., computed omitting
the intrinsic parity factors '1'2 in Eq. (41)) which in the usual notation is (&1) l=
(&1)J�1�2. From (41) we see that the state

|JM; +) \|JM; &) (56)

has parity \(&1)J&1�2=(&1)J�1�2. The state with the upper sign in (56) has
therefore the phase-shift $l+ with l=J&1�2, and the state with the lower sign has
$l $& , with l $=J+1�2=l+1. One sees then that

S J
++=S J

&&=1�2(e2i$l++e2i$(l+1)&),
(57)

S J
+&=S J

&+=1�2(e2i$l+&e2i$(l+1)&).
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TABLE II

j=l+ 1
2 (Half-Integer)a

d ( j )
1�2, 1�2=(l+1)&1 cos

3
2

(P$l+1&Pl$)

d ( j )
&1�2, 1�2=(l+1)&1 sin

3
2

(P$l+1+Pl$)

d ( j )
1�2, 3�2=(l+1)&1 sin

3
2 {� l

l+2
P$l+1+� l+2

l
Pl$=

d ( j )
&1�2, 3�2=(l+1)&1 cos

3
2 {&� l

l+2
P$l+1+� l+2

l
Pl$=

a P l$ means dP l�d(cos 3).

Inserting into (31) and with the abbreviation

fl\= p&1ei$l\ sin $l\ , (58)

we find, using dJ
1�2 1�2 , etc., from Table II, after a slight rearrangement

f++(%,)=cos
%
2

( f1+ f2),

(59)

f+&(%,)=e&i, sin
%
2

( f1& f2),

where f1 and f2 are defined as in [16],

f1=:
l

( f l+ P$l+1& f l& P$l&1),
(60)

f2=:
l

( f l&& fl+) Pl $.

The amplitudes f&& and f&+ are, of course, given by the symmetry relation (44).
The ensuing form of the 2_2 scattering-amplitude-matrix can be written

( f1+ f2) cos
%
2

+i sin
%
2

( f1& f2)(cos ,_y&sin ,_x),

which is easily seen to be equivalent to the ordinary form if one bears in mind the
rotation of the system of axes, to which the final spin-state is referred.
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Neutron�Proton Scattering
We shall only point out some of the possible simplifications. Of the 4 states

|JM; \\) the linear combinations

|JM; ++) \|JM; &&) (61a)

|JM; +&) \|JM; &+) (61b)

may be formed; those with the upper sign have ``orbital'' parity (&1)J&1, the others
parity (&1)J. The former correspond therefore to the customary triplet states, with
J=L\1. The submatrix SJ splits correspondingly into two submatrices 2_2. If
furthermore the neutron�proton interaction is assumed symmetric in the two
particles (neglecting small electromagnetic effects), then the fact, that the state (61b)
with the lower sign has the opposite symmetry to the state (61a) of the same parity,
implies a further splitting13 of the submatrix for parity (&1)J. Thus finally S J is
reducible by symmetry considerations only, to one 2_2 submatrix and two 1_1
submatrices. This is, of course, the usual result.

Photomeson Production

p+# � n+?+

The elements of the reaction matrix may be labeled f+* since the ?-meson has no
spin, and the value of *=*p&*# is sufficient to determine *p and *# separately.
Assuming parity-conservation, Eq. (43), and assuming 'p='n , '#='?=&1 (these
conventions are the usual ones for nucleons and ?-meson, for the photon see
earlier) so that 'g=&1 we may designate the elements of the submatrix T J as
follows

p&1T J=\ C
&D

A
&B

B
&A

D
&C+ , (62)

where the rows correspond to +=+1�2 and &1�2 and the columns to *=3�2, 1�2,
&1�2, &3�3 in this order. Each element, say A, will receive a subscript 2J=1,
3, 5, ... .

We notice that, for J=1�2, *=\3�2 is impossible and the elements C and D do
not exist.

Then by means of Table III we easily find

e&i,f1�2, 3�2=&- 3 C3 cos
%
2

sin %+ } } } ,

f1�2, 1�2=cos
%
2

[A1&A3+3A3 cos %+ } } } ],
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TABLE III

Helicity States vs Ordinary States for Two Protons

J

Helicity states

0 1 2 3 4

1

- 2
(�RR+�LL) &3P0 �� - 2�5 3P2&- 3�5 3 F2 �� - 4�9 3F4&- 5�9 3H4

1

- 2
1S0 �� 1D2 �� 1G4

1

- 2
(�RL+�LR) �� �� - 3�5 3P2+- 2�5 3 F2 �� - 5�9 3F4+- 4�9 3H4

1

- 2
(�RL&�LR) �� &3P1 �� &3F3 ��

ei,f1�2, &1�2=sin
%
2

[B1+B3+3B3 cos %+ } } } ],

e2i,f1�2, &3�2=- 3 D3 sin
%
2

sin %+ } } } , (63)

where the dots indicate terms with J>3�2. The correspondence between the coef-
ficients A1 , B1 , ..., etc. and those customarily employed is easily traced by means of
the parity of the final states, using Eq. (41). The states of the pion nucleon system
ordinarily indicated as s1�2( p1�2), for example, correspond, in our JM+ notation, to
the linear combinations

|JM, 1�2) +(&) |JM, &1�2) . (64)

The transitions E1 � s1�2 and M1 � p1�2 are therefore associated to the coefficients
A1&B1 and A1+B1 , respectively.

Similarly, d3�2 requires a minus sign in Eq. (64), i.e., the transitions to d3�2 depend
on the difference between the two rows of the submatrix T 3�2, Eq. (62). The often
made assumption that these transitions are negligible at low energies can therefore
be expressed by writing

A3+B3=C3+D3=0. (65)

This reduces the number of independent coefficients in Eq. (63) to the usual four.
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APPENDIX A

We collect here, for convenience, some formulas, which are useful in the evaluation
of the d j (%) matrices. We refer the reader to Wigner's [9] and other well-known
books [17, 18]14 for more extensive information.

Symmetry Properties

The number of functions to be computed is considerably reduced by the symmetry
relations

d j
*+(%)=d j

&+, &*(%)=(&1)*&+ d j
+*(%). (A1)

One also has

d*+(%)=(&1) j+* d*, &+(?&%). (A2)

Evaluation

The d j
*+ functions can be expressed in various ways as hypergeometric functions,

Jacobi polynomials, etc. Some convenient procedures for the computation, due to
Wigner, are described by Edmonds [18]. A useful formula is the recursion rela-
tion15

( j++)1�2 d ( j)
*+(%)=( j+*)1�2 d ( j&1�2)

*&1�2, +&1�2(%) cos
%
2

+( j&*)1�2 d ( j&1�2)
*+1�2, +&1�2(%) sin

%
2

, (A3)

which may be iterated to give

2[( j++)( j++&1)]1�2 d ( j)
*+(%)

=[( j+*)( j+*&1)]1�2 (1+cos %) d ( j&1)
*&1, +&1

+2( j2&*2)1�2 sin % d ( j&1)
*, +&1+[( j&*)( j&*&1)]1�2 (1&cos %) d ( j&1)

*+1, +&1 .

(A4)

The following procedure may be adequate in many cases. The values of *, +
needed are usually small. If j=l, an integer, one can start from d l

00 , or more
generally d l

m0 , see Table I, and calculate d l
m1 , d l

m2 , ..., by means of the recursion
formula (A4) or alternatively by using
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d j
*, +\1=[( j\++1)( j�+)]&1�2 { &*

sin %
++ cot %�

�
�%= d j

*+(%). (A5)

A simple proof of this formula is as follows. From

e&i%JyJzei%Jy=cos %Jz+sin %Jx ,

we obtain

(Jx\iJy) e&i%Jy=(sin %)&1 e&i%JyJz&cot %Jze&i%Jy�
�
�%

e&i%Jy. (A6)

Formula (A5) is then obtained by taking the matrix element of (A6) between ( j*|
and | j+) , remembering Eq. (7).

If j is a half-integer, the same recursion procedure can be applied, starting
from d ( j)

*1�2 .

d ( j)
*1�2=( j+1�2)&1�2 _( j+*)1�2 d ( j&1�2)

*&1�2, 0(%) cos
%
2

+( j&*)1�2 d j&1�2
*+1�2, 0(%) sin

%
2& .

(A7)

By means of the above formulas the special values in the following tables have been
obtained.

APPENDIX B

In the nonrelativistic case, one may wish to know what the connection is between
the states |JM; *1*2) and the customarily employed states

|JM; LS)= :
m1m2

C(LSJ; m, m1+m2) C(J1J2S; m1m2) YLm um1
vm2

, (B1)

where the spherical-harmonic symbol YLm includes for simplicity also the radial
part, um1

, vm2
are spin states for spin s1 and s2 , respectively, and

m=M&m1&m2 .

At the same time one can write for our states Eq. (14), remembering the remark
following Eq. (13)

�p*1*2
=e ip(z1&z2)u*1

v&*2
. (B2)
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The rotation operator R of Eqs. (15) and (16) acts on each factor of the right-hand
side of (B2) separately and gives for example

R,%0�p*1*2
= :

m1m2

D (s1 )
m1*1

D (s2 )
m2&*2

um1
vm2

R,%0eip(z1&z2), (B3)

where the D's, here and in the following equations, are functions of the arguments ,%0.
The YLm -function of Eq. (B1) can be expressed in a manner similar to Eq. (18).

Remembering (15) and (22) we shall write

YLm=NL | DL V
m0 (,%0) R,%0e ip(z1&z2) d0. (B4)

By means of Eqs. (17) and (A1) and (32) it is easy to expand (18) in terms of (B1)
or vice versa. The result is

JM; LS |JM; *1 *2) =\2L+1
2J+1+

1�2

C(LSJ; 0, *) C(s1 s2s; *1 , &*2). (B5)

Finally as an application of this formula we give in Table III the connection
between our states for two protons, Eq. (48), and the customary singlet and triplet
states.
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