
CHAPTER 13 

THE HELICITY FORMALISM 

13.1. The Helicity States 

The component of spin s along the direction of motion of a particle is known 
as its helicity and the helicity quantum number is usually denoted by the 
symbol λ. It is also the component of total angular momentum J along
the direction of motion since the orbital angular momentum L = r x p is
perpendicular to the direction of motion and consequently its projection 
ml on the momentum axis is zero. 

The helicity formalism has been developed by Jacob and Wick (1959) for 
relativistic description of scattering of particles with spin and the decay of 
particles and resonant states. It is equally applicable to massless particles. 
The helicity formalism leads to simpler intensity and polarization formula 
over the conventional method in the study of scattering and reaction of 
particles. The advantages of using the helicity states are many. 

1. There is no need to separate the total angular momentum J into orbital 
and spin parts and hence avoid the difficulties and complications that 
arise in the treatment of relativistic particles. 

2. The helicity λ is invariant under rotations and so states can be con-
structed with definite J and helicities. 

3. The helicity λ is well defined also for massless particles and so there is 
no need for separate treatment for massless particles. 

4. The helicity states are directly related to individual polarization prop-
erties of the particles and hence convenient for the polarization study 
over the conventional formalism of choosing a reference frame with a 
fixed quantization axis, say z - a x i s . In the conventional scheme, one has 
to shuttle back and forth between two representations, one in which 
the scattering or reaction is conveniently described and the other in 
which the states are labeled with individual spin components. 

In order to specify the helicity states of a particle of mass m and spin 
s, it is not necessary to know the relativistic wave equation for such a 
particle. It is enough to know that such a wave equation exists and their 
plane wave solutions, representing states of definite linear momentum p
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and corresponding positive energy E = ( m2 + p2 )1/2, have the following 
properties:

1. For each p, there are 2s + 1 linearly independent solutions which can 
be characterized as states of definite helicity λ. 

(13.1)

These states characterized by p and λ form a complete set of orthog-
onal states for a free particle of mass m. If m = 0, the number of 
independent solutions reduces to two: λ = ± s. For example, a photon 
has only two independent helicity states λ = ± 1. 

2. In the case of ordinary rotation in three dimensional space, the direc-
tion of p changes but the helicity λ remains unchanged. 

3. Under space reflection about the origin (i.e. parity operation), the he-
licity λ of a moving particle changes sign. 

4. When a Lorentz transformation is applied in the direction of p, the
magnitude of p changes and in some cases, the direction of p also, if 
m 0. If the direction of p is not reversed, the helicity λ remains
unchanged under Lorentz transformation. 

Let denote the state of a particle with momentum p in the positive 
z -direction. By Lorentz transformation, all states with fixed λ and
variable p can be generated. If m 0, it is possible to reach the rest state 
with p = 0 by Lorentz transformation. In the rest state, since the total 
angular momentum of the particle is equal to its spin, it is possible to 
obtain the relative phases of the states by the requirement 

(13.2)

In the above equation, Jx, Jy, Jz are the standard spin matrices. For a 
massless particle, no finite Lorentz transformation can reduce p to zero. 
For this, we have only two helicity states with λ = ± s and it is possible to 
go from one state to another by means of a reflection, 

(13.3)

where denotes the parity operator corresponding to reflection with re-
spect to the origin ( x, y, z -x, -y,-z), the operator denotes a 
rotation about the y axis through an angle π and Y, the reflection in the 
xz plane. The operator Y transforms the state into apart from 
a phase factor. 

(13.4)



Furthermore

where the matrix element is given by 

The phase factor (-1) s- λ is introduced such that 
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Since Y commutes with a Lorentz transformation in the z direction, η 
should be independent of p. It is therefore a constant which we shall call 
the “parity factor” of the particle. For example, the λ = ±1 solutions 
for a photon are A± = such that YA± = 
Comparing this with Eq. (13.4), we obtain η = -1.

It is instructive to check the consistency of Eq. (13.4) with Eq. (13.2) for 
m 0. In this case, transforms into itself apart from a phase-factor
which must be independent of λ ( commutes with J). Hence 

(13.5)

(13.6)

(13.7)

Comparing Eqs. (13.5) and (13.6) and applying a Lorentz transformation 
in the z direction on both sides, we get 

(13.8)

which for λ = s reduces to (13.4). 
If denotes a state with momentum in the positive z direction, how 

can we define a state χ p λ with momentum in the negative z direction? We 
will have occasion to use the state χ p, λ in the treatment of two-particle
scattering in centre of momentum frame wherein one particle moves in the 
positive direction while the other particle moves in the negative direction. 
A rotation through an angle π about the y axis corresponds to a transfor-
mation x, y, z -x, y, -z and hence 

(13.9)

(13.10)

The result (13.10) is obtained from Eqs. (13.6) and (13.7). 
It is possible to generate states with momentum in 

an arbitrary direction specified by polar angles θ, φ by means of a suitable 
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Figure 13.1. 
coinciding with the direction ).

The fixed frame of reference x, y, z and the helicity frame x',y',z' ( z' 

rotation R (α,β,γ) applied to states having a momentum p in the 
positive z -direction.

(13.11)

In the present notation, the state can be equivalently denoted as 
Two different conventions are in vogue for the choice of angles 

of rotation in R. Jacob and Wick (1959) used α = φ, β = θ, γ = −φ, corre-
sponding to a rotation through an angle θ about the normal to the plane 
containing p and p'. It is found more convenient to adopt the convention of 
Jacob (1964) and choose α = φ, β = θ, γ = 0. In this case, the x' and y' axes
to be associated with the helicity direction as z' axis are as indicated in 
Fig. 13.1. The positive x' direction is along the direction and 
the positive y' direction coincides with the unit vector 

The state is a plane wave state with momentum p in
the direction of z -axis (chosen coordinate system) and it can be expanded 
in terms of states of definite angular momentum j and projection 
m. In the chosen coordinate system, m = λ for all j

(13.12)



where stands for 

The orthogonality relations of d -matrices are given by 

THE HELICITY FORMALISM 169 

where Cj are the coefficients of expansion. Applying a rotation operator 
R (φ,θ,0) on both sides, we obtain 

(13.13)

The expansion coefficients Cj are determined by specifying the normaliza-
tions of the plane wave states and the angular momentum eigen-
states and by using the orthogonality relations of the rotation 
matrices. The plane wave state is normalized such that 

(13.14)

(13.15)

The eigenstates of total angular momentum obey the normalization 

(13.16)

(13.17)

(13.18)

Using the normalizations (13.14) and (13.16) of the plane wave states and 
the angular momentum states and the orthogonality of d -matr ices (13.18),
we obtain the expansion coefficient Cj.

(13.19)

Thus, we obtain the important result of the expansion of the plane wave 
state as a sum of angular momentum states for a particle of arbitrary spin s.

(13.20)

Since total angular momentum of the particle and its helicity are in-
variant under rotation, it is possible to obtain the inverse relation which 



where
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enables us to project states of definite total angular momentum and helicity 
from the plane wave state. 

(13.21)

(13.22)

Equivalently, the transformation matrix that corresponds to a transition 
from the angular momentum state to the plane wave state is 

(13.23)

It is easy to verify that the normalizations (13.14) and (13.16) are consistent 
with the definitions (13.20) and (13.21), using the orthogonality relations 
of d -matr ices . From Eq. (13.20), we find 

using the normalization (13.16) and the orthogonality relation (13.18) of the 
d -matr ices . Similarly, starting with Eq. (13.21) and using the normalization 
(13.14) and the orthogonality relation (13.17), we obtain 

Equation (13.20) is the expansion of the angular function of a plane 
wave. It may be noted that the angular dependence of the wave function 
is given by a D-function instead of a spherical harmonic function which 
occurs in the case of spin-zero particle. For spin-zero particle, 

(13.26)



THE HELICITY FORMALISM 171 

Hence, for spin-zero particle, Eqs. (13.20), (13.21) and (13.23) reduce to 

(13.27)

(13.28)

(13.29)

13.2. Two-Particle Helicity States 

In the two-body scattering such as a + b c + d, the initial and final 
states are two-particle states. A non-interacting two-particle plane wave 
state with helicities λ1 and λ2 can be written as a direct product of two 
one-particle states (Martin and Spearman, 1970; Jacob, 1964). 

(13.30)

It is advantageous to go to the centre of momentum (c.m) frame and 
analyse the wave function in terms of centre of mass motion and relative 
motion in c.m. system. 

(13.31)

where is the state vector denoting the c.m. motion and the 
relative motion of the two-particle system. 

In any physical problem, we are concerned only with the wave function 
denoting the relative motion in c.m. system and our aim is to construct the 
two-particle helicity states of definite total angular momentum. 

To start with, let us consider the relative motion of the two particles 
to be along the z -axis , one particle moving along the positive z -axis and
the other particle moving with the same momentum p along the negative 
z-axis . Then

(13.32)

where denotes the one-particle state with momentum p along the pos-
itive z-axis and helicity λ1, and χ pλ2 as defined in Eq. (13.9), denotes the 
state of the other particle with momentum p along the negative z -axis and
helicity λ2. The resultant helicity λ of the two-particle system is 

(13.33)

The two-particle state vectors , representing relative mo-
tion along any arbitrary direction can be generated by a suitable rotation 

(13.34)

R(φ,θ,0). 
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The plane wave state is a sum over all angular momentum eigenstates and 
conversely an angular momentum eigenstate can be obtained by angular 
momentum projection of plane wave state. Using the procedure followed 
in Sec. 13.1, expressions for two-particle plane wave state and angular mo-
mentum eigenfunctions are obtained. 

(13.35)

(13.36)

The normalizations of the state vectors in the two representations are given 
by

(13.37)

(13.38)

(13.39)

in the c.m. system as described in Fig. 13.2. The differential cross section 
is given by 

(13.40)

13.3. Scattering of Particles with Spin 

13.3.1. SCATTERING CROSS SECTION 

Consider a two-body scattering of particles with spin 
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where p denotes the relative momentum of the two particles along the z -axis
in the initial state and q denotes the relative momentum of the scattered 
particles in the final state making an angle φ,θ with the incident direction 
in the c.m. frame. The total energy in the c.m. system is denoted by W
and it is conserved in any reaction. 

(13.41)

For evaluating the T -matrix, it is transformed to jm representation.

(13.42)

The rotational invariance implies the conservation of angular momentum 
and hence j is a good quantum number. 

(13.43)

Using Eqs. (13.35), Eq. (13.42) becomes 

we obtain 

(13.44)

(13.45)

(13.46)

Denoting the scattering amplitude in the helicity basis by 
the differential cross section becomes 

(13.47)

(13.48)

From Eqs. (13.40), (13.46) and (13.47), we find 
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with

For scattering of spinless particles, 

(13.49)

(13.50)

(13.51)

(13.52)

The amplitude fl ( W ) (= Tl (W )/2p ) is known as the partial wave scattering 
amplitude for spinless particles. When the particles considered have spin, 
the total angular momentum j is a good quantum number and for each j,
there are several scattering amplitudes which depend on helicity states but 
the number of independent amplitudes get reduced by invoking parity and 
time reversal invariance. 

Equations (13.47) and (13.48) are general expressions applicable for 
scattering of particles with arbitrary spin. These formulae are relativisti-
cally correct and they are applicable equally well to massless particles and 
to particles without spin. It is found that the D-functions that occur for 
particles with spin reduce to Legendre functions for particles without spin. 

Let us now explicitly square the scattering amplitude (13.48) and obtain 
an expression for the differential cross section and total cross section. 

(13.53)

where ρλ a λ b denotes the density matrix that describes the initial state. 
Using the symmetry property of the D -funct ions and using the C.G. series 
(5.48), we obtain 
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Note that 

(13.55)

If the incident and the target particles are not polarized and if the polar-
ization of the final particles are not observed, we need to sum over λ c and
λ d and average over λ a and λ b.

where the summation index (λ) stands for helicities λ a, λ b, λ c, λ d of all in-
cident and scattered particles and Re stands for real part of 

In the above formula, the statistical weight (2s + 1) has to be replaced by
2 for a massless particle. 

Integrating (13.56) over the solid angle, we obtain the total cross section 

(13.57)

(13.58)

(13.59)

using the following relations: 

13.3.2. INVARIANCE UNDER PARITY AND TIME REVERSAL 

From Eq. (13.56), we find that, for each value of j, there are in total 
(2sa + 1)(2 sb + 1)(2 sc + 1)(2 sd + 1) helicity amplitudes. Invariance under 
parity and time reversal reduces the number of independent amplitudes. 

The helicity defined by changes sign under space inversion. A state 
with helicity λ is transformed into a state with helicity −λ. If is the 
parity operator, 

(13.60)
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where η a, η b denote the intrinsic parities of the two particles with spin sa

and sb. is a unitary operator and invariance of the S -matrix under parity 
implies that Since S = 1 + iT, it follows that 

(13.61)

Under time reversal, both J and p change sign and hence the helicity 
does not change. By applying the time reversal operator T to the state 

we obtain a new state with the same angular momentum and 
helicities but with an opposite eigenvalue of Jz. With the phase conventions 
of Jacob and Wick (1959), 

(13.62)

The operator T is antiunitary and hence the invariance under time reversal 
implies

This yields the familiar result that under time reversal invariance, the tran-
sition a + b c + d is equal to the inverse transition c + d a + b. 

For identical particles, we have a further relation. 

(13.64)

13.3.3. POLARIZATION STUDIES 

Since the polarizations of the particles are considered separately, formulas 
giving polarizations take a simple form in the Helicity Formalism. The 
longitudinal polarization can obviously be introduced by giving different 
weights to the positive and negative helicity amplitudes in Eq. (13.56). 
However, it is the angular distribution of the transverse polarization that 
is more informative. 

Transverse polarization is usually defined by means of the expectation 
value of a transverse component of the spin. The definition of transverse 
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components of spin is somewhat arbitrary in the relativistic case and for a 
massless particle, the transverse component cannot be defined at all. So, in 
what follows, we consider only the transverse polarization of a particle with 
finite mass, for which one can go to the rest frame by Lorentz transforma-
tion. The helicity remains unchanged in Lorentz transformation and so also 
the density matrix in helicity basis. Using the known non-relativistic form 
for spin matrices, we obtain after simplification that (the reader is referred 
to solved problem 13.1 for derivation) 

(13.65)

where Im(...) denotes the imaginary part of the quantity within the bracket. 
Using the algebraic form of C.G. coefficient, 

Equation (13.65) can be rewritten as 

(13.66)

(13.67)

We shall consider two specific cases. 1. The incident particle a is trans-
versely polarized with the polarization What is the “polarized cross 
section” i.e., the part of the cross section dσ /dΩ which is proportional to 

? 2. The incident and target particles are unpolarized. What is the 
transverse polarization of the outgoing particle c in the reaction? 
Case 1 
If the incident particle a has transverse polarization then its spin 
density matrix can be written as (the reader is referred to solved problem 
13.2 for derivation) 

(13.68)

If we restrict our consideration to vector polarization and neglect higher 
order tensor contributions, the density matrix for the initial system is 

(13.69)
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The cross section depends on the density matrix for the final state which is 
evaluated if the scattering amplitude f and the density matrix of the initial 
state ρ i are known. 

(13.70)

where can be considered as the density matrix corresponding to the 
final state when the incident particles are unpolarized. Using Eq. (13.69) 
for the density matrix for the initial system, the polarized cross section 

that is propotional to is obtained from (13.70). 

(13.71)

Expanding as and substituting the ex-
pansion (13.48) for the scattering amplitude f, we obtain 

Equation (13.72) can be simplified by coupling the two D -matr ices by using 
C.G. series (5.48). 

with

(13.73)

(13.74)
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Using Eq. (13.66), we obtain the matrix element of say.

(13.75)

Substituting Eqs. (13.73) - (13.75) into Eq. (13.72), we obtain the polarized 
cross section arising from the transverse polarization of particle a.

Case 2 

Let us now consider the transverse polarization of one final particle, say c,
when the initial particles are not polarized and when the polarization of 
the other final particle d is not observed. The polarization of particle c of
spin sc normal to the production plane is 

where Tr ρ f is just the differential cross section dσ /dΩ. So,

Using Eqs. (13.65) and (13.67), we obtain 

(13.77)

(13.78)

(13.79)
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Since the particles in the initial state are not polarized, the elements of 
the spin density matrix of the final state is given by 

(13.80)

where, for brevity, single helicity quantum number is used to denote a two-
particle helicity state as shown below. 

(13.81)

Substituting Eq. (13.48) for the helicity amplitudes we obtain 

Coupling the two rotation matrices using C.G. series (5.48) and using Eq. 
(13.79), we obtain 

Using the analytical expression for the rotation matrix, 

(13.84)

we finally obtain 

A similar formula may be obtained for and may be shown to van-
ish, as one expects, if the scattering matrix satisfies the symmetry condition 
for parity conservation discussed in Sec. 13.3.2. 



Figure 13.3. 
coordinate system is the helicity frame for the decay products α and β. 

The unprimed coordinate system is the rest frame of γ and the primed 

13.4. Two-Body Decay 

Let us now investigate the two-body decay of an unstable resonance or, 
more generally, of a system of definite angular momentum and parity (Lee 
and Yang, 1958; Byers and Fenster, 1963; Jackson, 1965). The observables 
are the intensity and polarization of the angular distributions of the decay 
products. There are two main objectives. 1. One is to obtain information 
on the mechanism of production of a resonance. In this case, it is better 
to work in terms of the density matrix elements themselves since they give 
direct information on the population of the angular momentum substates. 2. 
The other is to determine the spin and parity of the resonance by studying 
various moments of angular distributions. For this, it is often convenient to 
express the density matrix in terms of multipole parameters. 

To be specific, we choose the rest frame of γ with a fixed z axis (quan-
tization axis) to describe its two-body decay into α and β (vide Fig. 13.3). 
If p and -p are the momenta of α and β in this frame, then the state 
vector of the two particles containing the angular and helicity informa-
tion is denoted by which can be expanded in terms of angular 
momentum eigenstates. 

(13.86)

(13.87)

with

THE HELICITY FORMALISM 181 



182 CHAPTER 13 

The amplitude for the decay ψ α + β from a definite state of γ is
given by (suppressing the label p hereafter)

(13.88)

Since the interaction Hamiltonian H is a scalar under rotation, its matrix 
element depends on λα and λβ but not on m. So, let us denote the matrix 
element by H (λα, λβ). 

If the resonant state γ is denoted by the density matrix ρ i, then the 
density matrix ρ f corresponding to the final state is given by 

with and λ f = λα - λβ .

taking the trace of ρ f.
The angular distribution I (θ,φ) of the decay particles is obtained by 

with the notation 

Separating the terms that depend on m and m', we get 

(13.90)

(13.91)

(13.92)



It is easy to show that 

since

and
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The rotation matrices dj (θ) are known and hence the angular distribution 
can be obtained in terms of the density matrix of the initial system. The 
normalized angular distribution is given by 

(13.93)

(13.94)

(13.95)

(13.96)

Let us now illustrate the above discussion by considering the decay of 
a spin-1 system into two spin-zero particles. For this, there is only one 
helicity matrix element H(0,0) since λα = λβ = 0. Since j = 1 and λ = 0, 
the required dj matrix elements are 

(13.97)

Substituting these values of d1 matrix elements, the normalized angular 
distribution of the decay particle is obtained in terms of the spin density 
matrix of the parent system. 

(13.98)

As discussed in Sec. 11.2, the density matrix can be expanded in terms of
spherical tensor parameters which are also known as multipole parameters.
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Using Eq. (11.23), the elements of the density matrix can be written as 

The product of two rotation matrices that occur in Eq. (13.90) can be 
simplified using the formula (5.48), familiarly known as the C.G. series. 

(13.100)

The resulting rotation matrix can have only integer values for 
L and it can be expressed as a spherical harmonic using Eq. (5.76). 

Substituting Eqs. (13.99 - 13.101) into Eq. (13.90), we obtain 

(13.101)

Equation (13.102) is simplified by performing first the summation over m
and then replacing the summation over m' by M.

(13.103)
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Also

(13.104)

Substituting these results in Eq. (13.102) and replacing k and mk by L and
-M because of the delta functions, we finally obtain 

(13.105)

Integrating over the solid angle and using the following identities 

(13.106)

(13.107)

(13.108)

we retrieve the result (13.94). 

By inspection of Eq. (13.105), it is seen that the statistical tensors 
are related to the spherical harmonic moments of I (θ,φ). 
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Case 1: Decay into two spinless particles 
In the case of decay into two spinless particles, 

Equation (13.109) now reduces to 

Here j is an integer and L should be even because of the parity C.G. 
coefficient. Since 

(13.111)

it follows that the normalized spherical harmonic moments of angular dis-
tribution is 

(13.112)

Case 2: Decay into a and a spin-zero particle 

From parity considerations, the two amplitudes and are 
related.

(13.113)

(13.114)

If parity is conserved in the decay, then corresponding to the orbital 
angular momentum of the ab system. The conservation of 
parity requires that the product of intrinsic parities ηαηβηγ = (-1) l. Thus
determines the intrinsic parity of the γ resonance. However 

(13.115)

(13.116)

where From (13.60), it follows that 

Consequently,
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and the normalized angular distribution is given by 

The C.G. coefficient ensures that the spherical harmonic moments with 
L > 2 j vanish, and so the observation of a statistically significant non-
vanishing average value of means that the spin of the γ resonance is 
at least 

The distribution of the longitudinal polarization of the particle 
that comes from the decay is 

(13.118)

The denominator is just equal to I (θ,φ). Hence

(13.119)

Using Eq. (13.105), we obtain the helicity distributions. 

After normalization, the longitudinal polarization of the angular distribu-
tion is 

(13.121)

gitudinal polarization yields information aboutIt is observed that the lon 
odd L multipole parameters while the particle distribution gives informa-
tion about even L multipole parameters. These studies do not throw any 
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light on the parity of the resonant (parent) state. Only the study of the 
transverse polarization of the decay products gives valuable information on 
the parity of the parent state. 

Since we are considering two-body decay, of which one particle has spin-
and the other spin zero, we need to consider only the transverse polariza-

tion of the particle. The transverse polarization is the expectation 
value of σ x or σ y operator. Let us illustrate the method by calculating the 
x component of polarization. 

Equivalently,

(13.122)

(13.123)

To evaluate Tr (σ x ρ f) we proceed in steps. First let us show that Tr (σ xρ f)
is just the real part of the spin density matrix element 

The last step is obtained by invoking the Hermitian property of the density 
matrix. For the particle, the helicity can assume only two values 
and and hence λ in the above expression can take only one value 
Hence we obtain a simple result that 

(13.125)
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Using Eq. (13.69), we obtain (suppressing for the present the Euler angles 
of rotation (φ,θ,0) in the rotation matrix) 

The above result is obtained using the C.G. series for the coupling of the 
rotation matrices and the relation between the helicity amplitudes, viz., 
. Expressing the density matrix of the initial resonant 
state in terms of the multipole parameters as given in Eq. (13.99), 

it will be convenient to separate the terms that depend upon m and m' and
perform the summation over m and replace the summation over m' by M.

(13.127)

Substituting the above result, we get after simplification 

In a similar way, one can calculate the transverse polarization Py.

(13.129)
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Following the same procedure as before, we can show that 

Under parity operation, 

This means that the matrix element is a sum of two terms, 

where He and Ho obeys the following relations: 

(13.130)

Thus the study of the transverse polarization, which depends on will 
yield the parity of the resonant state. 

Hitherto, we have considered only the parity conserving two-body decay. 
For parity non-conserving weak decay such as the decay of hyperons, only 
small modifications are necessary. The interaction Hamiltonian, in this case, 
is a sum of two terms, one scalar He and the other pseudoscalar Ho.

(13.131)

(13.132)

(13.133)

(13.134)

(13.135)

To be specific, let us consider a weak decay of a hyperon into a baryon 
of and a meson of spin zero. The various distributions involve the 
following combinations of and 

(13.136)

It is easy to observe that a2 + b2 + c2 = 1. The various changes that oc-
cur in our earlier study of parity conserving two-body decay can easily 
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be determined and we only quote the final results for normalized angu-
lar distribution and the longitudinal polarization. Equations (13.117) and 
(13.121) get modified to yield 

(13.137)

The reader may note the interchange of the roles played by even and odd 
L in the above equations. 

For the relativistic treatment of angular momentum states for three-
body system and for the three-body decay, the reader is referred to Wick 
(1962) and Berman and Jacob (1965). 

13.5. Muon Capture 

We shall now apply the helicity formalism to discuss the capture of muon 
by spin-zero target nucleus, 

(13.139)

and investigate the asymmetry in the angular distribution of the recoil 
nucleus B and its polarization. 

The usual source of muon is from π decay and it is polarized in the 
direction of its flight. When it is incident on a target, it is slowed down and 
caught in Bohr orbits. It cascades down to lower orbits emitting X-rays
known as muonic X-rays and ultimately reaches the 1s orbit before it is 
captured by the nucleus through weak interaction. It is observed that de-
polarization takes place during the process of slowing down and cascading, 
but yet there is a residual polarization of order 15 to 20% in the 1s orbit 
at the time of capture by spin zero nucleus. 

The muon polarization which coincides with the direction of incident 
muon is assumed as the z-axis of the rest frame of the initial system as 
shown in Fig. 13.4. This corresponds in the final state, to the centre of 
momentum system, with the recoil momentum p = -v, making an angle 
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Figure 13.4. The muon polarization is along the z-axis of the rest frame of the 
muon-nucleon system and the momentum of the recoiling nucleus is along the z'-axis
of the rotating frame which is otherwise called the helicity frame. 

θ,φ with the z -axis . For describing this process, we have two frames of 
reference, one is the fixed frame of reference with z -axis in the direction 
of muon polarization and the other, the rotating frame of reference with 
z'-axis coinciding with the direction of recoiling nucleus. The latter frame 
of reference is obtained from the former by rotation through Euler angles 

Since the target nucleus is of zero spin, the total angular momentum 
of the initial system (µ- + A) is and is described by the state vector 

The final state is the recoiling nucleus B with spin jf and helicity 
l f, and the muon neutrino vµ with and helicity Expanding the 
final state in terms of definite angular momentum following Eq. (13.35), 

(φ,θ,0) 

(13.140)

the transition amplitude can be obtained in the helicity basis. 

(13.141)

Since H is a scalar under rotation, j = and M = m, there can be only 
two partial wave helicity amplitudes corresponding to 
the total angular momentum These partial wave helicity amplitudes will 
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hereafter be represented by H λ where λ = λ f + = Thus, 

(13.142)

The elements of the density matrix for the final system is given by 

(13.143)

where ρ i denotes the density matrix for the initial system which is taken 
to be in the diagonal form in the rest frame. 

(13.144)

where σ denotes the Pauli spin operator, s the spin of the muon and Pµ

the polarization of the muon which is in the z direction. Substituting the 
eigenvalue of sz in the density matrix of the initial state, 

(13.145)

Using Eq. (13.142) and the explicit form of rotation matrices, we obtain 
the following results: 

Consolidating the above results, we obtain the angular distribution of the 
recoil nucleus I (θ,φ). 

(13.148)
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Writing it in a more compact form, 

with

The quantity Γ represents the capture rate. 
The longitudinal polarization of the recoil nucleus is 

Since

the longitudinal polarization becomes 

In the absence of muon polarization ( Pµ = 0), 

(13.149)

(13.150)

we find the asymmetry coefficient of the recoil angular distribution to be 

(13.151)

(13.152)

(13.153)

(13.154)

(13.155)

Thus we arrive at a well known relation for the observables in muon capture. 

(13.156)

Since the muon capture process is completely described by two helicity am-
plitudes and all the observables in muon capture can be expressed 
in terms of these amplitudes and their relative phase. Hence it follows that 
there cannot be more than three independent observables in muon capture. 
For further details of helicity formalism as applied to muon capture, the 
reader is referred to Bernabeu (1975) and Subramanian et al. (1976, 1979). 

2 2



THE HELICITY FORMALISM 195 

Review Questions
13.1 (a) Write down the non-interacting two-particle wave function in 

terms of the plane wave helicity basis and the angular momentum 
basis and obtain the transformation from one basis to the other. 
(b) Discuss the advantages of using the helicity formalism for the study 
of two-particle scattering and obtain expressions for the angular dis-
tributions and polarization of the scattered particles. 

13.2 (a) Consider the two-body decay of a resonant state and deduce an 
expression for the angular distribution of the decay products in terms of 
the decay products in terms of the statistical parameters defining 
the initial system. Also find the spherical harmonic moments of the 
angular distribution. 
(b) Apply the above consideration to the decay of a resonant state into 
(i) two spinless particles and (ii) one and the other spin-zero
particle.

13.3 Discuss how is it possible to determine the spin and parity of a res-
onant state by observing the angular distributions and polarization of 
the decay products. Restrict your considerations to the decay into two 
particles.

13.4 Consider muon capture by a spin-zero target nucleus and show that 
the asymmetry in the angular distribution of the final nucleus with re-
spect to the polarization vector of the initial muon is related to longitu-
dinal polarization of the final nucleus by a simple relation 
where α denotes the asymmetry coefficient and denotes the longi-
tudinal polarization of the final nucleus for muon polarization zero. 

Problems
13.1 If a particle with spin j has transverse polarization, show that 

13.2 A particle with spin s is transversally polarized. If the transverse 
polarization is denoted by then show that its spin density matrix 
is given by 

Show that the density matrix reduces to the familiar formula 

for the particle with vector polarization P.
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13.3 Discuss the pion-nucleon and nucleon-nucleon scattering using the he-
licity formalism and enumerate the number of independent scattering 
amplitudes in each case. 

13.4 Discuss the following decays 

and explain how you will determine the spin and parity of the parent 
systems. (These are parity conserving decays through strong interac-
tion. The spin of the hyperons Λ and Ξ is and the spin of π is zero.) 

Solutions to Selected Problems 

13.1 The transverse polarization of a particle with spin j is the expectation 
value of the operators Jx and Jy.

Since ρ is a Hermitian matrix, it follows that 

Since it can be shown in a similar manner that 



THE HELICITY FORMALISM 197 

13.2 Retaining only the first order term and neglecting higher order tensor 
orientations, the density matrix can be written as 

where the tensor operator is normalized such that 

The normalized operator is 

Substituting it in the expression for ρ, we get 

For particle, the density matrix reduces to 

13.3 For each partial wave scattering amplitude, the number of helicity 
amplitudes is (2 sa + 1)(2 sb + 1)(2 sc + 1)(2 sd +\ 1). But by the applica-
tion of invariance and symmetry principles, the number of independent 
amplitudes is considerably reduced. 
For pion-nucleon scattering, the number of helicity amplitudes is 4, 
since the pion spin is zero and the nucleon spin is Explicitly, the 
amplitudes are 

By application of parity conservation, the helicity amplitudes (i) and 
(iv) are equal and (ii) and (iii) are equal. The application of time 
reversal invariance implies that amplitudes (ii) and (iii) are equal and 
so it does not give any new relation. Hence the number of independent 
amplitudes required for describing the pion-nucleon scattering is only 
two.
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For describing the nucleon-nucleon scattering, the total number of he-
licity amplitudes required is 16, since the nucleon has The par-
ity invariance reduces the number of independent helicity amplitudes 
from 16 to 8 and the time reversal invariance reduces further the num-
ber of independent helicity amplitudes from 8 to 6. By invoking the 
relation for the identical particles, the number is further reduced to 5. 
The five independent partial wave helicity amplitudes are given below 
in a matrix form. 

The rows and columns denote the helicity states of the final and initial 
systems, using for brevity + for and - for helicity states. For 
instance, in the table, denotes the helicity amplitude 


