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Appendix D. Matrix decompositions for mass matrix diagonalization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M2 is straightforward. For a theory of n
complex scalar fields,M2 is an hermitian n× nmatrix, which can be diagonalized by a unitary matrixW :

W ĎM2W = m2 = diag(m21,m
2
2, . . . ,m

2
n). (D.1)

For a theory of n real scalar fields,M2 is a real symmetric n×nmatrix, which can be diagonalized by an orthogonalmatrixQ :

Q TM2Q = m2 = diag(m21,m
2
2, . . . ,m

2
n). (D.2)

In both cases, the eigenvaluesm2k ofM
2 are real. These are the standard matrix diagonalization problems that are treated in

all elementary linear algebra textbooks.
In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the Lagrangian, written in terms

of two-component spinors, is complex and symmetric [cf. Section 3.2]. If the Lagrangian exhibits a U(1) symmetry, then a
basis can be found such that fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix
then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex symmetric neutral fermion
mass matrix. In this Appendix, we review the linear algebra theory relevant for the matrix decompositions associated with
the general charged and neutral spin-1/2 fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion
massmatrix is governed by the singular value decomposition of a complexmatrix, as shown in Appendix D.1. In contrast, the
diagonalization of a neutral fermion mass matrix is governed by the Takagi diagonalization of a complex symmetric matrix,
which is treated in Appendix D.2.99 These two techniques are compared and contrasted in Appendix D.3. Dirac fermions
can also arise in the case of a pseudo-real representation of fermion fields. As shown in Section 3.2, this latter case requires
the reduction of a complex antisymmetric fermion mass matrix to real normal form. The relevant theorem and its proof are
given in Appendix D.4.

D.1. Singular value decomposition

The diagonalization of the charged (Dirac) fermionmassmatrix requires the singular value decomposition of an arbitrary
complex matrixM .

Theorem. For any complex [or real] n× n matrix M, unitary [or real orthogonal] matrices L and R exist such that

LTMR = MD = diag(m1,m2, . . . ,mn), (D.1.1)

where the mk are real and non-negative. This is called the singular value decomposition of the matrix M (e.g., see Refs. [147,258]).

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values of the general complex matrix
M , which are defined to be the non-negative square roots of the eigenvalues of MĎM (or equivalently of MMĎ). An
equivalent definition of the singular values can be established as follows. Since MĎM is an hermitian non-negative matrix,
its eigenvalues are real and non-negative and its eigenvectors, vk, defined by MĎMvk = m2kvk, can be chosen to be
orthonormal.100 Consider first the eigenvectors corresponding to the non-zero eigenvalues of MĎM . Then, we define the
vectors wk such that Mvk = mkw∗k . It follows that m

2
kvk = M

ĎMvk = mkMĎw∗k , which yields: M
Ďw∗k = mkvk. Note that

these equations also imply that MMĎw∗k = m
2
kw
∗

k . The orthonormality of the vk implies the orthonormality of the wk, and
vice versa. For example,

δjk = 〈vj|vk〉 =
1
mjmk

〈MĎw∗j |M
Ďw∗k 〉 =

1
mjmk

〈wj|MMĎw∗k 〉 =
mk
mj
〈w∗j |w

∗

k 〉, (D.1.2)

which yields 〈wk|wj〉 = δjk. If M is a real matrix, then the eigenvectors vk can be chosen to be real, in which case the
correspondingwk are also real.
If vi is an eigenvector of MĎM with zero eigenvalue, then 0 = v

Ď
i M

ĎMvi = 〈Mvi|Mvi〉, which implies that Mvi = 0.
Likewise, if w∗i is an eigenvector of MM

Ď with zero eigenvalue, then 0 = wT
i MM

Ďw∗i = 〈M
Twi|MTwi〉

∗, which implies
that MTwi = 0. Because the eigenvectors of MĎM [MMĎ] can be chosen orthonormal, the eigenvectors corresponding to
the zero eigenvalues of M [MĎ] can be taken to be orthonormal.101 Finally, these eigenvectors are also orthogonal to the

99 One may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator. In this case, all fermions are governed by
a complex symmetric mass matrix, which can be Takagi diagonalized according to the procedure described in Appendix D.2.
100 We define the inner product of two vectors to be 〈v|w〉 ≡ vĎw. Then, v and w are orthonormal if 〈v|w〉 = 0. The norm of a vector is defined by
‖v ‖ = 〈v|v〉1/2 .
101 This analysis shows that the number of linearly independent zero eigenvectors of MĎM [MMĎ] with zero eigenvalue, coincides with the number of
linearly independent eigenvectors ofM [MĎ] with zero eigenvalue.
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eigenvectors corresponding to thenon-zero eigenvalues ofMĎM [MMĎ]. That is, if the indices i and j run over the eigenvectors
corresponding to the zero and non-zero eigenvalues ofMĎM [MMĎ], respectively, then

〈vj|vi〉 =
1
mj
〈MĎw∗j |vi〉 =

1
mj
〈w∗j |Mvi〉 = 0, (D.1.3)

and similarly 〈wj|wi〉 = 0.
Thus, we can define the singular values of a general complex n× nmatrixM to be the simultaneous solutions (with real

non-negativemk) of102:

Mvk = mkw∗k , wT
kM = mkv

Ď
k . (D.1.4)

The corresponding vk (wk), normalized to have unit norm, are called the right (left) singular vectors ofM . In particular, the
number of linearly independent vk coincides with the number of linearly independentwk and is equal to n.

Proof of the singular value decomposition theorem. Eqs. (D.1.2) and (D.1.3) imply that the right [left] singular vectors
can be chosen to be orthonormal. Consequently, the unitarymatrix R [L] can be constructed such that its kth column is given
by the right [left] singular vector vk [wk]. It then follows from Eq. (D.1.4) that:

wT
kMv` = mkδk`, (no sum over k). (D.1.5)

In matrix form, Eq. (D.1.5) coincides with Eq. (D.1.1), and the singular value decomposition is established. IfM is real, then
the right and left singular vectors, vk and wk, can be chosen to be real, in which case Eq. (D.1.1) holds for real orthogonal
matrices L and R.
The singular values of a complex matrix M are unique (up to ordering), as they correspond to the eigenvalues of MĎM

(or equivalently the eigenvalues ofMMĎ). The unitary matrices L and R are not unique. The matrix Rmust satisfy

RĎMĎMR = M2D, (D.1.6)

which follows directly from Eq. (D.1.1) by computingMĎ
DMD = M

2
D. That is, R is a unitary matrix that diagonalizes the non-

negative definite matrixMĎM . Since the eigenvectors ofMĎM are orthonormal, each vk corresponding to a non-degenerate
eigenvalue of MĎM can be multiplied by an arbitrary phase eiθk . For the case of degenerate eigenvalues, any orthonormal
linear combination of the corresponding eigenvectors is also an eigenvector of MĎM . It follows that within the subspace
spanned by the eigenvectors corresponding to non-degenerate eigenvalues, R is uniquely determined up to multiplication
on the right by an arbitrary diagonal unitarymatrix.Within the subspace spanned by the eigenvectors ofMĎM corresponding
to a degenerate eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.
Once R is fixed, L is obtained from Eq. (D.1.1):

L = (MT)−1R∗MD. (D.1.7)

However, if some of the diagonal elements of MD are zero, then L is not uniquely defined. Writing MD in 2 × 2 block form
such that the upper left block is a diagonal matrix with positive diagonal elements and the other three blocks are equal to
the zero matrix of the appropriate dimensions, it follows that,MD = MDW , where

(D.1.8)

W0 is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear in the diagonal elements of
MD, and 1 and O are respectively the identity matrix and zero matrix of the appropriate size. Hence, we can multiply both
sides of Eq. (D.1.7) on the right byW , whichmeans that L is only determined up tomultiplication on the right by an arbitrary
unitary matrix whose form is given by Eq. (D.1.8).103
If M is a real matrix, then the derivation of the singular value decomposition of M is given by Eq. (D.1.1), where L and

R are real orthogonal matrices. This result is easily established by replacing ‘‘phase’’ with ‘‘sign’’ and replacing ‘‘unitary’’ by
‘‘real orthogonal’’ in the above proof.

102 One can always find a solution to Eq. (D.1.4) such that the mk are real and non-negative. Given a solution where mk is complex, we simply write
mk = |mk|eiθ and redefinewk → wkeiθ to remove the phase θ .
103 Of course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.1.1) implies that LTMMĎL∗ = M2D , in which case L is
determined up to multiplication on the right by an arbitrary [diagonal] unitary matrix within the subspace spanned by the eigenvectors corresponding to
the degenerate [non-degenerate] eigenvalues ofMMĎ . Having fixed L, one can obtain R = M−1L∗MD from Eq. (D.1.1). As above, R is only determined up to
multiplication on the right by a unitary matrix whose form is given by Eq. (D.1.8).
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D.2. Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic basis) is complex and
symmetric. Thismassmatrixmust be diagonalized in order to identify the physical fermionmass eigenstates and to compute
their masses. However, the fermion mass matrix is not diagonalized by the standard unitary similarity transformation.
Instead a different diagonalization equation is employed that was discovered by Takagi [111], and rediscovered many times
since [147].104

Theorem. For any complex symmetric n× n matrix M, there exists a unitary matrixΩ such that:

ΩTMΩ = MD = diag(m1,m2, . . . ,mn), (D.2.1)

where the mk are real and non-negative. This is the Takagi diagonalization105 of the complex symmetric matrix M.

In general, themk are not the eigenvalues ofM . Rather, themk are the singular values of the symmetric matrixM . From
Eq. (D.2.1) it follows that:

ΩĎMĎMΩ = M2D = diag(m
2
1,m

2
2, . . . ,m

2
n). (D.2.2)

If all of the singular values mk are non-degenerate, then one can find a solution to Eq. (D.2.1) for Ω from Eq. (D.2.2). This
is no longer true if some of the singular values are degenerate. For example, if M =

( 0 m
m 0

)
, then the singular value

|m| is doubly degenerate, but Eq. (D.2.2) yields ΩĎΩ = 12×2, which does not specify Ω . That is, in the degenerate case,
the physical fermion states cannot be determined by the diagonalization of MĎM . Instead, one must make direct use of
Eq. (D.2.1). Below, we shall present a constructive method for determiningΩ that is applicable in both the non-degenerate
and the degenerate cases.
Eq. (D.2.1) can be rewritten asMΩ = Ω∗MD, where the columns ofΩ are orthonormal. If we denote the kth column of

Ω by vk, then,

Mvk = mkv∗k , (D.2.3)

where the mk are the singular values and the vectors vk are normalized to have unit norm. Following Ref. [261], the vk are
called the Takagi vectors of the complex symmetric n×nmatrixM . The Takagi vectors corresponding to non-degenerate non-
zero [zero] singular values are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi
vectors corresponding to a set of degenerate non-zero [zero] singular values is also a Takagi vector corresponding to the
same singular value. Using these results, one can determine the degree of non-uniqueness of thematrixΩ . For definiteness,
we fix an ordering of the diagonal elements ofMD.106 If the singular values ofM are distinct, then the matrixΩ is uniquely
determined up to multiplication by a diagonal matrix whose entries are either ±1 (i.e., a diagonal orthogonal matrix). If
there are degeneracies corresponding to non-zero singular values, then within the degenerate subspace,Ω is unique up to
multiplication on the right by an arbitrary orthogonal matrix. Finally, in the subspace corresponding to zero singular values,
Ω is unique up to multiplication on the right by an arbitrary unitary matrix.
For a real symmetric matrixM , the Takagi diagonalization [Eq. (D.2.1)] still holds for a unitary matrixΩ , which is easily

determined as follows. Any real symmetric matrixM can be diagonalized by a real orthogonal matrix Z ,

ZTMZ = diag(ε1m1, ε2m2, . . . , εnmn), (D.2.4)

where the mk are real and non-negative and the εkmk are the real eigenvalues of M with corresponding signs εk = ±1.107
Then, the Takagi diagonalization ofM is achieved by taking:

Ωij = ε
1/2
i Zij, no sum over i. (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonalization of a complex symmetric matrix,
it is sufficient to provide an algorithm for constructing the orthonormal Takagi vectors vk that make up the columns ofΩ .

104 Subsequently, it was recognized in Ref. [258] that the Takagi diagonalization was first established for nonsingular complex symmetric matrices by
Autonne [259]. In the physics literature, the first proof of Eq. (D.2.1) was given in Ref. [149]. Applications of Takagi diagonalization to the study of neutrino
mass matrices can be found in Refs. [5,260].
105 In Ref. [147], Eq. (D.2.1) is called the Takagi factorization of a complex symmetric matrix. We choose to refer to this as Takagi diagonalization to
emphasize and contrast this with themore standard diagonalization of normalmatrices by a unitary similarity transformation. In particular, not all complex
symmetric matrices are diagonalizable by a similarity transformation, whereas complex symmetric matrices are always Takagi diagonalizable.
106 Permuting the order of the singular values is equivalent to permuting the order of the columns ofΩ .
107 In the case ofmk = 0, we conventionally choose the corresponding εk = +1.
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This is achieved by rewriting the n × n complex matrix equation Mv = mv∗ [with m real and non-negative] as a 2n × 2n
real matrix equation [262,263]:

MR

(
Re v
Im v

)
≡

(
ReM −ImM
−ImM −ReM

) (
Re v
Im v

)
= m

(
Re v
Im v

)
, wherem ≥ 0. (D.2.6)

SinceM = MT, the 2n × 2nmatrixMR ≡
( ReM −ImM
−ImM −ReM

)
is a real symmetric matrix.108 In particular,MR is diagonalizable

by a real orthogonal similarity transformation, and its eigenvalues are real. Moreover, if m is an eigenvalue of MR with
eigenvector (Re v, Im v), then −m is an eigenvalue of MR with (orthogonal) eigenvector (−Im v, Re v). This observation
implies thatMR has an equal number of positive and negative eigenvalues and an even number of zero eigenvalues.109 Thus,
Eq. (D.2.3) has been converted into an ordinary eigenvalue problem for a real symmetric matrix. Sincem ≥ 0, we solve the
eigenvalue problemMRu = mu for the real eigenvectors u ≡ (Re v, Im v) corresponding to the non-negative eigenvalues of
MR,110 which then immediately yields the complex Takagi vectors, v. It is straightforward to prove that the total number of
linearly independent Takagi vectors is equal to n. Simply note that the orthogonality of (Re v1, Im v1) and (−Im v1, Re v1)
with (Re v2, Im v2) implies that v

Ď
1v2 = 0.

Thus,we have derived a constructivemethod for obtaining the Takagi vectors vk. If there are degeneracies, one can always
choose the vk in the degenerate subspace to be orthonormal. The Takagi vectors then make up the columns of the matrixΩ
in Eq. (D.2.1). A numerical package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in Ref. [264] (see also Refs. [261,265] for previous numerical approaches to Takagi diagonalization).

D.3. Relation between Takagi diagonalization and singular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex matrix M in Eq. (D.1.1)
is symmetric, M = MT, then the Takagi diagonalization corresponds toΩ = L = R. In this case, the right and left singular
vectors coincide (vk = wk) and are identified with the Takagi vectors defined in Eq. (D.2.3). However as previously noted,
the matrixΩ cannot be determined from Eq. (D.2.2) in cases where there is a degeneracy among the singular values.111 For
example, one possible singular value decomposition of the matrixM =

( 0 m
m 0

)
[withm assumed real and positive] can be

obtained by choosing R =
( 1 0
0 1

)
and L =

( 0 1
1 0

)
, in which case LTMR =

( m 0
0 m

)
= MD. Of course, this is not a Takagi

diagonalization because L 6= R. Since R is only defined modulo the multiplication on the right by an arbitrary 2× 2 unitary
matrixO, then at least one singular value decomposition exists that is also a Takagi diagonalization. For the example under
consideration, it is not difficult to deduce the Takagi diagonalization:ΩTMΩ = MD, where

Ω =
1
√
2

(
1 i
1 −i

)
O, (D.3.1)

and O is any 2× 2 orthogonal matrix.
Since the Takagi diagonalization is a special case of the singular value decomposition, it seems plausible that one can

prove the former from the latter. This turns out to be correct; for completeness, we provide the proof below. Our second
proof depends on the following lemma:

Lemma. For any symmetric unitary matrix V , there exists a unitary matrix U such that V = UTU.

Proof of the Lemma: For any n× n unitary matrix V , there exists an hermitian matrix H such that V = exp(iH) (this is the
polar decomposition of V ). If V = V T then H = HT

= H∗ (since H is hermitian); therefore H is real symmetric. But, any
real symmetric matrix can be diagonalized by an orthogonal transformation. It follows that V can also be diagonalized by
an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases, there exists a real orthogonal
matrix Q such that Q TVQ = diag (eiθ1 , eiθ2 , . . . , eiθn). Thus, the unitary matrix,

U = diag (eiθ1/2, eiθ2/2, . . . , eiθn/2)Q T, (D.3.2)

satisfies V = UTU and the lemma is proved. Note that U is unique modulo multiplication on the left by an arbitrary real
orthogonal matrix.

108 The 2n× 2nmatrixMR is a real representation of the n× n complex matrixM .
109 Note that (−Im v, Re v) corresponds to replacing vk in Eq. (D.2.3) by ivk . However, form < 0 these solutions are not relevant for Takagi diagonalization
(where themk are by definition non-negative). The case ofm = 0 is considered in footnote 110.
110 For m = 0, the corresponding vectors (Re v, Im v) and (−Im v, Re v) are two linearly independent eigenvectors of MR; but these yield only one
independent Takagi vector v (since v and iv are linearly dependent).
111 This is in contrast to the singular value decomposition, where R can be determined from Eq. (D.1.6) modulo right multiplication by a [diagonal] unitary
matrix in the [non-]degenerate subspace and L is then determined by Eq. (D.1.7) modulo multiplication on the right by Eq. (D.1.8).
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Second Proof of the Takagi diagonalization. Starting from the singular value decomposition of M , there exist unitary
matrices L and R such that M = L∗MDRĎ, where MD is the diagonal matrix of singular values. Since M = MT

= R∗MDLĎ,
we have two different singular value decompositions for M . However, as noted below Eq. (D.1.6), R is unique modulo
multiplication on the right by an arbitrary [diagonal] unitary matrix, V , within the [non-]degenerate subspace. Thus, it
follows that a [diagonal] unitary matrix V exists such that L = RV . Moreover, V = V T. This is manifestly true within the
non-degenerate subspace where V is diagonal. Within the degenerate subspace, MD is proportional to the identity matrix
so that L∗RĎ = R∗LĎ. Inserting L = RV then yields V T

= V . Using the lemma proved above, there exists a unitary matrix U
such that V = UTU . That is,

L = RUTU, (D.3.3)
for some unitary matrix U . Moreover, it is now straightforward to show that

MDU∗ = U∗MD. (D.3.4)
To see this, note that within the degenerate subspace, Eq. (D.3.4) is trivially true since MD is proportional to the identity
matrix. Within the non-degenerate subspace V is diagonal; hence we may choose U = UT

= V 1/2, so that Eq. (D.3.4) is
true since diagonal matrices commute. Using Eqs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M
as follows

M = L∗MDRĎ = R∗UĎU∗MDRĎ = (RUT)∗MDU∗RĎ = Ω∗MDΩĎ, (D.3.5)
where Ω ≡ RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an arbitrary complex symmetric
matrix [Eq. (D.2.1)] is once again proved.
In the diagonalization of the two-component fermion mass matrix, M , the eigenvalues of MĎM typically fall into

two classes—non-degenerate eigenvalues corresponding to neutral fermion mass eigenstates and degenerate pairs
corresponding to charged (Dirac) mass eigenstates. In this case, the sector of the neutral fermions corresponds to a non-
degenerate subspace of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it is
sufficient to diagonalizeMĎM with a unitary matrix R [as in Eq. (D.1.6)], and then adjust the overall phase of each column of
R so that the resulting matrixΩ satisfiesΩTMΩ = MD, whereMD is a diagonal matrix of the non-negative fermion masses.
This last result is a consequence of Eqs. (D.3.3)–(D.3.5), whereΩ = RV 1/2 and V is a diagonal matrix of phases.

D.4. Reduction of a complex antisymmetric matrix to the real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a compact Lie group
[cf. Eq. (3.2.35)], the corresponding mass matrix is in general complex and antisymmetric. In this case, one needs the
antisymmetric analogue of the Takagi diagonalization of a complex symmetric matrix [147].

Theorem. For any complex [or real] antisymmetric n × n matrix M, there exists a unitary [or real orthogonal] matrix U such
that:

UTMU = N ≡ diag
{(

0 m1
−m1 0

)
,

(
0 m2
−m2 0

)
, . . . ,

(
0 mp
−mp 0

)
,On−2p

}
, (D.4.1)

where N is written in block diagonal form with 2× 2matrices appearing along the diagonal, followed by an (n− 2p)× (n− 2p)
block of zeros (denoted by On−2p), and the mj are real and positive. N is called the real normal form of an antisymmetric
matrix [149,266,267].

Proof. A number of proofs can be found in the literature [148,149,266–268]. Here we provide a proof inspired by Ref. [266].
Following Appendix D.1, we first consider the eigenvalue equation forMĎM:

MĎMvk = m2kvk, mk > 0, and MĎMuk = 0, (D.4.2)

where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero eigenvalues, respectively.
The quantitiesmk are the positive singular values ofM . Noting that u

Ď
kM

ĎMuk = 〈Muk |Muk〉 = 0, it follows that

Muk = 0, (D.4.3)

so that the uk are the eigenvectors corresponding to the zero eigenvalues ofM . For each eigenvector ofMĎM with mk 6= 0,
we define a new vector

wk ≡
1
mk
M∗v∗k . (D.4.4)

It follows thatm2kvk = M
ĎMvk = mkMĎw∗k , which yieldsM

Ďw∗k = mkvk. Comparingwith Eq. (D.1.4), we identify vk andwk as
the right and left singular vectors, respectively, corresponding to the non-zero singular values ofM . For any antisymmetric
matrix,MĎ

= −M∗. Hence,

Mvk = mkw∗k , Mwk = −mkv∗k , (D.4.5)
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and

MĎMwk = −mkMĎv∗k = mkM
∗v∗k = m

2
kwk, mk > 0. (D.4.6)

That is, thewk are also eigenvectors ofMĎM .
The key observation is that for fixed k the vectors vk andwk are orthogonal, since Eq. (D.4.5) implies that:

〈wk|vk〉 = 〈vk|wk〉
∗
= −

1
m2k
〈Mwk|Mvk〉 = −

1
m2k
〈wk|MĎMvk〉 = − 〈wk|vk〉 , (D.4.7)

which yields 〈wk|vk〉 = 0. Thus, if all the mk are distinct, it follows that m2k is a doubly degenerate eigenvalue of M
ĎM ,

with corresponding linearly independent eigenvectors vk and wk, where k = 1, 2, . . . , p (and p ≤ 1
2n). The remaining zero

eigenvalues are (n−2p)-fold degenerate, with corresponding eigenvectors uk (for k = 1, 2, . . . , n − 2p). If some of the mk
are degenerate, these conclusions still apply. For example, suppose thatmj = mk for j 6= k, which means thatm2k is at least
a three-fold degenerate eigenvalue of MĎM . Then, there must exist an eigenvector vj that is orthogonal to vk and wk such
thatMĎMvj = m2kvj. We now constructwj ≡ M

∗v∗j /mk according to Eq. (D.4.4). According to Eq. (D.4.7),wj is orthogonal to
vj. But, we still must show thatwj is also orthogonal to vk andwk. But this is straightforward:〈

wj|wk
〉
=
〈
wk|wj

〉∗
=
1
m2k
〈Mvk|Mvj〉 =

1
m2k
〈vk|MĎMvj〉 =

〈
vk|vj

〉
= 0, (D.4.8)

〈
wj|vk

〉
=
〈
vk|wj

〉∗
= −

1
m2k
〈Mwk|Mvj〉 = −

1
m2k
〈wk|MĎMvj〉 = −

〈
wk|vj

〉
= 0, (D.4.9)

where we have used the assumed orthogonality of vj with vk and wk, respectively. If follows that vj, wj, vk and wk are
linearly independent eigenvectors corresponding to a four-fold degenerate eigenvaluem2k ofM

ĎM . Additional degeneracies
are treated in the same way.
Thus, the number of non-zero eigenvalues of MĎM must be an even number, denoted by 2p above. Moreover, one can

always choose the complete set of eigenvectors {uk, vk, wk} of MĎM to be orthonormal. These orthonormal vectors can be
used to construct a unitary matrix U with matrix elements:

U`,2k−1 = (wk)`, U`,2k = (vk)`, k = 1, 2, . . . , p,

U`,k+2p = (uk)`, k = 1, 2, . . . , n− 2p, (D.4.10)

for ` = 1, 2, . . . , n, where e.g., (vk)` is the `th component of the vector vk with respect to the standard orthonormal basis.
The orthonormality of {uk, vk, wk} implies that (UĎU)`k = δ`k as required. Eqs. (D.4.3) and (D.4.5) are thus equivalent to the
matrix equationMU = U∗N , which immediately yields Eq. (D.4.1), and the theorem is proven. IfM is a real antisymmetric
matrix, then all the eigenvectors ofMĎM can be chosen to be real, in which case U is a real orthogonal matrix.
Finally, we address the non-uniqueness of thematrixU . For definiteness, we fix an ordering of the 2×2 blocks containing

the mk in the matrix N . In the subspace corresponding to a non-zero singular value of degeneracy d, U is unique up to
multiplication on the right by a 2d× 2d unitary matrix S that satisfies:

STJS = J, (D.4.11)

where the 2d× 2dmatrix J , defined by

J = diag
{(

0 1
−1 0

)
,

(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
, (D.4.12)

is a block diagonal matrix with d blocks of 2 × 2 matrices. A unitary matrix S that satisfies Eq. (D.4.11) is an element of
the unitary symplectic group, Sp(d). If there are no degeneracies among the mk, then d = 1. Identifying Sp(1) ∼= SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U is unique up to multiplication on the
right by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues of M , U is unique up to
multiplication on the right by an arbitrary unitary matrix.

Appendix E. Lie group theoretical techniques for gauge theories

E.1. Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [269]. The most general form for G is a direct product of compact simple
groups and U(1) groups. If no U(1) factors are present, then G is semisimple. For any U ∈ G,

U = exp(−iθ aT a), (E.1.1)
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where the T a are called the generators of G, and the θ a are real numbers that parameterize the elements of G. The
corresponding real Lie algebra g consists of arbitrary real linear combinations of the generators, θ aT a. The Lie group
generators T a satisfy the commutation relations:

[T a, T b
] = if abc T c , (E.1.2)

where the real structure constants f abc define the compact Lie algebra. The generator indices run over a, b, c = 1, 2, . . . , dG,
where dG is the dimension of the Lie algebra. For compact Lie algebras, the Killing form gab = Tr(T aT b) is positive definite,
so one can always choose a basis for the Lie algebra in which gab ∝ δab (where the proportionality constant is a positive real
number). With respect to this new basis, the structure constants f abc ≡ gadf bcd are totally antisymmetric with respect to the
interchange of the indices a, b and c. Henceforth, we shall always assume that such a preferred basis of generators has been
chosen.
The elements of the compact Lie group G act on a multiplet of fields that transform under some dR-dimensional

representation R of G. The group elements U ∈ G are represented by dR×dR unitarymatrices, DR(U) = exp(−iθ aT a
R), where

the T a
R are dR × dR hermitian matrices that satisfy Eq. (E.1.2) and thus provide a representation of the Lie group generators.

For any representation R of a semisimple group, Tr T a
R = 0 for all a. A representation R

′ is unitarily equivalent to R if there
exists a fixed unitary matrix S such that DR′(U) = S−1DR(U)S for all U ∈ G. Similarly, the corresponding generators satisfy
T a

R′ = S
−1T a

RS for all a = 1, 2, . . . , dG.
For compact semisimple Lie groups, two representations are noteworthy. If G is one of the classical groups, SU(N)

[for N ≥ 2], SO(N) [for N ≥ 3] or Sp(N/2) [the latter is defined by Eqs. (D.4.11) and (D.4.12) for even N ≥ 2], then
the N × N matrices that define these groups comprise the fundamental (or defining) representation F , with dF = N . For
example, the fundamental representation of SU(N) consists of N × N unitary matrices with determinant equal to one, and
the corresponding generators comprise a suitably chosen basis for theN×N traceless hermitianmatrices. Every Lie group G
also possesses an adjoint representation A, with dA = dG. Thematrix elements of the generators in the adjoint representation
are given by112

(T a
A)
bc
= −if abc . (E.1.3)

Given the unitary representation matrices DR(U) of the representation R of G, the matrices [DR(U)]∗ constitute the
conjugate representation R∗. Equivalently, if the T a

R comprise a representation of the Lie algebra g, then the −(T a
R)
∗
=

−(T a
R)

T comprise a representation R∗ of g of the same dimension dR. If R and R∗ are unitarily equivalent representations,
then we say that the representation R is self-conjugate. Otherwise, we say that the representation R is complex, or ‘‘strictly
complex’’ in the language of Ref. [270]. However, the representation matrices DR(U) of a self-conjugate representation can
also be complex. We can then define two classes of self-conjugate representations. If R and R∗ are unitarily equivalent to
a representation R′ that satisfies the reality property [DR′(U)]∗ = [DR′(U)] for all U ∈ G (equivalently, the matrices iT a

R′
are real for all a), then R is said to be real, or ‘‘strictly real’’ in the language of Ref. [270]. If R and R∗ are unitarily equivalent
representations, but neither is unitarily equivalent to a representation that satisfies the reality property above, then R is said
to be pseudo-real.
Henceforth, we drop the adjective ‘‘strictly’’ and simply refer to real, pseudo-real and complex representations.

Self-conjugate representations are either real or pseudo-real. An important theorem states that for self-conjugate
representations, there exists a constant unitary matrixW such that [270]

[DR(U)]∗ = WDR(U)W−1, or equivalently, (iT a
R)
∗
= W (iT a

R)W
−1, (E.1.4)

where

WW ∗ = 1, W T
= W , for real representations, (E.1.5)

WW ∗ = −1, W T
= −W , for pseudo-real representations, (E.1.6)

and 1 is the dR × dR identity matrix. Taking the determinant of Eq. (E.1.6), and using the fact thatW is unitary (and hence
invertible), it follows that 1 = (−1)dR . Therefore, a pseudo-real representation must be even-dimensional.
If we redefine the basis for the Lie group generators by T a

R → V−1T a
R V , where V is unitary, then W → V TWV . We

can make use of this change of basis to transform W to a canonical form. Since W is unitary, its singular values (i.e. the
positive square roots of the eigenvalues ofW ĎW ) are all equal to 1. Hence, in the two cases corresponding toW T

= ±W ,
respectively, Eqs. (D.2.1) and (D.4.1) yield the following canonical forms (for an appropriately chosen V ),

W = 1, for a real representation R, with εη = +1, (E.1.7)

W = J, for a pseudo-real representation R, with εη = −1, (E.1.8)

where J ≡ diag
{(

0 1
−1 0

)
,
(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
is a dR × dR matrix (and dR is even).

112 Since the f abc are real, the iT a
A are real antisymmetric matrices. The heights of the adjoint labels a, b and c are not significant, as they can be lowered

by the inverse Killing form given by gab ∝ δab in the preferred basis.
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There are many examples of complex, real and pseudo-real representations in mathematical physics. For example, the
fundamental representation of SU(N) is complex for N ≥ 3. The adjoint representation of any compact Lie group is real
[cf. footnote 112]. The simplest example of a pseudo-real representation is the two-dimensional representation of SU(2),113
where T a

=
1
2τ
a (and the τ a are the usual Pauli matrices). More generally, the generators of a pseudo-real representation

must satisfy

(iT a
R)
∗
= C−1(iT a

R)C, (E.1.9)

for some fixed unitary antisymmetric matrix C [previously denoted by W−1 in Eqs. (E.1.4) and (E.1.6)]. For the doublet
representation of SU(2) just given, Cab = (iτ 2)ab ≡ εab is the familiar SU(2)-invariant tensor.
Finally, we note that for U(1), all irreducible representations are one-dimensional. The structure constants vanish

and any d-dimensional representation of the U(1)-generator is given by the d × d identity matrix multiplied by the
corresponding U(1)-charge. For a Lie group that is a direct product of a semisimple group and U(1) groups, Tr T a

R is non-
zero when a corresponds to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of
the representation R vanishes.

E.2. The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact semisimple Lie algebra g. The
index I2(R) of the representation R is defined by [269,271–273]

Tr(T a
RT

b
R) = I2(R)δ

ab, (E.2.1)

where I2(R) is a positive real number that depends on R. Once I2(R) is defined for one representation, its value is uniquely
fixed for any other representation. In the case of a simple compact Lie algebra g, it is traditional to normalize the generators
of the fundamental (or defining) representation F according to114

Tr(T a
FT

b
F ) =

1
2δ
ab. (E.2.2)

If the representation R is reducible, it can be decomposed into the direct sum of irreducible representations, R =
∑
k Rk.

In this case, the index of R is given by

I2(R) =
∑
k

I2(Rk). (E.2.3)

The index of a tensor product of two representations R1 and R2 is given by [271]

I2(R1 ⊗ R2) = dR1 I2(R2)+ dR2 I2(R1). (E.2.4)

Finally, we note that if R∗ is the complex conjugate of the representation R, then

I2(R∗) = I2(R). (E.2.5)

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators T a. If the representation of
the T a is irreducible, then Schur’s lemma implies that the Casimir operator is a multiple of the identity. The proportionality
constant depends on the representation R. The quadratic Casimir operator of an irreducible representation R is given by

(T 2R)i
j
≡ (T a

R)i
k(T a

R)k
j
= CRδij, (E.2.6)

where the sumover the repeated indices are implicit and i, j, k = 1, 2 . . . dR. A simple computation then yields the eigenvalue
of the quadratic Casimir operator, CR,

CR =
I2(R)dG
dR

. (E.2.7)

For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows that CA = I2(A). For a
reducible representation, T 2 is a block diagonal matrix consisting of dRk × dRk blocks given by CRk1 for each irreducible
component Rk of R.
The example of the simple Lie algebra su(N) is well known. The dimension of this Lie algebra (equal to the number of

generators) is given by N2 − 1. As previously noted, dF = N and I2(F) = 1
2 . It then follows that CF = (N

2
− 1)/(2N). One

can also check that CA = I2(A) = N .

113 No unitary matrixW exists such that theWiτ aW−1 are real for all a = 1, 2, 3. Thus, the two-dimensional representation of SU(2) is not real. However,
(iτ a)∗ = (iτ 2)(iτ a)(iτ 2)−1 for a = 1, 2, 3, which proves that the two-dimensional representation of SU(2) is pseudo-real.
114 In the literature, the index is often defined as the ratio I2(R)/I2(F), where I2(F) is fixed by some convention. This has the advantage that the index of R
is independent of the normalization convention of the generators. In this Appendix, we will simply refer to I2(R) as the index.
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The Lie algebras su(N) [N ≥ 3] are the only simple Lie algebra that possesses a cubic Casimir operator. First, we define
the symmetrized trace of three generators [273,274]:

Dabc ≡ Str (T aT bT c) =
1
6
Tr(T aT bT c

+ perm.), (E.2.8)

where ‘‘perm.’’ indicates five other terms obtained by permuting the indices a, b and c in all possible ways. Due to the
properties of the trace, it follows that for a given representation R,

Dabc(R) = 1
2Tr

[
{T a

R, T
b
R}T

c
R
]
. (E.2.9)

For the N-dimensional defining representation of su(N), it is conventional to define

dabc ≡ 2Tr
[
{T a

F , T
b
F }T

c
F
]
. (E.2.10)

One important property of the dabc is [275,276]:

dabcdabc =
(N2 − 1)(N2 − 4)

N
. (E.2.11)

In general, Dabc(R) is proportional to dabc . In particular, the cubic index I3(R) of a representation R is defined such
that [273,275,277],

Dabc(R) = I3(R)dabc . (E.2.12)

Having fixed I3(F) = 1
4 , the cubic index is uniquely determined for all representations of su(N) [275,277–279]. As in the

case of the quadratic index I2(R), we have:

I3(R) =
∑
k

I3(Rk), (E.2.13)

for a reducible representation R =
∑
k Rk. The cubic index of a tensor product of two representations R1 and R2 is given

by [277]

I3(R1 ⊗ R2) = dR1 I3(R2)+ dR2 I3(R1). (E.2.14)

If the generators of the representation R are T a
R , then the generators of the complex conjugate representation R

∗ are−T a
R
T.

It then follows that

I3(R∗) = −I3(R). (E.2.15)

In particular, the cubic index of a self-conjugate representation vanishes. Note that the converse is not true. That is, it is
possible for the cubic index of a complex representation of su(N) to vanish in special circumstances [279].
One can show that among the simple Lie groups, Dabc = 0 except for the case of SU(N), when N ≥ 3 [275]. For any

non-semisimple Lie group (i.e., a Lie group that is a direct product of simple Lie groups and at least one U(1) factor), Dabc
is generally non-vanishing. For example, suppose that the T a

R constitute an irreducible representation of the generators of
G×U(1), where G is a semisimple Lie group. Then the U(1) generator (whichwe denote by setting a = Q ) is TQ

R ≡ q1, where
q is the corresponding U(1)-charge. It then follows that DQab = qI2(R)δab. More generally, for a compact non-semisimple Lie
group, Dabc can be non-zero when either one or three of its indices corresponds to a U(1) generator.
In the computation of the anomaly [cf. Section 6.26], the quantity Tr(T a

RT
b
RT

c
R) appears. We can evaluate this trace using

Eqs. (E.1.2) and (E.2.12):

Tr(T a
RT

b
RT

c
R) = I3(R)d

abc
+
i
2
I2(R)f abc . (E.2.16)

The cubic Casimir operator of an irreducible representation R is given by

(T 3
R)i
j
≡ dabc(T a

RT
b
RT

c
R)i
j
= C3Rδij. (E.2.17)

Using Eqs. (E.2.11) and (E.2.12), we obtain a relation between the eigenvalue of the cubic Casimir operator, C3R and the cubic
index [275]:

C3R =
(N2 − 1)(N2 − 4)I3(R)

NdR
. (E.2.18)

Again, we provide two examples. For the fundamental representation of su(N), I3(F) = 1
4 and C3F = (N

2
−1)(N2−4)/(4N2).

For the adjoint representation, I3(A) = C3A = 0, since the adjoint representation is self-conjugate. A general formula for the
eigenvalue of the cubic Casimir operator in an arbitrary su(N) representation [or equivalently the cubic index I3(R), which
is related to C3R by Eq. (E.2.18)] can be found in Refs. [275,277–279].


