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Appendix D. Matrix decompositions for mass matrix diagonalization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M? is straightforward. For a theory of n
complex scalar fields, M? is an hermitian n x n matrix, which can be diagonalized by a unitary matrix W:

WIM2W = m? = diag(m?, m3, ..., m>). (D.1)
For a theory of n real scalar fields, M? is a real symmetric n x n matrix, which can be diagonalized by an orthogonal matrix Q :

Q'™M?Q = m® = diag(mj, m3, ..., m2). (D.2)

n

In both cases, the eigenvalues m? of M? are real. These are the standard matrix diagonalization problems that are treated in
all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the Lagrangian, written in terms
of two-component spinors, is complex and symmetric [cf. Section 3.2]. If the Lagrangian exhibits a U(1) symmetry, then a
basis can be found such that fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix
then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex symmetric neutral fermion
mass matrix. In this Appendix, we review the linear algebra theory relevant for the matrix decompositions associated with
the general charged and neutral spin-1/2 fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion
mass matrix is governed by the singular value decomposition of a complex matrix, as shown in Appendix D.1. In contrast, the
diagonalization of a neutral fermion mass matrix is governed by the Takagi diagonalization of a complex symmetric matrix,
which is treated in Appendix D.2.%° These two techniques are compared and contrasted in Appendix D.3. Dirac fermions
can also arise in the case of a pseudo-real representation of fermion fields. As shown in Section 3.2, this latter case requires
the reduction of a complex antisymmetric fermion mass matrix to real normal form. The relevant theorem and its proof are
given in Appendix D.4.

D.1. Singular value decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value decomposition of an arbitrary
complex matrix M.

Theorem. For any complex [or real] n x n matrix M, unitary [or real orthogonal] matrices L and R exist such that
L"MR = Mp = diag(mq, my, ..., my), (D.1.1)
where the my are real and non-negative. This is called the singular value decomposition of the matrix M (e.g., see Refs. [147,258]).

In general, the my, are not the eigenvalues of M. Rather, the my, are the singular values of the general complex matrix
M, which are defined to be the non-negative square roots of the eigenvalues of MM (or equivalently of MM*). An
equivalent definition of the singular values can be established as follows. Since MM is an hermitian non-negative matrix,
its eigenvalues are real and non-negative and its eigenvectors, vy, defined by MMy, = mﬁvk, can be chosen to be
orthonormal.’® Consider first the eigenvectors corresponding to the non-zero eigenvalues of MTM. Then, we define the
vectors wy such that Mv, = myw. It follows that mZvy = MMy, = mMTw}, which yields: MTw} = myuvy. Note that
these equations also imply that MMTw,’: = mi wj. The orthonormality of the vy implies the orthonormality of the wy, and
vice versa. For example,

L oMt Mt 1 Py = T %
Sjk = (vjlve) = (MTw/ M wy) = (WilMMTwy) = — (w/'|wy), (D.1.2)
m;my m;my m;
which yields (wi|wj) = . If M is a real matrix, then the eigenvectors v, can be chosen to be real, in which case the

corresponding wy, are also real.

If v; is an eigenvector of MTM with zero eigenvalue, then 0 = viTMTMvi = (Mv;|Mv;), which implies that Mv; = 0.
Likewise, if w;" is an eigenvector of MM with zero eigenvalue, then 0 = wiTMMTw;" = (MTw;|M w;)*, which implies
that MTw; = 0. Because the eigenvectors of MTM [MM?1] can be chosen orthonormal, the eigenvectors corresponding to
the zero eigenvalues of M [M'] can be taken to be orthonormal.’®! Finally, these eigenvectors are also orthogonal to the

99 One may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator. In this case, all fermions are governed by
a complex symmetric mass matrix, which can be Takagi diagonalized according to the procedure described in Appendix D.2.

100 \we define the inner product of two vectors to be (v|w) = vfw. Then, v and w are orthonormal if {(v|w) = 0. The norm of a vector is defined by
o]l = (vjv)/2.

10T pis analysis shows that the number of linearly independent zero eigenvectors of MM [MMT] with zero eigenvalue, coincides with the number of
linearly independent eigenvectors of M [MT] with zero eigenvalue.
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eigenvectors corresponding to the non-zero eigenvalues of MM [MM]. That s, if the indices i and j run over the eigenvectors
corresponding to the zero and non-zero eigenvalues of MM [MM?], respectively, then

1 To,,% 1 *
(M'wj|vi) = —(w;'|[Mv;) =0, (D.1.3)

(vjlvi) = —
m; m;

and similarly (w;|w;) = 0.
Thus, we can define the singular values of a general complex n x n matrix M to be the simultaneous solutions (with real
non-negative my) of'%%:

My, = mawy,  wiM = m}. (D.1.4)

The corresponding vy, (wy), normalized to have unit norm, are called the right (left) singular vectors of M. In particular, the
number of linearly independent v coincides with the number of linearly independent wy and is equal to n.

Proof of the singular value decomposition theorem. Eqs. (D.1.2) and (D.1.3) imply that the right [left] singular vectors
can be chosen to be orthonormal. Consequently, the unitary matrix R [L] can be constructed such that its kth column is given
by the right [left] singular vector vy [w]. It then follows from Eq. (D.1.4) that:

wiMv, = mdye,  (no sum over k). (D.1.5)

In matrix form, Eq. (D.1.5) coincides with Eq. (D.1.1), and the singular value decomposition is established. If M is real, then
the right and left singular vectors, v, and wy, can be chosen to be real, in which case Eq. (D.1.1) holds for real orthogonal
matrices L and R.

The singular values of a complex matrix M are unique (up to ordering), as they correspond to the eigenvalues of MTM
(or equivalently the eigenvalues of MMT). The unitary matrices L and R are not unique. The matrix R must satisfy

R'MTMR = M3, (D.1.6)

which follows directly from Eq. (D.1.1) by computing MBMD = M,%. That is, R is a unitary matrix that diagonalizes the non-
negative definite matrix M M. Since the eigenvectors of MTM are orthonormal, each v, corresponding to a non-degenerate
eigenvalue of MTM can be multiplied by an arbitrary phase e%. For the case of degenerate eigenvalues, any orthonormal
linear combination of the corresponding eigenvectors is also an eigenvector of MTM. It follows that within the subspace
spanned by the eigenvectors corresponding to non-degenerate eigenvalues, R is uniquely determined up to multiplication
on the right by an arbitrary diagonal unitary matrix. Within the subspace spanned by the eigenvectors of MM corresponding
to a degenerate eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.
Once R is fixed, L is obtained from Eq. (D.1.1):

L=M""'R*Mp. (D.1.7)

However, if some of the diagonal elements of Mp are zero, then L is not uniquely defined. Writing Mp in 2 x 2 block form
such that the upper left block is a diagonal matrix with positive diagonal elements and the other three blocks are equal to
the zero matrix of the appropriate dimensions, it follows that, Mp = MpW, where

() i Wo (D.1.8)

W is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear in the diagonal elements of
Mp, and 1 and O are respectively the identity matrix and zero matrix of the appropriate size. Hence, we can multiply both
sides of Eq. (D.1.7) on the right by W, which means that L is only determined up to multiplication on the right by an arbitrary
unitary matrix whose form is given by Eq. (D.1.8).1%3

If M is a real matrix, then the derivation of the singular value decomposition of M is given by Eq. (D.1.1), where L and
R are real orthogonal matrices. This result is easily established by replacing “phase” with “sign” and replacing “unitary” by
“real orthogonal” in the above proof.

102 ope can always find a solution to Eq. (D.1.4) such that the my are real and non-negative. Given a solution where my is complex, we simply write
my = |mg|e? and redefine w, — wye® to remove the phase 6.

103 0f course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (D.1.1) implies that L'MML* = M3, in which case L is
determined up to multiplication on the right by an arbitrary [diagonal] unitary matrix within the subspace spanned by the eigenvectors corresponding to
the degenerate [non-degenerate] eigenvalues of MM . Having fixed L, one can obtain R = M~ 'L*M), from Eq. (D.1.1). As above, R is only determined up to
multiplication on the right by a unitary matrix whose form is given by Eq. (D.1.8).
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D.2. Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic basis) is complex and
symmetric. This mass matrix must be diagonalized in order to identify the physical fermion mass eigenstates and to compute
their masses. However, the fermion mass matrix is not diagonalized by the standard unitary similarity transformation.
Instead a diggcirent diagonalization equation is employed that was discovered by Takagi [111], and rediscovered many times
since [147].

Theorem. For any complex symmetric n x n matrix M, there exists a unitary matrix $2 such that:

2™ 2 = Mp = diag(mq, ma, ..., my,), (D.2.1)

105

where the my, are real and non-negative. This is the Takagi diagonalization'"> of the complex symmetric matrix M.

In general, the my are not the eigenvalues of M. Rather, the m; are the singular values of the symmetric matrix M. From
Eq. (D.2.1) it follows that:
QTMMQ = M} = diag(m3, m3, ..., m2). (D.2.2)

n

If all of the singular values m; are non-degenerate, then one can find a solution to Eq. (D.2.1) for £2 from Eq. (D.2.2). This

,?1 Tg ). then the singular value

is no longer true if some of the singular values are degenerate. For example, if M = (
|m| is doubly degenerate, but Eq. (D.2.2) yields 272 = 1,,,, which does not specify £2. That is, in the degenerate case,
the physical fermion states cannot be determined by the diagonalization of MTM. Instead, one must make direct use of
Eq. (D.2.1). Below, we shall present a constructive method for determining 2 that is applicable in both the non-degenerate
and the degenerate cases.

Eq. (D.2.1) can be rewritten as M§2 = §£2*Mp, where the columns of §2 are orthonormal. If we denote the kth column of

£2 by vy, then,
Mvy, = mkv*, (D23)
k

where the my, are the singular values and the vectors vy, are normalized to have unit norm. Following Ref. [261], the v are
called the Takagi vectors of the complex symmetric n x n matrix M. The Takagi vectors corresponding to non-degenerate non-
zero [zero] singular values are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi
vectors corresponding to a set of degenerate non-zero [zero] singular values is also a Takagi vector corresponding to the
same singular value. Using these results, one can determine the degree of non-uniqueness of the matrix £2. For definiteness,
we fix an ordering of the diagonal elements of Mp.'% If the singular values of M are distinct, then the matrix £2 is uniquely
determined up to multiplication by a diagonal matrix whose entries are either +1 (i.e., a diagonal orthogonal matrix). If
there are degeneracies corresponding to non-zero singular values, then within the degenerate subspace, £2 is unique up to
multiplication on the right by an arbitrary orthogonal matrix. Finally, in the subspace corresponding to zero singular values,
£2 is unique up to multiplication on the right by an arbitrary unitary matrix.

For a real symmetric matrix M, the Takagi diagonalization [Eq. (D.2.1)] still holds for a unitary matrix §2, which is easily
determined as follows. Any real symmetric matrix M can be diagonalized by a real orthogonal matrix Z,

Z™MZ = diag(eimy, g3ms, ..., €a1y), (D.2.4)

where the my are real and non-negative and the g,my, are the real eigenvalues of M with corresponding signs &, = +1.1%

Then, the Takagi diagonalization of M is achieved by taking:

25 = e:/ZZij, No sum over i. (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonalization of a complex symmetric matrix,
it is sufficient to provide an algorithm for constructing the orthonormal Takagi vectors v, that make up the columns of £2.

104 Subsequently, it was recognized in Ref. [258] that the Takagi diagonalization was first established for nonsingular complex symmetric matrices by
Autonne [259]. In the physics literature, the first proof of Eq. (D.2.1) was given in Ref. [ 149]. Applications of Takagi diagonalization to the study of neutrino
mass matrices can be found in Refs. [5,260].

105 | Ref. [147], Eq. (D.2.1) is called the Takagi factorization of a complex symmetric matrix. We choose to refer to this as Takagi diagonalization to
emphasize and contrast this with the more standard diagonalization of normal matrices by a unitary similarity transformation. In particular, not all complex
symmetric matrices are diagonalizable by a similarity transformation, whereas complex symmetric matrices are always Takagi diagonalizable.

106 Permuting the order of the singular values is equivalent to permuting the order of the columns of £2.

107 15 the case of my, = 0, we conventionally choose the corresponding g, = +1.
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This is achieved by rewriting the n x n complex matrix equation Mv = mv* [with m real and non-negative] as a 2n x 2n
real matrix equation [262,263]:

M Rev) ReM —ImM Rev
B\lmv) = \-ImM —ReM ) \Imv
Since M = MT, the 2n x 2n matrix My = (_l];el% ::{:,’\‘4/1 )is a real symmetric matrix.'® In particular, My is diagonalizable

by a real orthogonal similarity transformation, and its eigenvalues are real. Moreover, if m is an eigenvalue of My with
eigenvector (Re v, Imv), then —m is an eigenvalue of My with (orthogonal) eigenvector (—Im v, Re v). This observation
implies that My has an equal number of positive and negative eigenvalues and an even number of zero eigenvalues.'% Thus,
Eq. (D.2.3) has been converted into an ordinary eigenvalue problem for a real symmetric matrix. Since m > 0, we solve the
eigenvalue problem Mzu = mu for the real eigenvectors u = (Re v, Im v) corresponding to the non-negative eigenvalues of
Mg, "0 which then immediately yields the complex Takagi vectors, v. It is straightforward to prove that the total number of
linearly independent Takagi vectors is equal to n. Simply note that the orthogonality of (Re vy, Im v;) and (—Imvq, Re v)
with (Re v, Im vy) implies that vIvz =0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vy. If there are degeneracies, one can always
choose the vy in the degenerate subspace to be orthonormal. The Takagi vectors then make up the columns of the matrix $2
in Eq. (D.2.1). A numerical package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in Ref. [264] (see also Refs. [261,265] for previous numerical approaches to Takagi diagonalization).

=m (lRe v) ,  wherem > 0. (D.2.6)
muv

D.3. Relation between Takagi diagonalization and singular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the complex matrix M in Eq. (D.1.1)
is symmetric, M = MT, then the Takagi diagonalization corresponds to £2 = L = R. In this case, the right and left singular
vectors coincide (v, = wy) and are identified with the Takagi vectors defined in Eq. (D.2.3). However as previously noted,
the matrix £2 cannot be determined from Eq. (D.2.2) in cases where there is a degeneracy among the singular values.'!! For

example, one possible singular value decomposition of the matrix M = ( 31 '3 ) [with m assumed real and positive] can be

obtained by choosing R = ((1) (1)) andL = (? (1)) in which case L'TMR = (' ,?1) = Mp. Of course, this is not a Takagi

diagonalization because L # R. Since R is only defined modulo the multiplication on the right by an arbitrary 2 x 2 unitary
matrix (@, then at least one singular value decomposition exists that is also a Takagi diagonalization. For the example under
consideration, it is not difficult to deduce the Takagi diagonalization: 2TM £ = Mp, where

1 /1 i
Q= % (1 _i> o, (D.3.1)

and O is any 2 x 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it seems plausible that one can
prove the former from the latter. This turns out to be correct; for completeness, we provide the proof below. Our second
proof depends on the following lemma:

Lemma. For any symmetric unitary matrix V, there exists a unitary matrix U such that V = UU.

Proof of the Lemma: For any n x n unitary matrix V, there exists an hermitian matrix H such that V = exp(iH) (this is the
polar decomposition of V). If V. = VT then H = HT = H* (since H is hermitian); therefore H is real symmetric. But, any
real symmetric matrix can be diagonalized by an orthogonal transformation. It follows that V can also be diagonalized by
an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases, there exists a real orthogonal
matrix Q such that Q"VQ = diag (¢'1, %2, ..., e!). Thus, the unitary matrix,

U = diag (e®1/2, %2/2 ... /%) QT, (D.3.2)

satisfies V = UTU and the lemma is proved. Note that U is unique modulo multiplication on the left by an arbitrary real
orthogonal matrix.

108 The 2n x 2n matrix My is a real representation of the n x n complex matrix M.

109 Note that (—Im v, Re v) corresponds to replacing vy in Eq. (D.2.3) by ivy. However, for m < 0 these solutions are not relevant for Takagi diagonalization
(where the my, are by definition non-negative). The case of m = 0 is considered in footnote 110.

110 porm = 0, the corresponding vectors (Re v, Imv) and (—Imuv, Rev) are two linearly independent eigenvectors of Mg; but these yield only one
independent Takagi vector v (since v and iv are linearly dependent).

111 This is in contrast to the singular value decomposition, where R can be determined from Eq. (D.1.6) modulo right multiplication by a [diagonal] unitary
matrix in the [non-]degenerate subspace and L is then determined by Eq. (D.1.7) modulo multiplication on the right by Eq. (D.1.8).
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Second Proof of the Takagi diagonalization. Starting from the singular value decomposition of M, there exist unitary
matrices L and R such that M = L*MpR', where Mp is the diagonal matrix of singular values. Since M = M' = R*MpLT,
we have two different singular value decompositions for M. However, as noted below Eq. (D.1.6), R is unique modulo
multiplication on the right by an arbitrary [diagonal] unitary matrix, V, within the [non-]degenerate subspace. Thus, it
follows that a [diagonal] unitary matrix V exists such that L = RV. Moreover, V = V. This is manifestly true within the
non-degenerate subspace where V is diagonal. Within the degenerate subspace, Mp is proportional to the identity matrix
so that L*Rt = R*L'. Inserting L = RV then yields V' = V. Using the lemma proved above, there exists a unitary matrix U
such that V = UTU. That is,

L=RU"U, (D.3.3)
for some unitary matrix U. Moreover, it is now straightforward to show that
MpU* = U*Mp. (D.3.4)

To see this, note that within the degenerate subspace, Eq. (D.3.4) is trivially true since Mp is proportional to the identity
matrix. Within the non-degenerate subspace V is diagonal; hence we may choose U = UT = V'/2, so that Eq. (D.3.4) is
true since diagonal matrices commute. Using Eqs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M
as follows

M = L*MpR! = R*UTU*MpR' = (RUT*MpU*R' = 2*Mp 21, (D.3.5)
where £2 = RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an arbitrary complex symmetric
matrix [Eq. (D.2.1)] is once again proved.

In the diagonalization of the two-component fermion mass matrix, M, the eigenvalues of MM typically fall into
two classes—non-degenerate eigenvalues corresponding to neutral fermion mass eigenstates and degenerate pairs
corresponding to charged (Dirac) mass eigenstates. In this case, the sector of the neutral fermions corresponds to a non-
degenerate subspace of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it is
sufficient to diagonalize MM with a unitary matrix R [as in Eq. (D.1.6)], and then adjust the overall phase of each column of
R so that the resulting matrix §2 satisfies 2TM£2 = M), where M is a diagonal matrix of the non-negative fermion masses.
This last result is a consequence of Egs. (D.3.3)-(D.3.5), where £2 = RV!/? and V is a diagonal matrix of phases.

D.4. Reduction of a complex antisymmetric matrix to the real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a compact Lie group
[cf. Eq. (3.2.35)], the corresponding mass matrix is in general complex and antisymmetric. In this case, one needs the
antisymmetric analogue of the Takagi diagonalization of a complex symmetric matrix [147].

Theorem. For any complex [or real] antisymmetric n x n matrix M, there exists a unitary [or real orthogonal] matrix U such

that:
Tapr N A 0 m 0 m 0 my
U MU = N = diag { (—m1 o) \om o) om0 s Onap s (D4.1)

where N is written in block diagonal form with 2 x 2 matrices appearing along the diagonal, followed by an (n — 2p) x (n — 2p)
block of zeros (denoted by On_5p), and the m; are real and positive. N is called the real normal form of an antisymmetric
matrix [ 149,266,267].

Proof. A number of proofs can be found in the literature [ 148,149,266-268]. Here we provide a proof inspired by Ref. [266].
Following Appendix D.1, we first consider the eigenvalue equation for MTM:

MMy, = mivy,, mg >0, and M'Mu, =0, (D.4.2)
where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero eigenvalues, respectively.
The quantities my are the positive singular values of M. Noting that u,TCM TMuy, = (Muy | Mu,) = 0, it follows that

Mu, =0, (D.4.3)

so that the uy are the eigenvectors corresponding to the zero eigenvalues of M. For each eigenvector of MM with my, # 0,
we define a new vector

N
K = vy (D.4.4)
my

It follows that m2vy = MtMv, = mMTw}, which yields Mfw}: = myvy.. Comparing with Eq. (D.1.4), we identify v and wy as
the right and left singular vectors, respectively, corresponding to the non-zero singular values of M. For any antisymmetric
matrix, Mt = —M*. Hence,

Muv, = mkw;f, Mwy = —mkv,’:, (D.4.5)
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and
M Mwy, = —mMTvf = mM*vf = miwy, my > 0. (D.4.6)

That is, the wy, are also eigenvectors of MTM.
The key observation is that for fixed k the vectors v, and wy are orthogonal, since Eq. (D.4.5) implies that:

1 1
(wielve) = (vlwie)* = —— (Mw M) = —— (Wil MTMu) = — (wilvi) (D.A4.7)

my my
which yields (wi|vg) = 0. Thus, if all the my, are distinct, it follows that mi is a doubly degenerate eigenvalue of MTM,
with corresponding linearly independent eigenvectors v, and wy, wherek = 1,2,...,p(andp < %n). The remaining zero
eigenvalues are (n—2p)-fold degenerate, with corresponding eigenvectors uy, (fork = 1, 2, ..., n — 2p). If some of the my,

are degenerate, these conclusions still apply. For example, suppose that m; = my for j # k, which means that mﬁ is at least
a three-fold degenerate eigenvalue of MTM. Then, there must exist an eigenvector v; that is orthogonal to v, and wy such
that MTMvj = mﬁ v;. We now construct w; = M*vj*/mk according to Eq. (D.4.4). According to Eq. (D.4.7), wj is orthogonal to
vj. But, we still must show that wj is also orthogonal to v, and wy. But this is straightforward:

1 1
(wilwi) = (wilwy)" = — (Mu M) = —5 (WM M) = (velv;) = 0, (D.4.8)
my 1,
1 1
(wilu) = (Uk|wj>* = —— (Mw[Mv)) = —— (wMTMyy) = — (wilv;) = 0, (D.4.9)
2 2
L my

where we have used the assumed orthogonality of v; with v, and wy, respectively. If follows that v;, wj, vy and wy are
linearly independent eigenvectors corresponding to a four-fold degenerate eigenvalue mZ of MM. Additional degeneracies
are treated in the same way.

Thus, the number of non-zero eigenvalues of MM must be an even number, denoted by 2p above. Moreover, one can
always choose the complete set of eigenvectors {uy, v, wi} of MM to be orthonormal. These orthonormal vectors can be
used to construct a unitary matrix U with matrix elements:

Ueok—1 = (wi)e, Uk = (m)e, k=1,2,...,p,
Upkyop = (U)e, k=1,2,...,n—2p, (D.4.10)

for¢ =1,2,...,n, wheree.g., (vy), is the £th component of the vector v, with respect to the standard orthonormal basis.
The orthonormality of {uy, vy, wi} implies that (UTU)g, = 8¢ as required. Egs. (D.4.3) and (D.4.5) are thus equivalent to the
matrix equation MU = U*N, which immediately yields Eq. (D.4.1), and the theorem is proven. If M is a real antisymmetric
matrix, then all the eigenvectors of MTM can be chosen to be real, in which case U is a real orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U. For definiteness, we fix an ordering of the 2 x 2 blocks containing
the my in the matrix N. In the subspace corresponding to a non-zero singular value of degeneracy d, U is unique up to
multiplication on the right by a 2d x 2d unitary matrix S that satisfies:

STs =, (D.4.11)
where the 2d x 2d matrix J, defined by

pan(2 (20 (2 D) D

is a block diagonal matrix with d blocks of 2 x 2 matrices. A unitary matrix S that satisfies Eq. (D.4.11) is an element of
the unitary symplectic group, Sp(d). If there are no degeneracies among the my, then d = 1. Identifying Sp(1) = SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U is unique up to multiplication on the
right by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues of M, U is unique up to
multiplication on the right by an arbitrary unitary matrix.

Appendix E. Lie group theoretical techniques for gauge theories

E.1. Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [269]. The most general form for G is a direct product of compact simple
groups and U(1) groups. If no U(1) factors are present, then G is semisimple. For any U € G,

U = exp(—i0°T?), (E.1.1)
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where the T® are called the generators of G, and the #? are real numbers that parameterize the elements of G. The
corresponding real Lie algebra g consists of arbitrary real linear combinations of the generators, 0°T®. The Lie group
generators T satisfy the commutation relations:

[T, T"] = if™*T°, (E1.2)

where the real structure constants fc"b define the compact Lie algebra. The generator indices run overa,b,c = 1,2, ..., dg,
where d; is the dimension of the Lie algebra. For compact Lie algebras, the Killing form g = Tr(T*T®) is positive definite,
so one can always choose a basis for the Lie algebra in which g% o §% (where the proportionality constant is a positive real
number). With respect to this new basis, the structure constants f%¢ = g% fdbc are totally antisymmetric with respect to the
interchange of the indices a, b and c. Henceforth, we shall always assume that such a preferred basis of generators has been
chosen.

The elements of the compact Lie group G act on a multiplet of fields that transform under some dg-dimensional
representation R of G. The group elements U € G are represented by dg x dg unitary matrices, Dg(U) = exp(—if*Tg), where
the Ty are dg x dg hermitian matrices that satisfy Eq. (E.1.2) and thus provide a representation of the Lie group generators.
For any representation R of a semisimple group, Tr Tz = 0 for all a. A representation R’ is unitarily equivalent to R if there
exists a fixed unitary matrix S such that Dy (U) = S™!Dg(U)S for all U € G. Similarly, the corresponding generators satisfy
Ty =S 'TgSforalla=1,2,...,dc.

For compact semisimple Lie groups, two representations are noteworthy. If G is one of the classical groups, SU(N)
[for N > 2], SO(N) [for N > 3] or Sp(N/2) [the latter is defined by Eqs. (D.4.11) and (D.4.12) for even N > 2], then
the N x N matrices that define these groups comprise the fundamental (or defining) representation F, with dp = N. For
example, the fundamental representation of SU(N) consists of N x N unitary matrices with determinant equal to one, and
the corresponding generators comprise a suitably chosen basis for the N x N traceless hermitian matrices. Every Lie group G
also possesses an adjoint representation A, with d4 = dg. The matrix elements of the generators in the adjoint representation
are given by''?

(TH" = —if ™. (E.1.3)

Given the unitary representation matrices Dg(U) of the representation R of G, the matrices [Dg(U)]* constitute the
conjugate representation R*. Equivalently, if the T comprise a representation of the Lie algebra g, then the —(Tg)* =
—(Tg)" comprise a representation R* of g of the same dimension d. If R and R* are unitarily equivalent representations,
then we say that the representation R is self-conjugate. Otherwise, we say that the representation R is complex, or “strictly
complex” in the language of Ref. [270]. However, the representation matrices Dg(U) of a self-conjugate representation can
also be complex. We can then define two classes of self-conjugate representations. If R and R* are unitarily equivalent to
a representation R’ that satisfies the reality property [Dg' (U)]* = [Dgr(U)] for all U € G (equivalently, the matrices iT;,
are real for all a), then R is said to be real, or “strictly real” in the language of Ref. [270]. If R and R* are unitarily equivalent
representations, but neither is unitarily equivalent to a representation that satisfies the reality property above, then R is said
to be pseudo-real.

Henceforth, we drop the adjective “strictly” and simply refer to real, pseudo-real and complex representations.
Self-conjugate representations are either real or pseudo-real. An important theorem states that for self-conjugate
representations, there exists a constant unitary matrix W such that [270]

[Dr(U)]* = WDR(U)W ™!, or equivalently, (iT%)* = W(iTpW ™', (E.1.4)
where

WW* =1, wh=w, for real representations, (E.1.5)

WW* = —1, wl=—-w, for pseudo-real representations, (E.1.6)

and 1 is the dg x dg identity matrix. Taking the determinant of Eq. (E.1.6), and using the fact that W is unitary (and hence
invertible), it follows that 1 = (—1)%. Therefore, a pseudo-real representation must be even-dimensional.

If we redefine the basis for the Lie group generators by T — V‘1T;‘a V, where V is unitary, then W — VTWV. We
can make use of this change of basis to transform W to a canonical form. Since W is unitary, its singular values (i.e. the
positive square roots of the eigenvalues of WTW) are all equal to 1. Hence, in the two cases corresponding to WT = +W,
respectively, Egs. (D.2.1) and (D.4.1) yield the following canonical forms (for an appropriately chosen V),

W =1, forareal representationR, withe, = +1, (E.1.7)
W =], forapseudo-real representation R, withe, = —1, (E.1.8)
where | = diag { (_? (1)) , (_(1) (])) ey ( _(1) (1))} isadg x dg matrix (and dp is even).

112 ince the f4b¢ are real, the iT§ are real antisymmetric matrices. The heights of the adjoint labels a, b and ¢ are not significant, as they can be lowered
by the inverse Killing form given by g,, o 45 in the preferred basis.



H.K. Dreiner et al. / Physics Reports 494 (2010) 1-196 125

There are many examples of complex, real and pseudo-real representations in mathematical physics. For example, the
fundamental representation of SU(N) is complex for N > 3. The adjoint representation of any compact Lie group is real
[cf. footnote 112]. The simplest example of a pseudo-real representation is the two-dimensional representation of SU(2),'"3
where T® = 17 (and the ¢ are the usual Pauli matrices). More generally, the generators of a pseudo-real representation

2
must satisfy

(iTR)* = CT1(TR)C, (E.1.9)

for some fixed unitary antisymmetric matrix C [previously denoted by W~ in Egs. (E.1.4) and (E.1.6)]. For the doublet
representation of SU(2) just given, C®® = (it?)® = €% is the familiar SU(2)-invariant tensor.

Finally, we note that for U(1), all irreducible representations are one-dimensional. The structure constants vanish
and any d-dimensional representation of the U(1)-generator is given by the d x d identity matrix multiplied by the
corresponding U(1)-charge. For a Lie group that is a direct product of a semisimple group and U(1) groups, Tr Tg is non-
zero when a corresponds to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of

the representation R vanishes.

E.2. The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact semisimple Lie algebra g. The
index I, (R) of the representation R is defined by [269,271-273]

Tr(T&TE) = I,(R)8®, (E2.1)

where I, (R) is a positive real number that depends on R. Once I, (R) is defined for one representation, its value is uniquely
fixed for any other representation. In the case of a simple compact Lie algebra g, it is traditional to normalize the generators
of the fundamental (or defining) representation F according to!'4

Tr(T§TY) = 18%. (E2.2)

If the representation R is reducible, it can be decomposed into the direct sum of irreducible representations, R = ), Ry.
In this case, the index of R is given by

LR) =) L(Ry). (E.2.3)
k
The index of a tensor product of two representations Ry and R; is given by [271]
LRy ® Ry) = dg,[2(Rz) + dg,[2(R1). (E.2.4)
Finally, we note that if R* is the complex conjugate of the representation R, then
LR*) = L(R). (E2.5)

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators T*®. If the representation of
the T® is irreducible, then Schur’s lemma implies that the Casimir operator is a multiple of the identity. The proportionality
constant depends on the representation R. The quadratic Casimir operator of an irreducible representation R is given by

(T2 = (TR)H (TR = CrdY, (E.2.6)

where the sum over the repeated indices are implicitandi,j, k = 1, 2. .. dg. A simple computation then yields the eigenvalue
of the quadratic Casimir operator, Cg,

L (R)d,
o= z(d) G
R

For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows that C4 = I,(A). For a
reducible representation, T2 is a block diagonal matrix consisting of dg, X dg, blocks given by Cg, 1 for each irreducible
component Ry of R.

The example of the simple Lie algebra su(N) is well known. The dimension of this Lie algebra (equal to the number of
generators) is given by N> — 1. As previously noted, dr = N and L,(F) = % It then follows that C; = (N?> — 1)/(2N). One
can also check that C4 = I,(A) = N.

(E2.7)

113 N unitary matrix W exists such that the Wit®W ! are real for all a = 1, 2, 3. Thus, the two-dimensional representation of SU(2) is not real. However,
(it%* = (it?)(it%)(ir?)~! for a = 1, 2, 3, which proves that the two-dimensional representation of SU(2) is pseudo-real.

114 1y the literature, the index is often defined as the ratio I (R) /I, (F), where I, (F) is fixed by some convention. This has the advantage that the index of R
is independent of the normalization convention of the generators. In this Appendix, we will simply refer to I, (R) as the index.
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The Lie algebras su(N) [N > 3] are the only simple Lie algebra that possesses a cubic Casimir operator. First, we define
the symmetrized trace of three generators [273,274]:

1
DY = Str (T*TPT®) = gTr(T“T"TC + perm.), (E.2.8)

where “perm.” indicates five other terms obtained by permuting the indices a, b and c in all possible ways. Due to the
properties of the trace, it follows that for a given representation R,

D™ (R) = 3Tr[{T§, THITg]. (E.2.9)
For the N-dimensional defining representation of su(N), it is conventional to define

d™ = 2Tr [{T§, THITE]. (E2.10)
One important property of the d* is [275,276]:

(N> = 1)(N? — 4)
B —

In general, D®¢(R) is proportional to d®°. In particular, the cubic index I;(R) of a representation R is defined such
that [273,275,277],

dabegabe — (E2.11)

D™ (R) = I5(R)d™*. (E.2.12)

Having fixed I3(F) = %, the cubic index is uniquely determined for all representations of su(N) [275,277-279]. As in the
case of the quadratic index I, (R), we have:

BR) =Ry, (E2.13)
k

for a reducible representation R = ), Ry. The cubic index of a tensor product of two representations Ry and R; is given
by [277]

I(Ry ® Ry) = dg,[3(Ry) + dr,I3(Ry). (E.2.14)

If the generators of the representation R are T%, then the generators of the complex conjugate representation R* are —TﬂT.
It then follows that

L(R*) = —I3(R). (E.2.15)

In particular, the cubic index of a self-conjugate representation vanishes. Note that the converse is not true. That is, it is
possible for the cubic index of a complex representation of su(N) to vanish in special circumstances [279].

One can show that among the simple Lie groups, D% = 0 except for the case of SU(N), when N > 3 [275]. For any
non-semisimple Lie group (i.e., a Lie group that is a direct product of simple Lie groups and at least one U(1) factor), D%¢
is generally non-vanishing. For example, suppose that the T constitute an irreducible representation of the generators of
GxU(1), where G is a semisimple Lie group. Then the U(1) generator (which we denote by settinga = Q) is Tg = q1, where
q is the corresponding U(1)-charge. It then follows that D%? = qI,(R)8%. More generally, for a compact non-semisimple Lie
group, D% can be non-zero when either one or three of its indices corresponds to a U(1) generator.

In the computation of the anomaly [cf. Section 6.26], the quantity Tr(szT}’zT};) appears. We can evaluate this trace using
Eqgs. (E.1.2) and (E.2.12):

i
Tr(T&TETS) = I3(R)d™ + 5b(R)f‘“’C. (E2.16)
The cubic Casimir operator of an irreducible representation R is given by

(T3){ = d™(TRTATR)! = Cxdi. (E2.17)

Using Egs. (E.2.11) and (E.2.12), we obtain a relation between the eigenvalue of the cubic Casimir operator, Csz and the cubic
index [275]:

(N? — 1)(N* — HI3(R)
Ndg '

Again, we provide two examples. For the fundamental representation of su(N), I3 (F) = i and Gz = (N2 —1)(N?>—4)/(4N?).

For the adjoint representation, I3(A) = C34 = 0, since the adjoint representation is self-conjugate. A general formula for the

eigenvalue of the cubic Casimir operator in an arbitrary su(N) representation [or equivalently the cubic index I5(R), which
is related to Csg by Eq. (E.2.18)] can be found in Refs. [275,277-279].

Cr = (E.2.18)




