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Neutrinos:	Discovery	&	Low	Mass

• 1930	by	Pauli
• “I	have	done	a	terrible	thing.	I	have	
postulated	a	particle	that	cannot	be	
detected.”

• Original	mass	estimate:	0.01 ∗ 𝑚&
Fermi’s	sketch	of	the	endpoint	of	the	
tritium	β-decay	spectrum	(1934)



Measuring Neutrino Mass with H( Beta Decay



Measuring Neutrino Mass

http://www.katrin.kit.edu/img/KATRIN-Beamline-2011-Slide.png

• Mainz	et	al	(2005):	𝑚) < 2.3	eV

• KATRIN	(projection):	𝑚)< 0.2	eV



Solar	Neutrino	Problem

• Neutrinos are produced in copious 
numbers (6.4*1010 cm-2 s-1) due to 
various nuclear reactions in the Sun:

• 𝑝 + 𝑝 → 𝑑 + 𝑒 + 𝜈̅7
• 𝑒8 + Be: → Li: + 𝜈7
• B= → 8Be + 𝑒? + 𝜈7

• Early (<1998) experiments only 
detected a fraction of the SSM 
prediction

• Neutrino oscillations proposed by 
Pontecorvo in 1967 as a solution



QM Treatment of Neutrino Oscillations
• Consider just two species of neutrino, 𝜈7 

and 𝜈@ 

• Suppose neither neutrino is a mass eigenstate, but the admixture is:

𝜈1 = 𝜈@ 
cosθ − 𝜈7 

sinθ 𝜈2 = 𝜈@ 
sinθ + 𝜈7 

cosθ
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• Suppose a electron neutrino is produced (𝜈7 = 1):

𝜈1 𝑡 = −𝑒8KLMNsinθ 𝜈2 𝑡 = 𝑒8KLONcosθ
• We are interested in the probability of detecting a flavor eigenstate at some later time t. 

Solving for 𝜈7 
and 𝜈@ 

:

𝜈7 = 𝜈2cosθ − 𝜈1sinθ 𝜈@ = 𝜈1cosθ + 𝜈2sinθ
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QM Treatment of Neutrino Oscillations
• The probability of detecting a flavor eigenstate is just the square of the amplitude:
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• Then the transition probability is simply:

𝑃 = sin2 2𝜃 sin2 YO
[8YM

[ N 
VL



3-Flavor Neutrino Mixing

• With three neutrinos, we have a mixing matrix:
𝜈7
𝜈@
𝜈\

=
𝑈7M 𝑈7O 𝑈7(
𝑈@M 𝑈@M 𝑈@M
𝑈\M 𝑈\M 𝑈\M

𝜈M
𝜈O
𝜈(

• Where the matrix U (PMNS matrix) can be decomposed in terms of its three mixing angles:

𝑈 =
1 0 0
0 𝑐O( 𝑠O(
0 −𝑠O( 𝑐O(

𝑐M( 0 𝑠M(𝑒8K`
0 1 0

−𝑠M(𝑒K` 0 𝑐M(

𝑐MO 𝑠MO 0
−𝑠MO 𝑐MO 0
0 0 1

• If neutrinos are Majorana fermions, there are an additional two phases are present: 
𝑈 → 𝑈 ∗ diag 1, 𝑒Kef , 𝑒Ke[

• Extra phases cancel when computing the Hamiltonian
• Dirac vs Majorana nature cannot be probed by oscillation experiments



Current	Experimental	Values	&	Limits

Parameter Value
𝛿𝑚O = 𝑚O

O −𝑚M
O 7.53 ± 0.18 ∗ 108k	eV

∆𝑚O = 𝑚(
O −

𝑚O
O +𝑚M

O

2
2.44 ± 0.06 ∗ 108(	eV

(sin 𝜃MO)O 0.304 ± 0.014
(sin 𝜃O()O 0.511 ± 0.055
(sin 𝜃M()O 2.19± 0.12 ∗ 108O



Normal	vs	Inverted	Hierarchy

• Difficult	to	probe	via	
neutrino	oscillations	in	
vacuum,	which	are	
sensitive	to	∆𝑚O

• Could	in	principle	be	
tested	by	oscillations	
in	matter



Super-Kamiokande Experiment (~1998)

• 50 kt water Cerenkov telescope
• Sensitive to all neutrinos, but mostly e-type

• Searched for atmospheric neutrinos
• 𝜋? → 𝜇? + 𝜈 @ → 𝑒? + 𝜈@ + 𝜈7 + 𝜈̅@
• Robust prediction of 

r(st?st)
r(su?su)v ≅ 2

• Instead found 
r(st?st)

r(su?su)v = 1.32

Neil	DeGrasse Tyson	goes	boating	 in	Super-K



Super-K	view	of	the	Sun.	Super-K	detected	
about	45%	of	the	expected	solar	neutrino	 flux

Deficit	of	upward-going	𝜇-type	neutrinos

Super-Kamiokande Experiment (~1998)



SNO Experiment (2001)

• Used 1kt heavy water ($3*108) to 
determine separately the e-type 
flux and total flux

• 𝑣7 + 𝑑 → 𝑝 + 𝑝 + 𝑒8
• 𝑣x + 𝑑 → 𝑝 + 𝑛 + 𝑣x

• 2 tons of NaCl added in May 2001 
to increase the NC signal



SNO Results (2001)

• 35% of solar neutrinos were e-
type, 65% were μ-type or 𝜏–type

• 2015 Nobel Prize awarded to 
Takaaki Kajita of Super-K and 
Arthur B. McDonald of SNOLAB



KamLAND Experiment (~2002)

• 1 kt mineral oil scintillator detector

• Detects reactor antineutrinos via:
𝜈̅7 + 𝑝 → 𝑛 + 𝑒?

𝑛 + 𝑝 → 𝑑 + 𝛾	(2.2	MeV)
• Detect prompt coincidence between positron 

annihilation and gamma signal
• 51 nuclear reactors in Japan in 2002

• First experiment to show neutrino 
disappearance



KamLAND Results



Review of Fermion Masses

• For (e.g.) electrons
• ℒ could include the gauge-invariant term −𝑔7𝑙7̅�𝜙𝑒� + h. c.

• 𝑙7�	is the electron-type doublet, 𝜙	is the Higgs doublet

• After symmetry breaking, we get a term like −𝑔7
�
O
(𝑒�̅𝑒� + 𝑒�̅𝑒�)

• Precisely a Dirac mass term with mass 𝑚 = �u�
O

• Same mechanism works for neutrinos
• Expermentally, then, 𝑔7 >> 𝑔s which seems unnatural



See	Saw	Mechanism

• If right-handed neutrinos exist with Majorana masses and Yukawa-type 
couplings, we could have a term in the Lagrangian like:

ℒ ∈ 𝜆K�𝑁K,� 𝑥 Φ� 𝑥 𝜓�� 𝑥 + h. c. −
1
2𝑀K𝑁K(𝑥)𝑁K(𝑥)

• Here 𝜆K� is a matrix of Yukawa couplings and 𝜓��� = (𝜈��� , 𝑙��)
• After electroweak symmetry breaking, there are new Dirac mass terms 
generated:

𝑚K�
�	(𝑁�K�(𝑥)𝜈��(𝑥) + h. c. )

• Can be combined with the Majorana mass term above into a sigle term:

−
1
	2 (𝑁

��𝑪𝑀𝑁� + 𝑁��𝑀𝑁�𝑪)



See-Saw Mechanism

• Then the mass matrix is: 
𝑚� 𝑚�
𝑚� 𝑚�

• In one scanario 𝑚� = 0, and then the eigenvalues are 𝑚M ≈ 𝑚� and 𝑚O ≈
Y�[

Y�
• If 𝑚� is large (~1016 GeV) and 𝑚� is ~100 GeV, the small neutrino mass is 
explained

• Also attractive because the Yukawa coupling is not CP-conserving
• Γ 𝑁� → 𝑙? +Φ 8 ≠ Γ(𝑁� → 𝑙8 +Φ(?))
• Sphaleron processes that conserve B-L but not B+L can then produce baryogenesis via 

leptogenesis



Looking Forward: Searching for	0𝜈𝛽𝛽

• In some even-even nuclei ( Ge:� , CaV= , XeM(� , 
etc), β-decay is energetically forbidden but double 
β-decay ([A,Z] → [A,Z+2] + 2𝑒8+2𝜈̅7) is allowed

• If neutrinos are Majorana fermions, the decay [A,Z]
→ [A,Z+2] + 2𝑒8 should also be allowed

• Half life is: 𝑇f
[⁄

¡s)) = M
¢£¤ ¥£¤ [Y¦¦

[

• Multiple experiments needed to pin down 
absolute mass scale

• Many experiments planned

Example Feynman diagram of 0𝜈𝛽𝛽 in 𝐺𝑒:�

Cartoon spectrum from 0𝜈𝛽𝛽



MAJORANA

Heidelberg-Moscow experiment results-
claim of 4σ excess at 2039 keV

• Needed to test the result from Kleingrothaus et al.

• Claim of discovery with 𝑇f
[⁄

¡s)) = 10Okyears

• Uses 30 kg of enriched Ge:� 	as simultaneous 
detector and source

• Plan to scale up to 1 ton of Germanium 
• Goal of 1 background event/year in 4 keV window 

around Q value



Questions?
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