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Motivation

• Although the proton’s properties and existence can be ex-

plained via QCD its existence cannot be proven

• We have only been able to apply QCD to colored particles

not hadrons

• The two other methods presented in Schwartz, chiral per-

turbation theory and lattice QCD, have problems as well

• The Chiral Lagrangian is not renormalizable and lattice

QCD is computationally expensive and ill fit for calcula-

tions such as scattering amplitudes
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Motivation

• Intuitively we should be able to use QCD for high energy

proton scattering as the strong force is weak at short dis-

tance scales

• At very high energies the scattering interactions are mainly

those involving free quarks and gluons

• In order to study the proton, we will use e−p+ scattering

to probe the proton’s properties
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Classical Experiment

• The proton was discovered by Rutherford, Geiger and Mars-

den after they fired α particles at gold and later aluminum

foil

• To there surprise they measured scattering angles greater

than 90◦

• Assuming a central coulomb potential, Rutherford calcu-

lated
dσ

dΩ
=

(
Ze2

4πmv2

)
1

sin θ
2

which agreed with the data
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Classical Experiment

• using conservation of energy at zero impact parameter Ruther-

ford derived an rmax given by the formula

1

2
mv2 =

2Ze2

4πrmax

which gives rmax = 4.8× 1015m for the proton
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Elastic Scattering

• Called coulomb scattering at low energies

• Analogous to e−µ+ scattering

• In the lab frame (proton rest frame) the Relativistic cross

section for two spin 1/2 particles is given by(
dσ

dΩ

)
lab

=
α2
e

4E2 sin4 θ
2

E′

E

(
cos2

θ

2
− q2

2m2
p

sin2 θ

2

)

• Where we let me → 0 and qµ = kµ − k′µ

• The relation q2 = −2k·k′ = −
(
4E′E sin2 θ

2

)
lab

= 2mp (E − E′)
is also useful
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Elastic Scattering

• When the electron is not considered massless it is easy to

see that our result reduces to the classical one in the low

energy limit

• Our result depends only on the electron’s initial and final

state properties

• If we were ignorant to QCD we would expect our result to

hold up to arbitrarily short distances

7



Elastic Scattering

• Similar to in QED we remove the electron and consider

the interaction of the proton with an off shell photon of

spacelike momentum qµ

• Again as in QED the most general vertex can be written in

the form u(p′)(ieΓµ)u(p) where as before

Γµ = F1(q
2)γµ +

iσµν

2mp
qνF2(q

2)

• This confirms the proton charge Q = +1 at large distances

• It is experimentally known that gp = 5.58 =⇒ the proton

is not a pointlike particle
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Elastic Scattering

• Repeating the elastic scattering calculation with the general

form of the vertex gives(
dσ

dΩ

)
lab

=
α2
e

4E2 sin4 θ
2

E′

E

×
[(
F 2
1 −

q2

4m2
p

F 2
2

)
cos2

θ

2
− q2

2m2
p

(F1 + F2)
2 sin2 θ

2

]

• Rosenbluth formula
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Elastic Scattering

• Because mτ = 1.7GeV ∼ mp consider e−τ+ scattering as

an example

• |q2| � m2
τ =⇒ F2 → 0 and F1 ∼ log (Energy)

• This contradicts the protons observed behavior

F1 ∼
1(

1− q2

0.71GeV2

)2
where a definite scale has appeared

• Up to multiplicative factors F1 is just the fourier trans-

form of the Born scattering potentials yielding V (r) =
m3

4π e
−mr ∼ e−r/r0 where r0 ∼ (0.84GeV)−1 ∼ 1fm
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Inelastic Scattering

• Slightly inelastic: e−p+ → e−p+π0

• Deep inelastic scattering (DIS):e−p+ → e−X where X rep-

resents anything the proton can break into

• Instead of parameterizing the vertex in terms of form fac-

tors, we now the γp+ → X interactions =⇒ we parame-

terize the cross section

• Before integrating over the electrons final state energy the

cross section can be written in the form(
dσ

dΩdE′

)
lab

=
α2
e

4πmpq4
LµνWµν
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Inelastic Scattering

• Lµν is the leptonic tensor and Wµν is the hadronic tensor

• Lµν = 1
2 tr
[
/k′γµ/kγν

]
= 2 (k′µkν − k′νkµ − k · k′gµν)

e2εµε
∗
νW

µν =
1

2

∑
X,spin

∫
dΠX(2π)4δ4(q+P−pX)|M(γp+ → X)|2

• Because final states are integrated over we know Wµν can

only depend on Pµ and qµ

• The ward identity and the fact that unpolarized scattering

must be symmetric further constrains the form of Wµν
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Inelastic Scattering

• The most general form of Wµν we can write is

Wµν = W1

(
−gµν +

qµqν

q2

)
+W2

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)

• W1 and W2 only depend on the scalars P 2, q2 and P · q

• We now define Q ≡
√
−q2 > 0, ν ≡ P ·q

mp
= (E − E′)lab and

x = Q2

2P ·q called the Bjorken x
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Inelastic Scattering

• Contracting Lµν and Wµν gives(
dσ

dΩdE′

)
lab

=
α2
e

8πE2 sin4 θ
2

×
[
mp

2
W2(x,Q) cos2

θ

2
+

1

mp
W1(x,Q) sin2 θ

2

]
• As we had before, W1 and W2 can be completely deter-

mined by measuring the electron’s properties

• The cross section’s approximate independence ofQ for fixed

x is called Bjorken scaling
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Bjorken Scaling

Figure 1: Data confirming Bjorken scaling
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The Parton Model

• Assume objects within the proton called ”partons” are free

• Parton refers to quarks, gluons and less formally antiquarks,

photons and the rest of the SM particles

• Assume some of the partons are charged

• We will determine W1 and W2 via elastic scattering off of

a parton of mass mq

• pµi + qµ = pµf =⇒ Q2

2pi·q = 1 is a relation we will use
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The Parton Model

• Assume pµi = ξPµ where ξ is called the momentum fraction

• x = Q2

2P ·q = ξ

• Measuring x is measuring the fraction of P involved in the

parton scattering
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Parton Distribution Functions (PDF’s)

• fi(ξ)dξ is the probability of photon hitting parton i with

momentum fraction ξ

• Intuitively this is allowed because momentum is exchanged

between partons on time scales ∼ m−1p which are much

slower than Q−1 which is relevant to the photon

• Rigorously Q � ΛQCD =⇒ de-coherence of the parton

wave functions allowing for a probabilistic interpretation
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The Parton Model

• We can now write the cross section in terms of the partonic

cross sections

σ(e−P+ → e−X) =
∑
i

∫ 1

0
dξfi(ξ)σ̂(e−pi → e−X)

• At lowest order we can use the Rosenbluth formula with

F1 = 1 and F2 = 0 for the partonic cross section

• Plugging into the formula above gives

(
dσ(e−P+ → e−X)

dΩdE′

)
=
∑
i

fi(x)
α2
ee

2
i

4E2 sin4 θ
2

×
[

2mpx
2

Q2
cos2

θ

2
+

1

mp
sin2 θ

2

]
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• We can now read off

W1(x,Q) = 2π
∑
i

e2i fi(x)

W2(x,Q) = 8π
x2

Q2

∑
i

e2i fi(x)

• We have also derived the Callan-Gross relation

W1(x,Q) =
Q2

4x2
W2(x,Q)
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Sum Rules

• Because PDF’s are probabilities they must obey certain

properties

• For example down quark number is conserved within a pro-

ton so ∫
dξ(fd(ξ)− fd(ξ)) = 1

• Each rule corresponds to a classically conserved current

• Numerically evaluating
∫
dξξ(fu(ξ) + fd(ξ)) ≈ 0.38

• The valence quarks only contribute 38% of the protons mo-

mentum

• the rest is comprised of gluons and sea quarks
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DGLAP Equations

• Structure functions should have weak logarithmic on Q2

• Want to combine parton model with perturbative QCD

• Assume parton model holds

• Define the partonic version of the hadronic tensor in terms

of |M(γq → X)|2 and also define z ≡ Q2

2pi·q =⇒ x = zξ
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DGLAP Equations

• Integrating over ξ we get

Wµν(x,Q) =
∑
i

∫ 1

0
dz

∫ 1

0
dξfi(ξ)Ŵ

µν(z,Q)δ(x− zξ)

=
∑
i

∫ 1

x

dξ

ξ
fi(ξ)Ŵ

µν

(
x

ξ
,Q

)

• At leading order only γq → q contributes and we have

Ŵµν(z,Q) = 2πe2i δ(1− z)

×
[(
−gµν +

qµqν

q2

)
+

4z

Q2

(
pµi −

pi · q
q

qµ
)(

pνi −
pi · q
q

qν
)]
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DGLAP Equations

• We can now read off

Ŵ1 = 2πe2i δ(1− z) =
Q2

4z
Ŵ2

confirming the Callan-Gross relation at leading order

• Plugging this into our formula for the hadronic tensor gives

Wµν(x,Q) = 2π
∑
i

e2i fi(x)

×
[(
−gµν +

qµqν

q2

)
+

4x2

Q2

(
Pµ − P · q

q
qµ
)(

P ν − P · q
q

qν
)]
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DGLAP Equations

• Now consider W0 ≡ −gµνWµν

• When Q� mp,

W0 = 2W1 = 4π
∑
i

e2i fi(x)

• We will use W0 to define PDF’s at higher orders

• Similarly for the partonic version we get

ŴLO
0 = 4πe2i δ(1− z)
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NLO

• At NLO there are three diagrams, one corresponding to

the virtual correction to γq → q and two for the process

γq → qg

• All have divergences and require renormalization or dimen-

sional regulation (Too long to display in one slide, the full

expression for Ŵ0 can be found on Schwartz p. 679)

Pqq(z) = CF

[
(1 + z2)

[
1

1− z

]
+

3

2
δ(1− z)

]

• Pqq(z) is called DGLAP splitting function
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NLO

• Taking a difference at two different scale Q and Q0 gives

W0(x,Q)−W0(x,Q0) = 4π
∑
i

∫ 1

x

dξ

ξ
fi(ξ)

[
αs
2π
Pqq(

x

ξ
) log

Q2

Q0

]

• It is clear that Bjorken scaling is violated by the logarithmic

dependence on Q2
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DGLAP Evolution equation

• Now if we define

W0(x,Q) ≡ 4π
∑
i

e2i fi(x, µ = Q)

for any scale Q and plug into the previous equation we

arrive at the result

µ
d

dµ
fi(x, µ) =

αs
π

∫ 1

x

dξ

ξ
fi(ξ, µ)Pqq(

x

ξ
)

• DGLAP evolution equation
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