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Divergences

I Divergences occur when Feynman diagrams (integrals) and
cross-sections have terms that tend to infinity in high energy
(or short range) or low energy (or long distance) limits.

I Low energy, infrared, divergences occur when there are
massless or effectively massless particles.

I High energy, ultraviolet, divergences arise in many situations.
From terms that scale as energy and give infinite integrals to
examination of theories at small distances.



Divergences
Ultraviolet Divergences

We’re interested in IR divergences at the moment, but as a taste...

I Ultraviolet divergences are removed through renormalization
and regularization.

I This can mean the isolation and reworking of the divergent
term, instituting a cutoff as to only use the theory at
physically reasonable scales, or instituting a regulator.



Divergences
Infrared Divergences

IR divergences are very interesting from a physical perspective and
can be understood because,

“In any practical experiment involving charged particles it is
impossible to specify completely the final state of the system.
Because individual photons can be emitted with arbitrarily small
energies, there will always be a possibility that some photons will
escape detection.” [5]



Divergences
Infrared Divergences

From a mathematical standpoint we see that infrared divergences
appear when a particle has no mass, for instance in the electron
self energy we have∫

d4k

(2π)4
γµ

i(/q − /k +m)

(q − k)2 −m2 + iε
γµ

1

k2
(1)

And we can see that in the limit as k → 0 the integral goes to
infinity.



IR Regulators
Cutoffs

IR divergences, like UV divergences, must be regularizeable, so the
non-physically observable parts must cancel out. (All physical
observables must be finite.)

There are a few ways of managing these divergences. One is to
institute a cutoff, or limit, such that you only integrate in a regime
in which your integral is finite and corresponds to what you
physically observe.



IR Regulators
Adding mγ

Another way to remove divergence is to add a regulator. In this
case we can for instance add a photon mass. If we add a fictitious
photons mass, for instance in the electron self energy, the
singularity disappears,∫

d4k

(2π)4
γµ

i(/q − /k +m)

(q − k)2 −m2 + iε
γµ

1

k2 −m2
γ

. (2)

This mass should be removeable though since we do not observe a
massive photon. In other words in limits or in consideration of all
factors, nothing observable can be left with a dependence on the
photon mass.



Summing Soft Photons

The IR divergences can be seen as arising from the incomplete
consideration of all the factors in a cross-section. An arbitrary
number of soft photons may exist in the final state. So it can be
shown that even though e+e− → µ+µ− is divergent and so is
e+e− → µ+µ−γ, their sum is IR finite.

The cross section is shown to be

σ(e+e− → µ+µ−(+γ))

≡ σ(e+e− → µ+µ−) + σ(e+e− → µ+µ−γ)

= σ0

{
1 +

3e2R
16π2

}
. (3)



Bremsstrahlung

A quick example of how exactly this works is with bremsstrahlung.

In the process of elastic scattering of an electron with a static
electric field there are two processes. One is the elastic scattering
itself and the other is soft bremsstrahlung. When taken as separate
processes in perturbation theory, IR divergences emerge, but when
combined they cancel. This makes sense since they really should
be treated as one process experimentally.



e+e− → µ+µ−(+γ)
Leading Order

Let’s look at the example of e+e− → µ+µ−(+γ)

To leading order e+e− → µ+µ− only has one s-channel diagram.
It’s cross section is

σ0 =

∫ 2π

0
dφ

∫ 1

−1
d cos θ

dσ

dΩ
=

e4R
12πQ2

(4)

where Q2 = s = E2
CM .



e+e− → µ+µ−(+γ)
Vertex Correction

Now we need to calculate the vertex correction. This is a lengthy
derivation I am not going to go through in detail. It involves
regulating a UV divergence as well. The adding and regularization
with mγ is covered in chapter 19 of Schwartz. The result of the
loop correction to order e6R is

σV =
e2R
8π2

σ0

{
− ln2

m2
γ

Q2
− 3 ln

m2
γ

Q2
− 7

2
+
π2

3

}
(5)

where σV is the virtual cross section correction. The squared
logarithm is characteristic of IR divergences and is called the
“Sudakov double logarithm.”



e+e− → µ+µ−(+γ)
Real Emission

Again skipping the details of the derivation, the real emission
diagrams give,

σR =
e2R
8π2

σ0

{
ln2

m2
γ

Q2
+ 3 ln

m2
γ

Q2
− π2

3
+ 5

}
(6)

combining this with the virtual correction

σR + σV =
3e2R
16π2

σ0 (7)

and thus the total cross section is

σtot = σ0

{
1 +

3e2R
16π2

}
(8)

and we see that amazingly the divergences cancelled!



Jets

The idea of having an arbitrary number of soft photons (or
collinear photons) in the final state leads to the idea of jets. Very
briefly, there is a chance that an observable final state photon jet is
produced. This contribution is dependent on the angular and
energy resolution of the experiment.

Schwartz notes that “In physical cross sections, an experimental
resolution parameter acts as an IR regulator.” [1] So we have no
need for a photon mass at all here, but the calculations are easier
when done with it rather than using the parameters of an
experiment.



Jets

For example in the case we looked at we know the total cross
section is made of two parts

σtot = σ2→2 + σ2→3. (9)

But we have limitations on the energy and the angle measurable by
the experiment, so the resolution of the energy and angle become
the regulators. When Eγ < Eres and θγµ < θres the rate looks like
a µ+µ− pair is produced. But when Eγ > Eres and θγµ > θres
then the rates σ2→2 and σ2→3 are dependent on the resolution.
The two-body jet final state is thus

σ2→2 = σ0

(
1−

e2R
8π2

{
ln

1

θres

[
ln

(
Q

2Eres
− 1

)
− 3

4
+ 3

Eres
Q

]
+ · · ·

})
.

(10)



Going Further

A few things beyond the scope of this discussion:

I Other loops

I Vacuum polarization correction - scale dependent effective
charge

I Initial state radiation

I Summing higher order soft photons

I Bloch-Nordsieck theorem

I Kinoshita-Lee-Nauenberg theorem



Summary

I IR divergences arise from massless or effectively massless
particles

I These divergences can be removed by adding a fictitious
mass, a cutoff, or by summing over all diagrams including soft
final state radiation.

I Looking at the relatively simple e+e− → µ+µ−(+γ)
interaction we see that the logarithmic photon mass terms
cancel exactly.

I Collinear or soft photons give rise to jets, which will depend
on the angular and energetic resolution of the detector.



Applications
For further study

From the KLN theorem comes the idea that any physical
observable must be “infrared safe.” Infrared safety pertains to the
Jets we saw as well as a number of other topics:

I Decay widths

I Protons in QCD

I Final state energy cuts

I Lamb Shift
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