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DUE: THURSDAY, FEBRUARY 11, 2016

1. Consider a field theory of a real pseudoscalar field φ(x) coupled to the electron field ψ(x).
The interaction Lagrangian is:

Lint = −iλ ψ(x) γ5 ψ(x)φ(x) ,

where λ is a real coupling constant (called the Yukawa coupling).

(a) Using functional techniques, derive the Feynman rule for the interaction vertex of this
theory.

(b) Calculate the O(λ2) contribution of the pseudoscalar to the anomalous magnetic mo-
ment of the electron.

2. Consider the function of a real parameter z

F (z) ≡

∫ 1

0

dx ln
[

1− zx(1 − x)− iǫ
]

,

which appears in the computation of the one-loop correction to the 4-point Green function in
scalar field theory.

(a) Evaluate Im F (z). For what values of z does ImF vanish?

HINT: First, determine the imaginary part of the integrand. Note that ln
[

1− zx(1− x)− iǫ
]

should be interpreted as the principal value of the complex-valued logarithm, with the branch
cut along the negative real axis. Since ǫ is a positive infinitesimal, the sign of the imaginary
part is uniquely determined. Then, carry out the integration, noting that the imaginary part
of the integrand may vanish over part (and in some cases all) of the integration range.

(b) Consider the 1PI 4-point Green function, Γ(4), in a field theory of a real scalar field with
mass m and an interaction Lagrangian density given by LI = −λφ4/4!. Using the Feynman
rules for this theory, write down an integral expression for the full O(λ2) contribution to Γ(4).
From the integral expression, evaluate Im Γ(4) up to order λ2 by making use of the cutting

rules given in Section 24.1.2 [pp. 456–459] of Schwartz.

(c) An explicit one-loop computation of Γ(4) yields

Γ(4)(p1, p2, p3, p4) = −λ−
λ2

32π2

[

F
( s

m2

)

+ F

(

t

m2

)

+ F
( u

m2

)

+G(m2)

]

, (1)

where s ≡ (p1 + p2)
2, t ≡ (p1 − p3)

2, u ≡ (p1 − p4)
2 are Lorentz-invariant kinematic variables,

the function F is defined in part (a), and the function G is a real function.1 Using eq. (1) and
the results of part (a), compute ImΓ(4) and check that your calculation in part (b) is correct.

1In fact, the function G is infinite, but this infinity can be removed by renormalization. Since we are only

interested here in ImΓ(4), we can safely ignore any details associated with the renormalization procedure.



3. The Lagrangian of QED is given by:

LQED = −1
4
FµνF

µν + ψ(i/∂ + e/A)ψ −mψψ −
1

2a
(∂µA

µ)2 .

(a) Compute the tree-level photon propagator (in momentum space).

(b) Show that this Lagrangian is not invariant under the infinitesimal gauge transforma-
tion:

δψ = ieΛ(x)ψ(x) ,

δAµ = ∂µΛ(x) ,

where Λ(x) is an arbitrary real function of x that vanishes (sufficiently fast) as |~x| → ∞.

(c) Consider the modified Lagrangian:

L = LQED + 1
2
∂µφ∂

µφ ,

where φ is a free scalar field. Show that the action is invariant under the generalized (in-
finitesimal) gauge transformation:

δψ = ieǫ φ(x)ψ(x) ,

δAµ = ǫ ∂µφ(x) ,

δφ = −
ǫ

a
∂µA

µ ,

where ǫ is an infinitesimal parameter. This has a name: it is called the BRST-transformation.
The action is therefore said to be BRST-invariant.

4. Consider the Lagrangian for a non-abelian gauge theory, with gauge field Aa
µ and gauge

field strength tensor F a
µν ,

LYM = 1
4
F a
µνF

µνa ,

which is invariant under the gauge transformation:

δAa
µ(x) = ǫDab

µ ωb(x) , (2)

where ǫ is infinitesimal, Dµ is the covariant derivative, and ω(x) is an arbitrary function of x.

(a) In order to be able to define a propagator for the gauge field, we must add a gauge-fixing
term:

LGF = −
1

2a
(∂µAa

µ)
2 . (3)

Show that under the gauge transformation of eq. (2), the gauge invariance is broken due to
an extra term generated:

δLGF = −
ǫ

a
(∂µAa

µ)(∂
νDab

ν ωb) .



(b) Attempt to restore the symmetry by adding a new field η(x) and a new term to the
Lagrangian:

LG = −ηa(∂
µDab

µ ωb) ,

and by postulating the transformation law:

δηa = −
ǫ

a
(∂µA

µ
a) . (4)

Show that this does not quite work because Dµ is field dependent and:

δ(LGF + LG) 6= 0 .

(c) Save the day by promoting ω to a field and postulating the transformation law:

δωa =
1
2
ǫgfabcωbωc , (5)

where g is the Yang-Mills coupling constant and the fabc are the structure constants of the
gauge group. Summation over repeated indices is implied. Note that since the fabc are totally
antisymmetric under interchange of a, b and c, the only way to have δω 6= 0 is to require that
ω is an anticommuting field. This immediately implies that η is an anticommuting field and ǫ
is an anticommuting infinitesimal constant. With this in mind, show that LYM+LGF+LG is
invariant under the transformation laws given by eqs. (2)–(5). This enlarged gauge invariance
is called BRST invariance (and δ is called an infinitesimal BRST transformation).

(d) Define δ 2 to mean the application of δ with anti-commuting parameter ǫ1 followed by
δ with anti-commuting parameter ǫ2. Show that when δ 2 is applied to Aa

µ and ηa, the result is
zero in each case. However δ 2 ηa = 0 only if the Lagrange field equations for the ghost fields
ωa are satisfied.

(e) Suppose that the gauge fixing term is chosen to be

LGF = Ba∂µA
µ
a +

a

2
BaBa . (6)

Note that the new field Ba has no kinetic energy term; it is thus an auxiliary field. Show that
if one solves for Ba using the Lagrange field equations, one regains the usual gauge fixing term
given by eq. (3).

(f) Using the new gauge fixing term given in eq. (6), we now modify the BRST transfor-
mation law of η and define:

δ ηa = ǫBa ,

δ Ba = 0 .

Show that the full Lagrangian is still invariant under the BRST transformation. Furthermore,
verify that δ 2 = 0 when applied to all fields of the theory, independently of the field equations.


