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DUE: THURSDAY, MARCH 17, 2016

1. Consider the spontaneous breaking of a gauge group G down to U(1). The unbroken
generator Q = caT

a is some real linear combination of the generators of G.

(a) Prove that xb ≡ cb/gb is an (unnormalized) eigenvector of the vector boson squared-
mass matrix, M2

ab, with zero eigenvalue.

(b) Suppose that Aµ is the massless gauge field that corresponds to the generator Q. Show
that the covariant derivative can be expressed in the following form:

Dµ = ∂µ + ieQAµ + . . . , (1)

where we have omitted terms in eq. (1) corresponding to all the other gauge bosons and

e =

[

∑

a

(

ca
ga

)2
]

−1/2

. (2)

HINT: The vector boson mass matrix is diagonalized by an orthogonal transformationOM2OT

as shown in class. The rows of the matrixO are constructed from the orthonormal eigenvectors
of M2.

(c) Evaluate Q in the adjoint representation (that is, Q = caT
a, where the (T a)bc = −ifabc

are the generators of the gauge group in the adjoint representation). Show that Qbcxc = 0,
where xc is defined in part (a). What is the physical interpretation of this result?

(d) Prove that the commutator [Q,M2] = 0, where Q is the unbroken U(1) generator in
the adjoint representation and M2 is the gauge boson squared-mass matrix. Conclude that
one can always choose the eigenstates of the gauge boson squared-mass matrix to be states of
definite unbroken U(1)-charge.

2. In class, we examined in detail the structure of a spontaneously broken SU(2)×U(1)Y
gauge theory, in which the symmetry breaking was due to the vacuum expectation value of a
complex Y = 1, SU(2) doublet of scalar fields. In this problem, a different representation of
scalar fields will be employed.

(a) Consider an SU(2)×U(1)Y gauge theory with a Y = 0, SU(2) triplet of real scalar
fields, Φ. The scalar potential is given by

V (Φ) = −1

2
m2ΦTΦ + λ(ΦTΦ)2 ,

where m2 and λ are real parameters. After spontaneous symmetry breaking, the electrically
neutral (Q = 0) member of the scalar triplet acquires a vacuum expectation value (where
Q = T3 + Y/2). Identify the subgroup that remains unbroken. Compute the vector boson



masses and the physical Higgs scalar masses in this model. Deduce the Feynman rules for the
three-point interactions among the Higgs and vector bosons.

HINT: Since the triplet of scalar fields corresponds to the adjoint representation of SU(2),
the corresponding SU(2) generators that act on the triplet of scalar fields can be chosen to be
(T a)bc = −iǫabc. The hypercharge operator annihilates the Y = 0 fields. Define La = igaT

a,
and follow the methods outlined in class.

(b) Consider an SU(2)×U(1)Y gauge theory with a Y = 2, SU(2) triplet of complex scalar
fields (again denoted by Φ). The scalar potential is given by

V (Φ) = −m2Φ†Φ + λ1(Φ
†Φ)2 − λ2

∑

a

(Φ†T aΦ)(Φ†T aΦ) ,

where m2 > 0 and λ1 > λ2 > 0. The T a are hermitian generators in the 3-dimensional
representation of SU(2) in a basis where T 3 is diagonal.1

Again, assume that the electrically neutral (Q = 0) member of the scalar triplet acquires
a vacuum expectation value (where Q = T3 + Y/2). After symmetry breaking, identify the
subgroup that remains unbroken. Compute the vector boson masses and the physical Higgs
scalar masses in this model.

HINT: In order to use the methods of part (a), one can rewrite the complex scalar fields in
terms of their real and imaginary parts. In this case, the real antisymmetric generators iT a

are 6× 6 matrices,

iT a =

(

−Im T a −Re T a

Re T a −Im T a

)

,

which have been expressed in terms of the 3× 3 hermitian generators T a.

(c) If both doublet and triplet Higgs fields exist in nature, what does this exercise imply
about the parameters of the Higgs Lagrangian?

3. In the Standard Model, the Higgs boson H couples to two gluons via a one-loop triangle
diagram containing top quarks in the loop.2

(a) Compute the amplitude for the decay of the Higgs boson to two gluons (H → gg), as a
function of mt, mH , GF (the Fermi constant) and αs ≡ g2s/(4π), using perturbation theory in
the one loop approximation. Simplify your answer by invoking the kinematics of the problem,
i.e. the conservation of four-momentum and the on-shell conditions for the external particles.

HINT: Two diagrams contribute to H → gg, which differ due to the interchange of the two
outgoing gluons. In obtaining the decay amplitude, you should make use of the unitary gauge
Feynman rules of the Standard Model.

(b) Denote the amplitude for H → gg by Mµν , where µ and ν are the Lorentz indices of
the two gluons. Gauge invariance implies that kµ

1
Mµν = kν

2
Mµν = 0, where k1 and k2 are

1The T a are given by the standard spin-1 matrices defined in the |j m〉 basis in quantum mechanics.
2In this problem, you should work in the approximation where all quarks are massless, with the exception

of the top quark, in which case only triangle diagrams with top quarks in the loop contribute.



the respective gluon momenta.3 Check that your amplitude obtained in part (a) respect this
requirement.

(c) Work out all integrals explicitly and evaluate the imaginary part of Mµν . For what
range of mt/mH is the amplitude purely real? Check your result for the imaginary part by
using Cutkosky’s rules [cf. problem 2 of Problem Set 2].

HINT: You may find the following integral useful:

∫

1

0

dy

y
log

[

1− 4Ay(1− y)
]

= −2(sin−1
√
A)2

for 0 ≤ A ≤ 1. For values of A outside this region, you may analytically continue the above
result. The imaginary part of this integral is easily computed once the iǫ factor is restored in
the argument of the logarithm.

(d) Evaluate Mµν in the limit of mt → ∞.

(e) The dominant decay of the Higgs boson is into a pair of bottom quarks, H → bb̄.
Evaluate the ratio of decay rates:

Γ(H → gg)

Γ(H → bb̄)

in the limit where mt ≫ mH . In obtaining the decay rates into bb̄ and gg respectively, you
should sum the squared-amplitude over the final state spins and colors, and then evaluate the
results numerically.

3In this computation, no three gluon vertex appears since the gluon does not couple directly to the Higgs

boson. Consequently, the Ward identities of QED also apply here.


