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1. Show that for complex scalar fields Φ and a positive definite hermitian operator M ,
∫

DΦ∗DΦexp

{

i

∫

d4x d4y
[

Φ∗(x)M(x, y)Φ(y)
]

+ i

∫

d4x
[

J∗(x)Φ(x) + Φ∗(x)J(x)
]

}

= N
1

detM
exp

{

−i

∫

d4x d4y J∗(x)M−1(x, y)J(y)

}

, (1)

for some infinite constant N .

We shall prove the analog of eq. (1) for the integration over n complex variables,
∫

dz∗1dz1dz
∗

2dz2 · · · dz
∗

ndzn exp
{

i(z∗i Mijzj+J∗

i zi+z∗i Ji)
}

= N
1

detM
exp

{

−iJ∗

i (M
−1)ijJj

}

, (2)

where Mij are the matrix elements of an hermitian n× n matrix M . We can write

zi = xi + iyi , M = MR + iMI , J = JR + iJI ,

where MT

R = MR and MT

I = −MI . Then,

z∗iMijzj+J∗

i zi+z∗i Ji = xi(MR)ijxj +yi(MR)ijyj+yi(MI)ijxj−xi(MI)ijyj+2
[

(JR)ixi+(JI)iyi
]

.
(3)

We can introduce real variables vk, where k = 1, 2, . . . , 2n, such that

vk =

{

xk , for k = 1, 2, . . . , n ,

yk−n , for k = n+ 1, n+ 2, . . . 2n .

Eq. (3) can then be rewritten as

z∗iMijzj + J∗

i zi + z∗i Ji =
1
2
vkMkℓvℓ + Jkvk ,

where M is the real symmetric 2n× 2n matrix,

M ≡





2MR −2MI

2MI 2MR



 ,

written in block form, and

Jk =

{

2(JR)k , for k = 1, 2, . . . , n ,

2(JI)k−n , for k = n + 1, n+ 2, . . . 2n .

In light of the Jacobian,
∂(z∗, z)

∂(x, y)
= det

(

1 −i
1 i

)

= 2i ,
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we have1

dz∗ dz =
∂(z∗, z)

∂(x, y)
dxdy = 2i dxdy , (4)

and the left hand side of eq. (2) can be written as

(2i)n
∫

∞

−∞

dv1

∫

∞

−∞

dv2 · · ·

∫

∞

−∞

dv2n exp
{

i(1
2
vkMkℓvℓ + Jkvk)

}

.

To evaluate this integral, we first consider

I(M,J ) ≡

∫

∞

−∞

dv1

∫

∞

−∞

dv2 · · ·

∫

∞

−∞

dv2n exp
{

−1
2
vkMkℓvℓ + Jkvk

}

. (5)

Introduce the following change of variables,

vk = (M−1)kmJm + wk .

Inserting this into eq. (5) and noting that the corresponding Jacobian is 1, we obtain

I(M,J ) = exp
{

1
2
Jk(M

−1)kmJm

}

∫

∞

−∞

dw1

∫

∞

−∞

dw2 · · ·

∫

∞

−∞

dw2n exp
{

−1
2
wkMkℓwℓ

}

=
(2π)n

(detM)1/2
exp

{

1
2
Jk(M

−1)kmJm

}

, (6)

after using eq. (14.7) of Schwartz to evaluate the 2n-dimensional gaussian integral.
Using the arguments in class to justify the substitutions, M → −iM and J → iJ , and

noting that det(−iM) = (−i)2n detM since M is a 2n× 2n matrix,

I(−iM, iJ ) =
(2πi)n

(detM)1/2
exp

{

−1
2
iJk(M

−1)kmJm

}

.

We need to evaluate detM and M−1. First, we note that

M =





2MR −2MI

2MI 2MR



 =





1 1

i1 −i1









MR − iMI O

O MR + iMI









1 −i1

1 i1



, (7)

where 1 is the n × n identity matrix and O is the n × n zero matrix. It is straightforward to
evaluate

det





1 1

i1 −i1



 = (−2i)n , det





1 −i1

1 i1



 = (2i)n .

Hence, recalling that M = MR + iMI , it follows that detM = 22n| detM |2.

1Employing the formalism of differential forms, dz∗ ∧ dz = (dx − idy) ∧ (dx + idy) = 2i dx ∧ dy, which
is equivalent to eq. (4). In deriving this result, we have used the well known properties of differential forms,
dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy = −dy ∧ dx. For an elementary introduction to differential forms, see e.g.,
James J. Callahan, Advanced Calculus: A Geometric View (Springer Science, New York, 2010) Chapter 10.3.
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Next, to compute M−1, we again use eq. (7) to obtain

M−1 =
1

4





1 1

i1 −i1









M∗−1 O

O M−1









1 −i1

1 i1



.

Thus, using matrix notation,

Jk(M
−1)kmJm = (JR JI)





1 1

i1 −i1









M∗−1 O

O M−1









1 −i1

1 i1









JR

JI





= (J J∗)





M∗−1 O

O M−1









J∗

J





= JM∗−1J∗ + J∗M−1J

= 2J∗M−1J ,

where we have used the fact that M is hermitian (which implies that M−1 is hermitian) to
conclude that JM−1J∗ ≡ J∗

i (M
−1)ijJj = J∗

i (M
∗−1)jiJj = Jj(M

∗−1)jiJ
∗

i ≡ JM∗−1J∗. Hence,

I(−iM, iJ ) =
(πi)n

detM
exp

{

−iJ∗

i (M
−1)ijJj

}

.

Note that since M is positive definite, detM is positive and we can dispense with the absolute
value signs.

We conclude that
∫

dz∗1dz1dz
∗

2dz2 · · · dz
∗

ndzn exp
{

i(z∗iMijzj + J∗

i zi + z∗i Ji)
}

= (2i)nI(−iM, iJ ) =
(−2π)n

detM
exp

{

−iJ∗

i (M
−1)ijJj

}

. (8)

That is, we have confirmed eq. (2), with N = (−2π)n. In the limit of n → ∞, the constant N
is infinite. The generalization to eq. (1) is now straightforward.

2. (a) Derive the result:

∫

d4z
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
= −δ 4(x− y) ,

and interpret diagrammatically. Here, W [J ] is the generating functional for the connected
Green functions and Γ[Φ] is the generating functional for the one particle irreducible (1PI)
Green functions.
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We begin with the definition of the effective action,

Γ[Φ] = W [J ]−

∫

d4x J(x)Φ(x) , (9)

where Φ(x) is the classical field [which was denoted in class by Φc(x)]. It follows that

δW [J ]

δJ(x)
= Φ(x) ,

δΓ[Φ]

δΦ(x)
= −J(x) . (10)

Taking a second functional derivative yields,

δ2W [J ]

δJ(x)δJ(y)
=

δΦ(x)

δJ(y)
,

δ2Γ[Φ]

δΦ(x)δΦ(y)
= −

δJ(x)

δΦ(y)
.

Hence, it follows that

∫

d4z
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
= −

∫

d4z
δΦ(x)

δJ(z)

δJ(z)

δΦ(y)
= −

δΦ(x)

δΦ(y)
= −δ4(x− y) , (11)

where we have used the chain rule for functional derivatives at the second step above.
Recall that the two-point 1PI Green function, Γ(2)(x1, x2), and the two-point connected

Green function G
(2)
c (x1, x2), are defined as

Γ(2)(x1, x2) =

(

δ2Γ[Φ]

δΦ(x)δΦ(y)

)

∣

∣

∣

∣

∣

Φ=0

, G(2)(x1, x2) = −i

(

δ2W [J ]

δJ(x)δJ(y)

)

∣

∣

∣

∣

∣

J=0

,

We shall assume that the quantum field φ(x) has no vacuum expectation value,2 in which case

G(1)
c (x) ≡ 〈Ω|φ(x)|Ω〉 =

δW [J ]

δJ(x)

∣

∣

∣

∣

J=0

= Φ(x)
∣

∣

J=0
= 0 . (12)

That is, setting J = 0 implies that Φ = 0 and vice versa.
Using the above results, eq. (11) implies that

∫

d4z Γ(2)(x, z)G(2)
c (z, y) = iδ4(x− z) , (13)

In momentum space, eq. (13) yields

Γ(2)(p,−p)G(2)
c (p,−p) = i .

Since G
(2)
c (p,−p) is the momentum space propagator, it follows that iΓ(2)(p,−p) is the negative

of the inverse propagator in momentum space.

2If 〈Ω|φ(x)|Ω〉 = v 6= 0, then one can redefine the quantum field by redefining φ → φ+ v.
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(b) By taking one further functional derivative, show that Γ generates the amputated con-
nected three-point function.

We shall take a functional derivative of eq. (11). On the right hand side of eq. (11), we have

δ

δJ(w)
δ4(x− y) = 0 ,

since δ4(x − y) is the analog of the Kronecker delta, δij , for an infinite dimensional function
space. On the left hand side of eq. (11),

δ

δJ(w)

[

δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)

]

=
δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
+

δ2W [J ]

δJ(x)δJ(z)

δ

δJ(w)

δ2Γ[Φ]

δΦ(z)δΦ(y)
.

In the second term on the right hand side above, we use the chain rule,

δ

δJ(w)
=

∫

d4v
δφ(v)

δJ(w)

δ

δφ(v)
=

∫

d4v
δ2W [J ]

δJ(w)δJ(v)

δ

δφ(v)
,

after using the definition of the classical field φ(v) given in eq. (10). Hence, eq. (11) yields

∫

d4z
δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
+

∫

d4z d4v
δ2W [J ]

δJ(x)δJ(z)

δ2W [J ]

δJ(w)δJ(v)

δ3Γ[Φ]

δΦ(v)δΦ(z)δΦ(y)
= 0 .

(14)
We now multiply eq. (14) by

δ2W [J ]

δJ(y)δJ(u)
,

and integrate over d4y. Using the result of eq. (11), we obtain

∫

d4z d4y
δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)

δ2W [J ]

δJ(y)δJ(u)

= −

∫

d4z
δ3W [J ]

δJ(w)δJ(x)δJ(z)
δ4(z − u)

= −
δ3W [J ]

δJ(w)δJ(x)δJ(u)
.

Applying this result to eq. (14) yields

δ3W [J ]

δJ(w)δJ(x)δJ(u)
=

∫

d4v d4y d4z
δ3Γ[Φ]

δΦ(v)δΦ(z)δΦ(y)

δ2W [J ]

δJ(x)δJ(z)

δ2W [J ]

δJ(w)δJ(v)

δ2W [J ]

δJ(y)δJ(u)
.

(15)
Recall the definition of the connected n-point Green function,

G(n)
c (x1, x2, . . . , xn) = i1−n δnW [J ]

δJ(x1)δJ(x2) · · · δJ(xn)

∣

∣

∣

∣

J=0

, (16)
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and the n-point 1PI Green function,

Γ(n)(x1, x2, . . . , xn) =
δnΓ[φ]

δφ(x1)δφ(x2) · · · δφ(xn)

∣

∣

∣

∣

φ=0

. (17)

In light of eq. (12), we can set J = φ = 0 in eq. (15). Using eqs. (16) and (17), it then follows
that

G(3)
c (w, x, u) = i

∫

d4v d4y d4z Γ(3)(v, z, y)G(2)
c (v, w)G(2)

c (z, x)G(2)
c (y, u) . (18)

To invert this equation, we make use of the inverse propagator, which satisfies
∫

d4z G(2)
c (x, z)G(2)−1

c (z, y) = δ4(x− y) .

Then, we can rewrite eq. (18) as

iΓ(3)(v, z, y) =

∫

d4w d4x d4uG(2)−1
c (w, v)G(2)−1

c (x, z)G(2)−1
c (u, y)G(3)

c (w, x, u) .

The effect of the factors of G
(2)−1
c is to remove the explicit propagators that appear on the ex-

ternal legs of the three-point Green function. That is, iΓ(3) is obtained from G
(3)
c by amputating

the full propagators on the three external legs.

3. Consider the quantum field theory of a real scalar field governed by the Lagrangian,

L = 1
2
∂µφ∂

µφ− 1
2
m2φ2 −

λ

4!
φ4 . (19)

(a) Evaluate the generating functional Z[J ] perturbatively, keeping all terms up to and
including terms of O(λ) as follows. First, show that Z[J ] can be written in the following form,

Z[J ] = N

[

1−
iλ

4!

∫

d4y

(

1

i

δ

δJ(y)

)4

+O(λ2)

]

exp

{

−
i

2

∫

d4x1 d
4x2 J(x1)∆F (x1 − x2)J(x2)

}

,

(20)
where N is the J-independent constant. Then, carry out the functional derivatives with respect
to J , keeping all terms up to and including terms of O(λ). Using the result just obtained
for Z[J ], obtain an expression for the generating functional for the connected Green functions,
W [J ], keeping all terms up to and including terms of O(λ).

The generating functional for the connected Green functions, W [J ], is determined by

Z[J ] = exp
{

iW [J ]
}

, (21)

where

Z[J ] =

∫

Dφ exp

{

i

∫

d4x

[

1
2
(∂µφ)

2 − 1
2
m2φ2 −

λ

4!
φ4 + Jφ

]}

∫

Dφ exp

{

i

∫

d4x

[

1
2
(∂µφ)

2 − 1
2
m2φ2 −

λ

4!
φ4

]} . (22)
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Expanding the numerator of eq. (22) to O(λ),
∫

Dφ exp

{

i

∫

d4x
[

1
2
(∂µφ)

2 − 1
2
m2φ2 + Jφ

]

}[

1− i

∫

d4y
λ

4!
φ4(y)

]

=

[

1−
iλ

4!

∫

d4y

(

1

i

δ

δJ(y)

)4
]

∫

Dφ exp

{

i

∫

d4x
[

1
2
(∂µφ)

2 − 1
2
m2φ2 + Jφ

]

}

,

since each i−1δ/δJ(x) operator brings down a factor of φ(x).
Next we use the result obtained in class,

Z0[J ] =

∫

Dφ exp

{

i

∫

d4x
[

1
2
(∂µφ)

2 − 1
2
m2φ2 + Jφ

]

}

∫

Dφ exp

{

i

∫

d4x
[

1
2
(∂µφ)

2 − 1
2
m2φ2

]

}

= exp

{

−
i

2

∫

d4x1 d
4x2 J(x1)∆F (x1 − x2)J(x2)

}

,

where i∆F is the free-field propagator. It then follows that

Z[J ] = N

[

1−
iλ

4!

∫

d4y

(

1

i

δ

δJ(y)

)4
]

exp

{

−
i

2

∫

d4x1 d
4x2 J(x1)∆F (x1 − x2)J(x2)

}

, (23)

where N is the J-independent constant,

N ≡

∫

Dφ exp

{

i

∫

d4x
[

1
2
(∂µφ)

2 − 1
2
m2φ2

]

}

∫

Dφ exp

{

i

∫

d4x

[

1
2
(∂µφ)

2 − 1
2
m2φ2 −

λ

4!
φ4

]} . (24)

There is no need to evaluate N using eq. (24), since it can be determined at the end of our
computation using Z[0] = 1.

To evaluate eq. (23), we first compute

1

i

δ

δJ(y)
exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

= −

∫

d4x∆F (y − x)J(x) exp

{

−
i

2

∫

d4x1 d
4x2 J(x1)∆F (x1 − x2)J(x2)

}

,

where we have used the fact that ∆F (x−y) = ∆F (y−x). Taking a second functional derivative
yields
(

1

i

δ

δJ(y)

)2

exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{

i∆F (0) +

[
∫

d4x∆F (y − x)J(x)

]2
}

exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

.
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Taking a third functional derivative yields

(

1

i

δ

δJ(y)

)3

exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{

−3i∆F (0)

∫

d4x∆F (y − x)J(x)−

[
∫

d4x∆F (y − x)J(x)

]3
}

× exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

.

Finally, taking a fourth functional derivative yields

(

1

i

δ

δJ(y)

)4

exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{

−3[∆F (0)]
2 + 6i∆F (0)

[
∫

d4x∆F (y − x)J(x)

]2

+

[
∫

d4x∆F (y − x)J(x)

]4
}

× exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

.

The end result is

Z[J ] = N

{

1 +
iλ

8

[
∫

d4y[∆F (0)]
2 − 2i∆F (0)

∫

d4y d4x1 d
4x2 ∆F (y − x1)∆F (y − x2)J(x1)J(x2)

−
1

3

∫

d4y d4x1 d
4x2 d

4x3 d
4x4∆F (y − x1) · · ·∆F (y − x4)J(x1) · · ·J(x4)

]}

× exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

.

Using Z[0] = 1, it follows that to O(λ),

N = 1−
iλ

8

∫

d4y[∆F (0)]
2 .

Thus,

Z[J ] =

{

1−
iλ

4!

[

6i∆F (0)

∫

d4y d4x1 d
4x2∆F (y − x1)∆F (y − x2)J(x1)J(x2)

+

∫

d4y d4x1 d
4x2 d

4x3 d
4x4∆F (y − x1) · · ·∆F (y − x4)J(x1) · · ·J(x4)

]}

× exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

}

.
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Since we are only keeping terms of O(λ), we can also rewrite Z[J ] in the following form,

Z[J ] = exp

{

−
i

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2)

−
iλ

4!

[

6i∆F (0)

∫

d4y d4x1 d
4x2∆F (y − x1)∆F (y − x2)J(x1)J(x2)

+

∫

d4y d4x1 d
4x2 d

4x3 d
4x4 ∆F (y − x1) · · ·∆F (y − x4)J(x1) · · ·J(x4)

]}

.

Hence, using eq. (21) it follows that

W [J ] = −
1

2

∫

d4x1 d
4x2 J(x)∆F (x1 − x2)J(x2) (25)

−
iλ

4
∆F (0)

∫

d4y d4x1 d
4x2 ∆F (y − x1)∆F (y − x2)J(x1)J(x2)

−
λ

4!

∫

d4y d4x1 d
4x2 d

4x3 d
4x4∆F (y − x1) · · ·∆F (y − x4)J(x1) · · ·J(x4) .

(b) Using the result of part (a) for W [J ], compute the four-point connected Green function.
Check that the same result is obtained by making use of Coleman’s lemma derived in class to
obtain theO(λ) contribution to G(4)(x1, x2, x3, x4). By taking the appropriate Fourier transform,
verify that you obtain the momentum space Feynman rule for the four-point scalar interaction
obtained in class.

Using eqs. (16) and (25), it immediately follows that

G(4)
c (x1, x2, x3, x4) = −iλ

∫

d4y∆F (y − x1)∆F (y − x2)∆F (y − x3)∆F (y − x4) . (26)

In particular, note that the coefficient of 1/4! is canceled due to the fact that there are 4! ways
to take the functional derivatives in eq. (16).

We can also obtain eq. (26) directly by making use of Coleman’s lemma, which states that

F

(

−i
δ

δJ

)

G[J ] = G

(

−i
δ

δφ

){

F [φ] exp

[

i

∫

d4z φ(z)J(z)

]}

∣

∣

∣

∣

∣

φ=0

. (27)

Choose F [φ] = φ(x1)φ(x2)φ(x3)φ(x4) and G[J ] = W [J ]. Then, eq. (27) yields

δ4W [J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
= W

(

−i
δ

δφ

){

φ(y1)φ(y2)φ(y3)φ(y4) exp

[

i

∫

d4z φ(z)J(z)

]}

∣

∣

∣

∣

∣

φ=0

.

(28)
Using the expression for W [J ] given in eq. (25), it is clear that the only way to get a nonzero
result on the right hand side of eq. (28) is from a term that involves at least four functional
derivatives with respect to the field φ. Thus, we make use of eq. (25) to write
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W

(

−i
δ

δφ

)

= −
λ

4!

∫

d4y d4x1 d
4x2 d

4x3 d
4x4 ∆F (y−x1) · · ·∆F (y−x4)

δ

δφ(x1)

δ

δφ(x2)

δ

δφ(x3)

δ

δφ(x4)
,

where terms involving fewer than four functional derivatives have been omitted. Inserting this
result into eq. (28) and carrying out the functional derivatives, we note that if any of the
derivatives act on the exponential term in eq. (28), then there will be a scalar field factor left
over, which when set to zero will yield a zero result. Consequently, the four functional derivatives
must act on the four scalar fields inside the pair of braces. There are 4! ways that the functional
derivatives can act, so the end result for the right hand side of eq. (28) after setting φ = 0 is,

−
λ

4!

∫

d4y d4x1 d
4x2 d

4x3 d
4x4∆F (y − x1) · · ·∆F (y − x4)

δ

δφ(x1)

δ

δφ(x2)

δ

δφ(x3)

δ

δφ(x4)

×

{

φ(y1)φ(y2)φ(y3)φ(y4) exp

[

i

∫

d4z φ(z)J(z)

]}

∣

∣

∣

∣

∣

φ=0

.

= −
λ

4!

∫

d4y d4x1 d
4x2 d

4x3 d
4x4∆F (y − x1) · · ·∆F (y − x4)

×
∑

P

δ4(x1 − yi1)δ
4(x2 − yi2)δ

4(x3 − yi3)δ
4(x4 − yi4)

= −λ

∫

d4y∆F (y − y1)∆F (y − y2)∆F (y − y3)∆F (y − y4) , (29)

where
∑

P refers to the sum over {i1, i2, i3, i4} corresponding to the 4! distinct permutations of
{1, 2, 3, 4}. Thus, eq. (28) yields

δ4W [J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
= −λ

∫

d4y∆F (y − y1)∆F (y − y2)∆F (y − y3)∆F (y − y4) . (30)

Since the right hand side of eq. (30) is independent of J , we are free to set J = 0 on the left
hand side. Then in light of eq. (16), we conclude that

Gc(y1, y2, y3, y4) = −iλ

∫

d4y∆F (y − y1)∆F (y − y2)∆F (y − y3)∆F (y − y4) .

which reproduces eq. (26) as advertised.
The connected Green function in momentum space is obtained by taking the following Fourier

transform,

G(4)
c (p1, p2, p3, p4)(2π)

4δ4(p1 + p2 + p3 + p4)

=

∫

d4x1 d
4x2 d

4x3 d
4x4 e

i(p1x1+···+p4x4)G(4)
c (x1, x2, x3, x4)

= −iλ

∫

d4y d4x1 d
4x2 d

4x3 d
4x4 e

i(p1x1+···+p4x4)∆F (y − x1) · · ·∆F (y − x4)

= −iλ

∫

d4y d4x1 d
4x2 d

4x3 d
4x4 e

iy(p1+···+p4)eip1(x1−y)∆F (y − x1) · · · e
ip4(x4−y)∆F (y − x4) .
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We can now perform the integration over x1, . . . , x4 using the expression for the free-field prop-
agator in momentum space,

1

p2 −m2 + iǫ
=

∫

d4x e−ipx∆F (x) ,

where m is the mass of the scalar field. Employing the integral representation of the momentum
conserving delta function,

∫

d4y eiy(p1+···+p4) = (2π)4δ4(p1 + p2 + p3 + p4) ,

the end result is

G(4)
c (p1, p2, p3, p4) = −iλ

i

p21 −m2 + iǫ
· · ·

i

p24 −m2 + iǫ
.

If we now amputate the four external propagators, we arrive at the Feynman rule for the four-
point scalar interaction shown below.

−iλ

An alternative method of employing Coleman’s lemma

Coleman’s lemma allows us to establish directly the perturbation series for the n-point Green
function. In class, we showed that if we rewrite eq. (19) as

L = 1
2
∂µφ∂

µφ− 1
2
m2φ2 + LI ,

where

LI = −
λ

4!
φ4 , (31)

then the n-point Green function is given by3

G(n)(x1, x2, . . . , xn) = exp

{

1
2
i

∫

d4y d4z∆F (y − z)
δ

δφ(y)

δ

δφ(z)

}

×φ(x1)φ(x2) · · ·φ(xn) exp

(

i

∫

d4xLI

) ∣

∣

∣

∣

φ=0

. (32)

3Strictly speaking, the expression given by eq. (32) includes disconnected vacuum bubble graphs, since it was
obtained from an expression for Z[J ] where the normalization condition Z[0] = 1 was not imposed. However,
such terms are easily identified and removed in any explicit computation.
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Expanding the last exponential in eq. (32) generates the perturbative expansion for the n-point
Green function. Keeping terms up to and including terms of O(λ),

G(n)(x1, x2, . . . , xn) = G
(n)
0 (x1, x2, . . . , xn)

+ exp

{

1
2
i

∫

d4y d4z∆F (y − z)
δ

δφ(y)

δ

δφ(z)

}[

φ(x1)φ(x2) · · ·φ(xn) i

∫

d4xLI

] ∣

∣

∣

∣

φ=0

,

(33)

where G
(n)
0 (x1, x2, . . . , xn) is the n-point Green function of the free scalar field theory. It is

straightforward to verify that eq. (32) yields the free scalar field theory result obtained in class,

G
(4)
0 (x1, x2, x3, x4) = ∆F (x1−x2)∆F (x3−x4)+∆F (x1−x3)∆F (x2−x4)+ ∆F (x1−x4)∆F (x2−x3) ,

which consists entirely of disconnected pieces, and thus does not contribute to the connected
4-point Green function G

(4)
c (x1, x2, x3, x4). Using eq. (31), it is convenient to write

∫

d4xLI(x) = −
λ

4!

∫

d4w1 d
4w2 d

4w3 d
4w4φ(w1)φ(w2)φ(w3)φ(w4)δ

4(w1−w2)δ
4(w1−w3)δ

4(w1−w4) .

Then, the O(λ) term in G(4)(x1, x2, . . . , xn), denoted below by G
(4)
1 (x1, x2, . . . , xn), arises entirely

from the fourth term of the expansion of the exponential in eq. (33), which involves eight
functional derivatives,

G
(4)
1 (x1, x2, x3, x4) = −

iλ

4!

1

4!

(

i

2

)4 ∫

d4w1 · · · d
4w4 d

4y1 · · · d
4y4 d

4z1 · · · d
4z4

×δ4(w1 − w2)δ
4(w1 − w3)δ

4(w1 − w4)

×∆F (y1 − z1)∆F (y2 − z2)∆F (y3 − z3)∆F (y4 − z4)

×
δ

δφ(y1)
· · ·

δ

δφ(y4)

δ

δφ(z1)
· · ·

δ

δφ(z4)

{

φ(x1)φ(x2)

×φ(x3)φ(x4)φ(w1)φ(w2)φ(w3)φ(w4)

}

. (34)

Note that the expression obtained after evaluating the eight functional derivatives contain
no factors of the scalar field. Indeed, when we set φ = 0 in eq. (33), the O(λ) appearing in
eq. (34) is the only term that survives. Evaluating the eight functional derivatives in eq. (34)
using Leibniz’s rule leads to a sum of products of eight delta-functions,

G
(4)
1 (x1, x2, x3, x4) = −

iλ

4!

1

4!

(

i

2

)4 ∫

d4w1 · · · d
4w4 d

4y1 · · · d
4y4 d

4z1 · · ·d
4z4

×δ4(w1 − w2)δ
4(w1 − w3)δ

4(w1 − w4)

×∆F (y1 − z1)∆F (y2 − z2)∆F (y3 − z3)∆F (y4 − z4)

×
[

δ4(x1 − y1) · · · δ
4(x4 − y4) δ

4(w1 − z1) · · · δ
4(w4 − z4) + . . .

]

, (35)

where we do not explicitly exhibit all possible 8! permutations of {x1, x2, x3, x4, w1, w2, w3, w4}
in the sum of products of delta-functions.
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Integrating over y1, . . . , y4 and z1, . . . z4 in eq. (35) using the eight delta functions yields,

G
(4)
1 (x1, x2, x3, x4) = −

iλ

4!

1

4!

(

i

2

)4 ∫

d4w1 · · · d
4w4 δ

4(w1 − w2)δ
4(w1 − w3)δ

4(w1 − w4)

×
[

∆F (x1 − w1)∆F (x2 − w2)∆F (x3 − w3)∆F (x4 − w4) + . . .
]

. (36)

where the terms not shown above are obtained by allowing for all possible permutations of
{x1, x2, x3, x4, w1, w2, w3, w4}. The possible contributions to G

(4)
1 (x1, x2, x3, x4) fall into two

classes. In one class of terms, at least one propagator factor of the form ∆F (wi − wj) will
appear in the product of four propagator factors for some i, j = 1, 2, 3, 4. When the integration
over w2, w3 and w4 is carried out, a factor of ∆F (0) will appear due to the presence of the delta
functions in eq. (36). Such a term corresponds to a disconnected piece of the 4-point Green
function. Diagrammatically, a term of this type is represented by, e.g.,4

x1 x2

x3 x4

In the second class of terms, all propagator factors are of the form ∆F (xi − wj). When the

integration over w2, w3 and w4 is carried out, the resulting contributions to G
(4)
1 (x1, x2, x3, x4)

are diagrammatically represented by the connected diagram,

x1

x3 x2

x4

It is straightforward to count the number of terms appearing in eq. (36) of this type. Starting
from the product of propagator factors shown in eq. (36), we add all possible terms related to it by
the 4! possible permutations of {x1, x2, x3, x4}, the 4! possible permutations of {w1, w2, w3, w4},
and an additional 24 = 16 terms (for each term previously identified) that are obtained by
interchanging xi ↔ wi for i = 1, 2, 3 and 4. Since ∆F (xi − wi) = ∆F (wi − xi), it follows that
there are 24 × (4!)2 identical terms after integrating over w2, w3 and w4. Renaming the variable
w1 = x, the end result is the connected 4-point Green function at O(λ),

G(4)
c (x1, x2, x3, x4) = −iλ

∫

d4x∆F (x− x1)∆F (x− x2)∆F (x− x3)∆F (x− x4) ,

which again reproduces the result of eq. (26).

4Contributions arising from terms with two propagator factors of the form ∆F (wi−wj), when integrated over
w2, w3 and w4, yield two factors of ∆F (0). These contributions are represented by disconnected diagrams that
include a two-loop vacuum bubbles containing an interaction vertex, which can be discarded (cf. footnote 3).
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(c) Evaluate the classical field φc(x) and the generating functional for the 1PI Green func-
tions, Γ[φc], perturbatively, keeping all terms up to and including terms of O(λ). Then, repeat
part (b) for the four-point 1PI Green function.

The effective action is given by eq. (9), where the classical field is defined by eq. (10). Using
eq. (25), it follows that

Φ(x) = −

∫

d4x1∆F (x− x1)J(x1)−
1
2
iλ∆F (0)

∫

d4y d4x1∆F (y − x)∆F (y − x1)J(x1)

−
λ

6

∫

d4y d4x1 d
4x2 d

4x3 ∆F (y − x)∆F (y − x1)∆F (y − x2)∆F (y − x3)J(x1)J(x2)J(x3) .

(37)

We must invert this equation and solve for J(x). This can be done using an iterative process.
Operate on eq. (37) with the operator �x +m2 − iǫ. Using

(�x +m2 − iǫ)∆F (x− y) = −δ4(x− y) , (38)

it follows that

(�x +m2 − iǫ)Φ(x) = J(x) + 1
2
iλ∆F (0)

∫

d4x1 ∆F (x− x1)J(x1)

+
λ

6

∫

d4x1 d
4x2 d

4x3∆F (x− x1)∆F (x− x2)∆F (x− x3)J(x1)J(x2)J(x3) .

(39)

At O(λ0), we have J(x) = (�x + m2 − iǫ)Φ(x). Thus, in the O(λ) term in eq. (39), we can
replace J(xk) with (�xk

+ m2 − iǫ)Φ(xk), for k = 1, 2, 3. We can then move the operators
(�xk

+m2 − iǫ) so that they operate on the ∆F (x−xk) by two successive integrations by parts.
Using eq. (38), we produce three delta functions, after which the integrals over x1, x2 and x3

are trivially done. The end result is

(�x +m2 − iǫ)Φ(x) = J(x)− 1
2
iλ∆F (0)Φ(x)−

1
6
λ
[

Φ(x)
]3
.

Hence, to O(λ),

J(x) = (�x +m2 − iǫ)Φ(x) + 1
2
iλ∆F (0)Φ(x) +

1
6
λ
[

Φ(x)
]3
. (40)

We can use the same procedure to rewrite W [J ] in terms of the classical field Φ(x). We
simply insert eq. (40) into eq. (25), and keep only terms up to O(λ). This yields

W [J ] = 1
2

∫

d4xΦ(x)

{

(�x +m2)Φ(x) + 1
2
iλ∆F (0)Φ(x) +

1
6
[Φ(x)]3

}

−1
4
iλ∆F (0)

∫

d4x
[

Φ(x)
]3

−
λ

4!

∫

d4x
[

Φ(x)
]4
,
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after taking the ǫ → 0 limit. Using eq. (9) to obtain the effective action, we note that

∫

d4x J(x)Φ(x) =

∫

d4xΦ(x)

{

(�x +m2)Φ(x) + 1
2
iλ∆F (0)Φ(x) +

1
6
λ[Φ(x)]3

}

,

where we have again used eq. (40) and have kept only terms up to O(λ). Hence, we end up with

Γ[Φ] = −1
2

∫

d4xΦ(x)(�x +m2)Φ(x)− 1
4
iλ∆F (0)

∫

d4x
[

Φ(x)
]3

−
λ

4!

∫

d4x
[

Φ(x)
]4
. (41)

Finally, we make use of eq. (17) to compute the 1PI four-point function,

Γ(4)(x1, . . . , x4) =
δnΓ[Φ]

δΦ(x1) · · · δΦ(x4)

∣

∣

∣

∣

Φ=0

.

Using eq. (41),

Γ(4)(x1, . . . , x4) = −λ

∫

d4x δ4(x− x1)δ
4(x− x2)δ

4(x− x3)δ
4(x− x4) .

In momentum space,

Γ(4)(p1, p2, p3, p4)(2π)
4δ4(p1 + p2 + p3 + p4)

=

∫

d4x1 d
4x2 d

4x3 d
4x4 e

i(p1x1+···+p4x4)Γ(4)(x1, x2, x3, x4)

= −λ

∫

d4x eix(p1+···+p4)

= −(2π)4λ δ4(p1 + p2 + p3 + p4) .

That is,
Γ(4)(p1, p2, p3, p4) = −λ .

The Feynman rule for the four-point scalar interaction corresponds to iΓ(4)(p1, p2, p3, p4).

4. Consider a scalar field theory defined by the Lagrangian density

L = 1
2
∂µφ(x)∂µφ(x)− V (φ(x)) , (42)

and the corresponding equation of motion,

�φ(x) + V ′(φ) = 0 ,

where � ≡ ∂µ∂µ and V ′ ≡ dV/dφ.

(a) Starting from eq. (14.122) on p. 276 of Schwartz, derive the equation of motion for the
Green function 〈Ω|T

{

φ(x)φ(y)
}

|Ω〉,

�x〈Ω|T
{

φ(x)φ(y)
}

|Ω〉 = −〈Ω|T
{

V ′(φ(x))φ(y)
}

|Ω〉 − iδ 4(x− y) . (43)
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Consider a scalar field theory where the Lagrangian density is given by,

L [φ] = −1
2
φ(x)�xφ(x) + Lint[φ] .

In the case of Lint = −V (φ), this Lagrangian density differs from eq. (42) by a total divergence,
which can be neglected. That is, the corresponding actions,

S[φ] =

∫

d4xL [φ] , (44)

are the same. Then, eq. (14.122) on p. 276 of Schwartz states that5

−i�x
δZ[J ]

δJ(x)
=

{

L
′

int

[

−i
δ

δJ(x)

]

+ J(x)

}

Z[J ] . (45)

Take a functional derivative of eq. (45) with respect to J(y),

−i�x
δ2Z[J ]

δJ(x)δJ(y)
=

{

L
′

int

[

−i
δ

δJ(x)

]

+ J(x)

}

δZ[J ]

δJ(y)
+ δ4(x− y)Z[J ] , (46)

after using the product rule for differentiating and

δJ(x)

δJ(y)
= δ4(x− y) . (47)

We now make use of the definition of the generating functional,

Z[J ] =

∫

Dφ exp

{

iS[φ] + i

∫

d4x J(x)φ(x)

}

∫

Dφ exp
{

iS[φ]
}

, (48)

where the action S[φ] is defined in eq. (44). It follows that

(

1

i

)2
δ2Z[J ]

δJ(x)δJ(y)
=

∫

Dφ φ(x)φ(y) exp

{

iS[φ] + i

∫

d4x J(x)φ(x)

}

∫

Dφ exp
{

iS[φ]
}

, (49)

and

L
′

int

[

−i
δ

δJ(y)

]

Z[J ] =

∫

DφL
′

int

(

φ(x)
)

exp

{

iS[φ] + i

∫

d4x J(x)φ(x)

}

∫

Dφ exp
{

iS[φ]
}

.

Taking another functional derivative with respect to J(y) then yields,

L
′

int

[

−i
δ

δJ(y)

]

1

i

δZ[J ]

δJ(x)
=

∫

DφL
′

int

(

φ(x)
)

φ(y) exp

{

iS[φ] + i

∫

d4x J(x)φ(x)

}

∫

Dφ exp
{

iS[φ]
}

. (50)

5More accurately, one should employ functional derivatives in eq. (45) rather than partial derivatives.
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Employing eqs. (49) and (50) in eq. (46) and then setting J = 0 at the end of the computation,
we end up with

�x

∫

Dφ φ(x)φ(y) exp
{

iS[φ]
}

∫

Dφ exp
{

iS[φ]
}

=

∫

DφL
′

int

(

φ(x)
)

φ(y) exp
{

iS[φ]
}

∫

Dφ exp
{

iS[φ]
}

− iδ4(x− y) , (51)

where we have used Z[0] = 1.
The n-point Green functions are given by

〈Ω|T
[

φ(x1)φ(x2) · · ·φ(xn)
]

|Ω〉 = i−n δnZ[J ]

δJ(x1)δJ(x2) · · ·J(xn)

∣

∣

∣

∣

J=0

.

Using eq. (48), it follows that

〈Ω|T
[

φ(x1)φ(x2) · · ·φ(xn)
]

|Ω〉 =

∫

Dφ φ(x1)φ(x2) · · ·φ(xn) exp
{

iS[φ]
}

∫

Dφ exp
{

iS[φ]
}

. (52)

Since Lint = −V (φ), we see that for a potential that is polynomial in φ (or more generally, by
expanding V (φ) as a functional Taylor series in φ), eq. (51) is equivalent to,

�x〈Ω|T
{

φ(x)φ(y)
}

|Ω〉 = −〈Ω|T
{

V ′(φ(x))φ(y)
}

|Ω〉 − iδ 4(x− y) .

That is, eq. (43) is proven.

(b) Derive eq. (43) by the following technique. Start from the path integral definition of the
generating functional,

Z[J ] = N

∫

Dφ exp

{

i

∫

d4x
[

L + J(x)φ(x)
]

}

, (53)

where N is chosen such that Z[0] = 1. Perform a change of variables in the path integral,
φ(x) → φ(x)+ ε(x), where ε(x) is an arbitrary infinitesimal function of x. Noting that a change
of variables6 does not change the value of of Z[J ], show that to first order in ε(x),

∫

Dφ exp

{

i

∫

d4x
[

L + J(x)φ(x)
]

}
∫

d4x ε(x)
[

−�Φ − V ′(φ) + J(x)
]

= 0 . (54)

Since ε(x) is arbitrary, we may choose ε(x) = ǫ δ4(x − y), where ǫ is an infinitesimal constant.
With this choice for ε(x), show that by taking the functional derivative of the eq. (54) with
respect to J(x) and then setting J = 0, one can derive eq. (43).

6Just as in the case of ordinary integration, a change of functional integration variables does not change the
value of the functional integral.
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The Jacobian corresponding to the change of field variables, φ(x) → φ(x) + ε(x) is unity.
Applying this change of variables to eq. (53) yields

Z[J ] = N

∫

Dφ exp

{

i

∫

d4x
[

L + J(x)φ(x)
]

}

exp

{

i

∫

d4x
[

∂µφ∂µǫ− ǫ(x)V ′(φ) + ǫ(x)J(x)
]

}

,

where we have used V (φ+ ǫ) = V (φ)+ ǫV ′(φ)+O(ǫ2), and we have dropped all terms of O(ǫ2).
We can further expand the second exponential above, keeping only those terms up to of O(ǫ).
Subtracting the resulting expression from eq. (53) yields

iN

∫

Dφ exp

{

i

∫

d4x
[

L + J(x)φ(x)
]

} ∫

d4x ǫ(x)
[

−�xΦ− V ′(φ) + J(x)
]

= 0 ,

after an integration by parts. Since this expression is valid for any infinitesimal function ǫ(x),
we may choose ǫ(x) = ǫ δ4(x−y). We can then carry out the second integration above to obtain,

N

∫

Dφ exp

{

i

∫

d4x
[

L + J(x)φ(x)
]

}

[

−�yΦ− V ′(φ) + J(y)
]

= 0 . (55)

We now take the functional derivative of eq. (55) with respect to J(x) and employ eq. (47).
Setting J = 0 at the end of the calculation, we end up with

−iN

∫

Dφ
[

φ(x)�yφ(y)+φ(x)V ′
(

φ(y)
)]

exp

{

i

∫

d4xL

}

+N

∫

Dφ δ4(x−y) exp

{

i

∫

d4xL

}

= 0 .

We can pull �y outside of the path integral (since it does not by itself depend on the field
configurations that one is integrating over). Thus,

�y N

∫

Dφ φ(x)φ(y) exp

{

i

∫

d4xL

}

= −N

∫

Dφ φ(x)V ′
(

φ(y)
)

exp

{

i

∫

d4xL

}

−iδ4(x− y)N

∫

Dφ exp

{

i

∫

d4xL

}

. (56)

The constant N is determined from the condition Z[0] = 1. That is,

N−1 =

∫

Dφ exp

{

i

∫

d4xL

}

.

Thus, eq. (56) can be rewritten as

�y

∫

Dφ φ(x)φ(y) exp

{

i

∫

d4xL

}

∫

Dφ exp

{

i

∫

d4xL

} = −

∫

Dφ φ(x)V ′
(

φ(y)
)

exp

{

i

∫

d4xL

}

∫

Dφ exp

{

i

∫

d4xL

} − iδ4(x− y) .

(57)
In light of eq. (52), we see that eq. (57) is equivalent to

� y〈Ω|T
{

φ(x)φ(y)
}

|Ω〉 = −〈Ω|T
{

φ(x)V ′(φ(y))
}

|Ω〉 − iδ 4(x− y) . (58)

We now redefine the the variables x and y by interchanging x ↔ y in eq. (58). Because the
ordering of the fields that appear inside a time ordered product is irrelevant (since it is the time
ordering prescription that dictates the order of the fields in a time-ordered product), and using
the fact that δ4(x− y) is an even function of its argument, we obtain eq. (43) as expected.

18


