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1. Consider a field theory of a real pseudoscalar field coupled to a fermion field. The interaction
Lagrangian is:

Lint = −iλ ψ(x) γ5 ψ(x)φ(x) ,
where λ is a real coupling constant (called the Yukawa coupling). Using functional techniques,
derive the Feynman rule for the interaction vertex of this theory.

In class, we derived expressions for the generating functional for a free scalar field theory

Z0[J ] = exp

{

−1
2
i

∫

d4x d4y J(x)∆F (x− y)J(y)

}

,

and the generating functional for a free Dirac fermion field theory,

Z0[ζ, ζ ] = exp

{

−i
∫

d4x d4y ζ(x)SF (x− y)ζ(y)

}

, (1)

where ∆F and SF are the free-field propagators of the scalar and Dirac fermion fields, re-
spectively. J is a commuting source and ζ and ζ are anticommuting sources. For a free field
theory consisting of both a scalar and a Dirac fermion field, the generating functionals given
above can be combined,

Z0[J, ζ, ζ ] = N0

∫

DφDψDψ exp

{

i

[

S0 +

∫

d4x
[

J(x)Φ(x) + ζ(x)ψ(x) + ψ(x)ζ(x)
]

]}

= exp

{

−1
2
i

∫

d4x d4y J(x)∆F (x− y)J(y)

}

exp

{

−i
∫

d4z d4w ζ(z)SF (z − w)ζ(w)

}

,

(2)

where S0 is the action of the free field theory, and N0 is a normalization constant chosen such
that Z[0, 0, 0] = 1.

For the interacting theory,

Z[J, ζ, ζ ] = N
∫

DφDψDψ exp

{

i

[

S0 + Sint +

∫

d4x
[

J(x)Φ(x) + ζ(x)ψ(x) + ψ(x)ζ(x)
]

]}

,

(3)
where

Sint ≡
∫

d4xLint ,

and N is a normalization constant chosen such that Z[0, 0, 0] = 1. We can rewrite eq. (3) as

Z[J, ζ, ζ ] = N exp

{

iSint

(

1

i

δ

δJ(x)
, i

δ

δζ(x)
,
1

i

δ

δζ(x)

)}

Z0[J, ζ, ζ] . (4)
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Note the appearance of iδ/δζ in eq. (4). The reason for the factor of i instead of 1/i is due to
the anticommutative properties of ζ and ζ. In particular, note that

δ

δζ(x)

∫

d4y
[

ζ(y)ψ(y) + ψ(y)ζ(y)
]

= −ψ(x) , (5)

δ

δζ(x)

∫

d4y
[

ζ(y)ψ(y) + ψ(y)ζ(y)
]

= ψ(x) , (6)

after using the delta functions obtained via

δζ(y)

δζ(x)
= δ4(y − x) ,

δζ(y)

δζ(x)
= δ4(y − x) ,

to integrate over y. The minus sign on the right hand side of eq. (5), which arises when we
move δ/δζ(x) past ψ(y), is properly compensated for by employing iδ/δζ(x) in eq. (4).

It is convenient to write the interaction Lagrangian with the spinor indices made explicit,

Lint = −iλ ψα(x) (γ5)αβ ψβ(x)φ(x) , (7)

where repeated indices are summed over. Then, to first order in perturbation theory,

exp

{

iSint

(

1

i

δ

δJ
, i

δ

δζα
,
1

i

δ

δζβ

)

}

= 1 + λ(γ5)αβ

∫

d4x
1

i

δ

δJ(x)
i

δ

δζα(x)

1

i

δ

δζβ(x)
.

It follows that to O(λ) ,

Z[J, ζ, ζ ] =

{

1 + λ(γ5)αβ

∫

d4x
1

i

δ

δJ(x)
i

δ

δζα(x)

1

i

δ

δζβ(x)

}

Z0[J, ζ, ζ ] .

The three-point Green function is given by1

G(3)(y, z, w)ρσ = 〈Ω|T
[

φ(y)ψρ(z)ψσ(w)
]

|Ω〉 = 1

i

δ

δJ(y)

1

i

δ

δζρ(z)
i

δ

δζσ(w)
Z[J, ζ, ζ ]

∣

∣

∣

∣

J=ζ=ζ=0

.

(8)
There is noO(λ0) contribution to G(3), since a factor of J arises when one takes a functional

derivative with respect to J . Thus, the end result vanishes when taking J = 0. Thus, at O(λ),

G(3)(y, z, w)ρσ = −λ(γ5)αβ
δ

δJ(y)

δ

δζρ(z)

δ

δζσ(w)

{

∫

d4x
δ

δJ(x)

δ

δζα(x)

δ

δζβ(x)
Z0[J, ζ, ζ ]

}

∣

∣

∣

∣

J=ζ=ζ=0

.

1The order of the functional derivatives in eq. (8) is determined by the order of the fermion fields inside
the time-ordered product [cf. eqs. (5) and (6)]. Different orderings can yield a different overall sign since the
fermion fields anticommute.
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Using eqs. (1) and (2),

G(3)(y, z, w)ρσ = λ(γ5)αβ
δ

δζρ(z)

δ

δζσ(w)

{

∫

d4x i∆F (y − x)
δ

δζα(x)

δ

δζβ(x)
Z0[ζ, ζ ]

}

∣

∣

∣

∣

ζ=ζ=0

= λ(γ5)αβ
δ

δζρ(z)

δ

δζσ(w)

{
∫

d4x i∆F (y − x)

[

−iSF (0)βαZ0[ζ, ζ ]

−
∫

d4x1 d
4x2 SF (x− x2)βτζτ (x2)SF (x1 − x)γαζγ(x1)Z0[ζ, ζ ]

]}
∣

∣

∣

∣

ζ=ζ=0

= λ(γ5)αβ

∫

d4x i∆F (y − x)
[

iSF (x− w)βσ iSF (z − x)ρα − iSF (0)βαiSF (z − w)ρσ
]

,

(9)

after using the delta functions obtained via

δζτ (x2)

δζσ(w)
= δτσ δ

4(x2 − w) ,
δζγ(x1)

δζρ(z)
= δγρ δ

4(x1 − z) ,

to integrate over x1 and x2, and noting that Z[0, 0] = 1. Diagrammatically, the two terms
represented by eq. (9) are:

andy

ρ, z

σ, w

x
α

β
y

ρ, z

σ, w

x
α

β

The second diagram above is disconnected. Thus, the connected three-point Green function
is given by

G(3)
c (y, z, w)ρσ = λ(γ5)αβ

∫

d4x i∆F (y − x) iSF (x− w)βσ iSF (z − x)ρα .

We can easily read off the Feynman rules in coordinate space:

y x i∆F (x− y)

y, β x, α iSF (x− y)αβ

α

β
λ(γ5)αβ

∫

d4x
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Note that the order of the spinor indices corresponds to traversing the Feynman diagram in
the direction opposite to the direction of the fermion line arrows.

The Feynman rules in momentum space are obtained following the same procedure given
in problem 3(b). We define

G(3)
c (p1, p2, p3)ρσ(2π)

4δ4(p1 + p2 + p3) =

∫

d4x1 d
4x2 d

4x3 e
i(p1x1+p2x2+p3x3)G(4)

c (x1, x2, x3)

= λ(γ5)αβ

∫

d4x d4x1 d
4x2 d

4x3 e
i(p1x1+p2x2+p3x3) i∆F (x1 − x) iSF (x− x3)βσ iSF (x2 − x)ρα

= −iλ
∫

d4x d4x1 d
4x2 d

4x3 e
ix(p1+p2+p3)eip1(x1−x)∆F (x− x1)

×eip2(x2−x)iSF (x2 − x)ρα e
ip3(x3−x)iSF (x− x3)βσ .

We can now perform the integration over x1, x2 and x3 using the expression for the free-field
propagators in momentum space,

1

p2 −m2
s + iǫ

=

∫

d4x e−ipx∆F (x) ,
(/p+mf )αβ
p2 −m2

f + iǫ
=

∫

d4x e−ipxSF (x)αβ ,

where ms and mf are the masses of the pseudoscalar and fermion, respectively. Finally, using
the integral representation of the momentum conserving delta function, the end result is

G(3)
c (p1, p2, p3)ρσ =

i

p21 −m2
s + iǫ

i(/p2 +mf)ρα
p22 −m2

f + iǫ

i(/p3 +mf )βσ
p23 −m2

f + iǫ
λ(γ5)αβ .

If we now amputate the three external propagators, we arrive at the momentum space
Feynman rule for the pseudoscalar–fermion Yukawa interaction:

α

β
λ(γ5)αβ

The momentum-space Feynman rule is simply obtained by removing the fields from iLint

given in eq. (7). As previously noted, the order of the spinor indices corresponds to traversing
the Feynman diagram in the direction opposite to the direction of the fermion line arrows.

(b) Calculate the O(λ2) contribution of the pseudoscalar to the anomalous magnetic mo-
ment of the electron.

In class, we showed that the anomalous magnetic moment of the electron of mass m was
given by

1
2
(g − 2) = F2(0) ,
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where the form factor F2(q
2) is given by

F2(q
2) = Tr

[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)Γµ(p, p′)
]

, (10)

and

g1 =
m2

q2(4m2 − q2)
, g2 =

−2m2(q2 + 2m2)

q2(4m2 − q2)2
. (11)

Here, p and p′ are the four-momenta of the initial and final electrons (which are taken to be
on-shell; i.e., p2 = p′ 2 = m2), q ≡ p′−p and Γµ(p, p′) is the eeγ vertex due to an external static
electromagnetic field (represented by the cross in the diagram below). In this problem, we
are asked for the contribution at one-loop to the anomalous magnetic moment of the electron
due to a pseudoscalar interaction of the electron with a scalar boson of mass M . That is, we
must evaluate the contribution of the following diagram

p′

p

p′ − k

p− k

k
q

×

Using the Feynman rule for the pseudoscalar-fermion vertex obtained in part (a),

Γµ(p, p′) =

∫

d4k

(2π)4
i

k2 −M2 + iǫ
(gγ5)

i(/p ′ − /k +m)

(p′ − k)2 −m2 + iǫ
γµ

i(/p− /k +m)

(p− k)2 −m2 + iǫ
(gγ5) .

That is,

u(p′)Γµ(p, p′)u(p) = −ig2
∫

d4k

(2π)4
u(p′)γ5(/p

′ − /k +m)γµ(/p− /k +m)γ5u(p)

(k2 −M2 + iǫ)[(p′ − k)2 −m2 + iǫ][(p− k)2 −m2 + iǫ]
.

(12)
We can simplify the numerator of eq. (12) by using the fact the the electrons are on-shell,
which means that the Dirac equation is satisfied,

(/p−m)u(p) = 0 , u(p′)(/p ′ −m) = 0 . (13)

Hence, using the anticommutation relation, {γµ , γ5} = 0, the numerator of eq. (12) can be
rewritten as

u(p′)γ5(/p
′ − /k +m)γµ(/p− /k +m)γ5u(p)

= u(p′)γ5
[

(/p ′ − /k)γµ(/p− /k) +m[γµ(/p− /k) + (/p ′ − /k)γµ +m2γµ
]

γ5u(p)

= u(p′)
[

(−(/p ′ − /k)γµ(/p− /k) +m[γµ(/p− /k) + (/p ′ − /k)γµ −m2γµ
]

u(p)

= u(p′)
[

−m2γµ +m(γµ/k + /kγµ)− /kγµ/k + 2m2γµ −m(γµ/k + /kγµ)−m2γµ
]

u(p)

= −u(p′)/kγµ/ku(p) = −u(p′)/k(2kµ − /kγµ)u(p)

= (k2gµν − 2kµkν)u(p′)γνu(p) , (14)
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where we used the Dirac equation [cf. eq. (13)] to eliminate factors of /p and /p ′, and we have
employed the anticommutator of two gamma matrices, {γµ , γν} = 2gµν at the penultimate
step above. Hence, it follows that

Γµ(p, p′) = −ig2γν
∫

d4k

(2π)4
k2gµν − 2kµkν

(k2 −M2 + iǫ)[(p′ − k)2 −m2 + iǫ][(p− k)2 −m2 + iǫ]
. (15)

We now insert eq. (15) into eq. (10). That is, we must compute,

(k2gµν − 2kµkν) Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

.

Consider first the gµν piece.

gµν Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

= g1Tr
[

(/p+m)γµ(/p
′ +m)γµ

]

+
g2
2m

(p+ p′)µTr
[

(/p+m)(/p ′ +m)γµ
]

= g1Tr
[

(/p+m)(−2/p ′ + 4m)
]

+
g2
2m

(p+ p′)µTr
[

m(/p + /p ′)γµ
]

= 8g1(2m
2 − p·p′) + 2g2(p+ p′)2

= 4(q2 + 2m2)g1 + 2(4m2 − q2)g2 = 0 ,

after using eq. (11). In the penultimate step above, we used the fact that

2p·p′ = p2 + p ′ 2 − (p′ − p)2 = 2m2 − q2 ,

in light of the fact that the mass-shell conditions are p2 = p ′ 2 = m2.
Next, consider the kµkν piece.

kµkν Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

= g1Tr
[

(/p+m)/k(/p ′ +m)/k
]

+
g2
2m

k ·(p+ p′) Tr
[

(/p+m)(/p ′ +m)/k
]

= 4g1
[

2k ·p k ·p′ + k2(m2 − p·p′)
]

+ 2g2
[

k ·(p+ p′)
]2
. (16)

Using the following identities (which are a consequence of q = p′ − p and p2 = p′ 2 = m2)

2k ·p k ·p′ = 1
2

[

k ·(p+ p′)
]2 − 1

2
(k ·q)2 , m2 − p·p′ = 1

2
q2 ,

we can rewrite eq. (16) as

kµkν Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

= 2
[

k ·(p+p′)
]2
(g1+g2)+2

[

k2q2−(k ·q)2
]

g1 .

(17)
Note that eq. (11) yields

g1 + g2 =
−3m2

(4m2 − q2)2
.
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Hence,

kµkν Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

=
−6m2

[

k ·(p+ p′)
]2

(4m2 − q2)2
+
2m2

[

k2q2 − (k ·q)2
]

q2(4m2 − q2)
.

(18)
Thus, we conclude that

(k2gµν − 2kµkν) Tr
[

(/p+m)
(

g1γµ +
g2
2m

(p+ p′)µ

)

(/p ′ +m)γν

]

.

=
4m2

4m2 − q2

[

(k ·q)2
q2

− k2
]

+
12m2

(4m2 − q2)2
[

k ·(p+ p′)
]2
. (19)

The form factor F2(q
2) is now determined [cf. eq. (10)],

F2(q
2) =

−4ig2m2

4m2 − q2

∫

d4k

(2π)4
1

(k2 −M2 + iǫ)[(p′ − k)2 −m2 + iǫ][(p− k)2 −m2 + iǫ]

×
{

(k ·q)2
q2

− k2 +
3
[

k ·(p+ p′)
]2

4m2 − q2

}

. (20)

We now take the limit of q → 0, In this limit, p→ p′, and we obtain

F2(0) = −ig2
∫

d4k

(2π)4
1

(k2 −M2 + iǫ)[(p− k)2 −m2 + iǫ]2

{

(k ·q)2
q2

− k2 +
3(k ·p)2
m2

}

.

Note that in the limit of q → 0, (k ·q)2/q2 approaches a finite quantity, which we will determine
shortly.

Let us define the integral,

Iµν =

∫

d4k

(2π)4
kµkν

(k2 −M2 + iǫ)[(p− k)2 −m2 + iǫ]2
,

so that

F2(0) = −ig2
(

qµqν

q2
− gµν +

3pµpν

m2

)

Iµν . (21)

Using Feynman’s trick, we write

1

A2B
=

∫ 1

0

2x dx

[xA + (1− x)B]3
,

where A ≡ (p− k)2 −m2 + iǫ and B2 = k2 −M2 + iǫ. Then,

Ax+ (1− x)B + x[(p− k)2 −m2 + iǫ] + (1− x)(k2 −M2 + iǫ) = k2 − 2xk ·p− (1− x)M2 + iǫ ,

after using p2 = m2. Thus,

Iµν =

∫ 1

0

2x dx

∫

d4k

(2π)4
kµkν

[

k2 − 2xk ·p− (1− x)M2 + iǫ
]3 .
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If we now change the integration variable k → k + px, the denominator above becomes

(k + px)2 − 2xp·(k + px)− (1− x)M2 + iǫ = k2 −m2x2 −M2(1− x) + iǫ .

Hence,

Iµν =

∫ 1

0

2x dx

∫

d4k

(2π)4
kµkν + x(kµpν + kνpµ) + x2pµpν
[

k2 −m2x2 −M2(1− x) + iǫ
]3 . (22)

The linear term in kµ integrates to zero by symmetry. Moreover, symmetry dictates that

∫

d4k kµkνF (k
2) = 1

4
gµν

∫

d4k k2 F (k2) ,

which means that we can replace kµkν → 1
4
gµνk

2 in eq. (22). That is,

Iµν =

∫ 1

0

2x dx

∫

d4k

(2π)4

1
4
gµνk

2 + x2pµpν
[

k2 −m2x2 −M2(1− x) + iǫ
]3 .

Thus to evaluate eq. (21), we need to evaluate the q → 0 limit of

(

qµqν

q2
− gµν +

3pµpν

m2

)

Iµν .

Then, using

(

qµqν

q2
− gµν +

3pµpν

m2

)

(

1
4
gµνk

2 + x2pµpν
)

= x2
[

2m2 − (p·q)2
q2

]

,

after noting that p2 = m2, and taking the q → 0 limit, we end up with

lim
q→0

(

qµqν

q2
− gµν +

3pµpν

m2

)

(

1
4
gµνk

2 + x2pµpν
)

= 2m2x2 ,

after noting that p·q = p·(p′ − p) = p·p′ −m2 = −1
2
q2. Hence, it follows that

lim
q→0

(

qµqν

q2
− gµν +

3pµpν

m2

)

Iµν = 4m2

∫ 1

0

x3 dx

∫

d4k

(2π)4
1

[

k2 −m2x2 −M2(1− x) + iǫ
]3 .

In class, I showed that

∫

d4k

(2π)4
1

(

k2 −M2 + iǫ
)3 =

−i
32π2M2

,

after dropping the iǫ term in the denominator. Identifying M2 ≡ m2x2 +M2(1− x), we end
up with

F2(0) = −g
2m2

8π2

∫ 1

0

x3 dx

m2x2 +M2(1− x)
. (23)
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The integral in eq. (23) can be performed analytically. The end result is

F2(0) = − g2

16π2

{

1 + 2z + z(1− z) ln z + (z2 − 3z)

(

1− 4

z

)−1/2

ln

(

1 +
(

1− 4
z

)1/2

1−
(

1− 4
z

)1/2

)}

,

where z ≡M2/m2. Note that since the squared-masses are non-negative, the denominator in
eq. (23) is manifestly positive (which provides the justification for dropping the iǫ term), and
we conclude that F2(0) is real for 0 ≤ z <∞. To exhibit this explicitly, we first note that an
equivalent expression for F2(0) which is valud for z ≥ 4 is,

F2(0) = − g2

16π2

{

1 + 2z + z(1− z) ln z + 2(z2 − 3z)

(

1− 4

z

)−1/2

tanh−1

(

1− 4

z

)1/2
}

,

In the case of 0 ≤ z ≤ 4, the above result can be rewritten as

F2(0) = − g2

16π2

{

1 + 2z + z(1− z) ln z + 2(z2 − 3z)

(

4

z
− 1

)−1/2

tan−1

(

4

z
− 1

)1/2
}

,

The limit as z → 4 from either below or above is smooth. Finally, note that for z = 0, one
obtains F2(0) = −g2/(16π2). Compared to the Schwinger result for QED, F2(0) = e2/(8π2),
the contribution of the massless pseudoscalar exchange (for g = e) is opposite in sign and
smaller in magnitude by a factor of 2.

2. Consider the function of a real parameter z

F (z) ≡
∫ 1

0

dx ln
[

1− zx(1 − x)− iǫ
]

, (24)

which appeared in the computation of the one-loop correction to the four-point function in
scalar field theory.

(a) Evaluate Im F (z). For what values of z does Im F vanish?

We shall denote the argument of the logarithm in eq. (24) by the function,

f(x) ≡ zx2 − zx+ 1 ≥ 0 .

First, we note that f(0) = f(1) = 1. Next, we compute the first and second derivatives,

f ′(x) = z(2x− 1) , f ′′(x) = 2z ,

Thus, f(x) has an extremum at x = 1
2
. Since f ′′(1

2
) = 2z, it follows that x = 1

2
is a maximum

if z < 0 and x = 1
2
is a minimum if z > 0. At z = 0, we have f(x) = 1 for all x. Moreover,

for z > 0, the minimum value of f(x) is equal to f(1
2
) = 1 − 1

4
z. Thus, for values of z ≤ 0,

we have f(x) ≥ 1 in the region 0 ≤ x ≤ 1 and for values of 0 < z ≤ 4, the minimum value of
f(x) is non-negative (for all x).
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Observe that ImF (z) = 0 if f(z) ≥ 0 for 0 ≤ x ≤ 1, which implies that ImF (z) = 0 if
z ≤ 4. When z > 4, the minimum value of f(x) at x = 1

2
is negative. Since f(0) = f(1) = 1,

it follows that f(x) < 0 for values of x− < x < x+, where x± are the roots of f(x),

x± = 1
2

[

1±
√

1− 4

z

]

. (25)

Thus,

ImF (z) = Θ(z − 4)

∫ x+

x
−

dx Im ln
[

1− zx(1 − x)− iǫ
]

, (26)

where we have explicitly included the step function to enforce the condition that ImF (z) = 0
if z ≤ 4. To evaluate the imaginary part of the logarithm, we employ the principal value
of the complex-valued logarithm, with the branch cut taken along the negative real axis. In
particular, assuming that y is a non-zero real number and ǫ is a positive infinitesimal,

ln(y − iǫ) = ln |y| − iπΘ(−y) .

It follows that Im ln(y − iǫ) = −πΘ(−y) . Employing this result in eq. (26),

ImF (z) = −Θ(z − 4)π

∫ x+

x
−

dx = −Θ(z − 4)π
(

x+ − x−
)

= −Θ(z − 4)π

√

1− 4

z
, (27)

after using the explicit form for x± given in eq. (25).

(b) Consider the 1PI 4-point Green function, Γ(4), in a field theory of a real scalar field with
mass m and an interaction Lagrangian density given by LI = −λφ4/4!. Using the Feynman
rules for this theory, write down an integral expression for the full O(λ2) contribution to Γ(4).
From the integral expression, evaluate Im Γ(4) up to order λ2 by making use of the cutting

rules given in Section 24.1.2 [pp. 456–459] of Schwartz.

The Feynman rules for the scalar propagator and the 4-point scalar interaction are

−iλ

p
i

p2 −m2 + iǫ

The Feynman rules are used to compute iΓ(4), where Γ(4) is the 1PI 4-point Green function. At
tree level, iΓ(4) = −iλ. The one-loop contributions to iΓ(4) are obtained by using the Feynman
rules to evaluate the one-loop diagrams that are exhibited at the top of the following page.
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p1

p2

p3

p4

q

q − p1 − p2

p1 p3

p2 p4

p1 p4

p2 p3

s-channel t-channel u-channel

Thus, employing the Feynman rules (and recalling the symmetry factor of 1
2
for each of

the diagrams above), it follows that including all terms up to O(λ2),

iΓ(4) = −iλ+1
2
(−iλ)2

∫

d4q

(2π)4

{

i

q2 −m2 + iǫ

i

(q − p1 − p2)2 −m2 + iǫ
+(p2 → p3)+(p2 → p4)

}

,

where the second and third terms above in the integrand are given by the first term with the
momentum substitutions indicated. That is, the three terms exhibited in iΓ(4) correspond to
the s-channel, t-channel and u-channel diagrams, respectively. Thus,

Γ(4) = −λ− 1
2
iλ2
∫

d4q

(2π)4

{

1

q2 −m2 + iǫ

1

(q − p1 − p2)2 −m2 + iǫ
+ (p2 → p3) + (p2 → p4)

}

.

We shall focus first on the s-channel diagram. We expect that the singularity structure in
the complex s plane to have a branch point at the threshold for the 2 → 2 scattering process
at threshold, s = 4m2, and a branch cut extending to ∞ along the positive real axis.2

By definition, the discontinuity of Γ(4)(s) across the branch cut is

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s− iǫ) ,

where ǫ is a positive infinitesimal. The cutting rules state that Disc Γ(4)(s) is obtained by
cutting the Feynman diagram

p1

p2

p3

p4

q

p1 + p2 − q

and replacing the “cut” propagators by:

1

q2 −m2 + iǫ
−→ −2πiδ(q2 −m2)Θ(q0) .

2Note that s = (p1 + p2)
2 = 2(m2 + p1 ·p2) = 2(m2 + E1E2 − ~p1 ·~p2). At threshold, ~p1 = ~p2 = 0 and

E1 = E2 = m, which implies that s = 4m2 at threshold.
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The discontinuity Disc Γ(4)(s) is related to ImΓ(4)(s) as follows. First, we observe that the
reflection principle of complex analysis implies that3

Γ(4)(s− iǫ) = Γ(4)(s+ iǫ)∗ . (28)

It then follows that

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s+ iǫ)∗ = 2i ImΓ(4)(s) ,

where we have defined
Γ(4)(s) ≡ lim

ǫ→0
Γ(4)(s + iǫ) .

Applying the cutting rules to the s-channel one-loop diagram (shown above),

2i ImΓ(4)(s) = −1
2
iλ2(−2πi)2

∫

d4q

(2π)4
δ(q2−m2)Θ(q0)δ

(

(q−p1−p2)2−m2
)

Θ(p10+p20− q0) .
(29)

It should be noted that the form of the Θ-function corresponds to placing a cut propagator
line on mass shell. To evaluate the integral in eq. (29), note that

∫

d4q δ(q2 −m2)Θ(q0) =

∫

d3q dq0 δ(q
2
0 − |~q|2 −m2)Θ(q0)

=

∫

d3q dq0
1

2
√

|~q|2 +m2

[

δ
(

q0 −
√

|~q|2 +m2 + δ
(

q0 +
√

|~q|2 +m2

]

Θ(q0)

=

∫

d3q

2
√

|~q|2 +m2
.

It follows that
∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

∣

∣

∣

∣

q0=
√

|~q|2+m2

,

which can be rewritten as
∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

s− 2q ·(p1 + p2)
)

Θ(p10 + p20 − q0)

∣

∣

∣

∣

q0=
√

|~q|2+m2

, (30)

after using s ≡ (p1 + p2)
2 and noting that q2 −m2 = 0 is equivalent to q0 =

√

|~q|2 +m2.

3See the Appendix to this solution set. In addition, a very nice discussion can be found in Paul Roman,
Introduction to Quantum Field Theory (John Wiley & Sons, Inc., New York, NY, 1969) pp. 440–441.
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The simplest way to evaluate the integral above is to work in the center-of-mass frame of
the system, where

p1 + p2 =
(√

s ; ~0
)

.

In this case,

2q ·(p1 + p2))

∣

∣

∣

∣

q0=
√

|~q|2+m2

= 2
√
s
√

|~q|2 +m2 ,

and eq. (30) reduces to

∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

s− 2
√
s
√

|~q|2 +m2
)

Θ
(

s−
√

|~q|2 +m2
)

. (31)

The delta function enforces
√
s = 2

√

|~q|2 +m2, which means that the argument of the Θ

function is positive so that Θ
(

s−
√

|~q|2 +m2
)

= 1. Hence,

∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4
√
s

∫

d3q δ
(

s− 2
√
s
√

|~q|2 +m2
)

. (32)

To evaluate the above integral, use spherical coordinates, d3q = |~q|2d|~q| dΩ = 4π|~q|2d|~q|, since
there is no dependence on the direction of ~q in the integrand above. It is convenient to change
the integration variable to E ≡

√

|~q|2 +m2, in which case |~q|d|~q| = EdE. It follows that

∫

d3q δ
(

s− 2
√
s
√

|~q|2 +m2
)

= 4π

∫ ∞

m

|~q|E dE δ
(

s− 2
√
sE
)

=
2π√
s

∫ ∞

m

E(E2 −m2)1/2δ
(

E − 1
2

√
s
)

dE

=
π
√
s

2

(

1− 4m2

s

)1/2

Θ
(√

s− 2m
)

.

Note that the Θ-function appears, since if
√
s < 2m, then the argument of the delta function

is never zero over the range of integration m ≤ E <∞, in which case the delta function must
be set to zero.

Inserting the above result into eq. (32), we end up with

∫

d4q

(2π)4
δ(q2−m2)Θ(q0)δ

(

(q−p1−p2)2−m2
)

Θ(p10+p20−q0) =
1

32π3

(

1− 4m2

s

)1/2

Θ
(√

s−2m
)

.

(33)
Note that the δ-function and Θ-function conditions are satisfied only when s ≥ 4m2, This is
true because the cut propagator lines are both on-shell, which means that to conserve both
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energy and three-momentum requires that s ≥ 4m2. Hence, we can replace Θ(
√
s−2m) above

with Θ(s− 4m2). In fact, our analysis in the center-of-mass frame implicitly assumed that s
was positive since

√
s = p10 + p20 is real. Thus, our analysis above does not apply to the case

of s < 0; in this latter case a second computation would be required. However, in practice
we do not have to perform this second computation since the physical argument based on the
mass-shell conditions imply that one cannot satisfy the δ-function and Θ-function conditions
if s < 0. Hence, we can rewrite eq. (33) as

∫

d4q

(2π)4
δ(q2−m2)Θ(q0)δ

(

(q−p1−p2)2−m2
)

Θ(p10+p20−q0) =
1

32π3

(

1− 4m2

s

)1/2

Θ
(

s−4m2
)

.

Inserting this expression into eq. (29) yields our final result,

ImΓ(4)(s) =
λ2

32π

(

1− 4m2

s

)1/2

Θ
(

s− 4m2
)

. (34)

So far, we have only examined the s-channel piece of the above expression. If we now
include the t-channel and u-channel diagrams, it is clear that the only change in our analysis
is to replace s with t and u, respectively. Thus,

ImΓ(4)(p1, p2, p3, p4) =
λ2

32π

[

(

1− 4m2

s

)1/2

Θ
(

s− 4m2
)

+

(

1− 4m2

t

)1/2

Θ
(

t− 4m2
)

+

(

1− 4m2

u

)1/2

Θ
(

u− 4m2
)

]

. (35)

The physical region of scattering corresponds to s ≥ 4m2, t < 0 and u < 0. Thus, the last two
terms on the right hand side of eq. (35) do not survive in the physical scattering amplitude,
in which case

ImΓ(4)(p1, p2, p3, p4) =
λ2

32π

√

1− 4m2

s
. (36)

(c) An explicit one-loop computation of Γ(4) yields

Γ(4)(p1, p2, p3, p4) = −λ− λ2

32π2

[

F
( s

m2

)

+ F

(

t

m2

)

+ F
( u

m2

)

+G(m2)

]

, (37)

where s ≡ (p1 + p2)
2, t ≡ (p1 − p3)

2, u ≡ (p1 − p4)
2 are Lorentz-invariant kinematic variables,

the function F is defined in part (a), and the function G is a real function.4 Using eq. (37)
and the results of part (a), compute Im Γ(4) and check that your calculation in part (b) is
correct.

4In fact, the function G is infinite, but this infinity can be removed by renormalization. Since we are only
interested here in ImΓ(4), we can safely ignore any details associated with the renormalization procedure.
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Using eq. (27) with z = s/m2 yields

ImF
( s

m2

)

= −θ(s− 4m2)π

√

1− 4m2

s
.

In eq. (37), only F (s/m2) has an imaginary part in the physical region corresponding to
s ≥ 4m2, t < 0 and u < 0. Taking the imaginary part of eq. (37) therefore yields

ImΓ(4)(p1, p2, p3, p4) = − λ2

32π2
ImF

( s

m2

)

=
λ2

32π

√

1− 4m2

s
.

Indeed, we have reproduced the result of the cutting rules [cf. eq. (36)].

3. The Lagrangian of QED is given by:

LQED = −1
4
FµνF

µν + ψ(i/∂ + e/A)ψ −mψψ − 1

2a
(∂µA

µ)2 . (38)

(a) Compute the tree-level photon propagator (in momentum space).

To compute the tree-level photon propagator, we focus on the the free field theory of
photons,

L = −1
4
FµνF

µν − 1

2a
(∂µA

µ)2 .

We can obtain the propagator from the generating functional,

Z[J ] = N
∫

DAµ exp

{

i

∫

d4x

[

−1
4
FµνF

µν − 1

2a
(∂µA

µ)2 + JµA
µ

]}

,

where Jµ are the sources corresponding to Aµ and N is chosen such that Z[0] = 1. It is
convenient to write

−1
4
FµνF

µν − 1

2a
(∂µA

µ)2 = −1
4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)− 1

2a
(∂µA

µ)2

= 1
2
Aµ

[

gµν�−
(

1− 1

a

)

∂µ∂ν

]

Aµ + total divergence ,

where � ≡ ∂µ∂
µ. The total divergence integrates to zero inside the exponential of the action

(assuming that the surface terms at infinity vanish) and hence can be dropped. Thus,

Z[J ] = N
∫

DAµ exp

{

i

∫

d4x 1
2
Aµ

[

gµν�−
(

1− 1

a

)

∂µ∂ν

]

Aµ + JµA
µ

}

.

This is equivalent to the path integral over four identical scalar fields. Thus, we can use the
known result for the generating functional of a scalar field theory to obtain

Z[J ] = exp

{

− i

2

∫

d4x d4y Jµ(x)

[

gµν�−
(

1− 1

a

)

∂µ∂ν

]−1

Jν(y)

}

.
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The photon propagator in coordinate space is

G(2)(x, y) = 〈Ω|T
[

Aµ(x)Aν(y)]|Ω〉 =
(

1

i

)2
δ2Z[J ]

δJµ(x)δJν(y)

∣

∣

∣

∣

Jµ=0

= i

[

gµν�−
(

1− 1

a

)

∂µ∂ν

]−1

δ4(x− y) . (39)

Note that the derivative operators in eq. (39) should be regarded as ∂µ = ∂/∂xµ and � ≡ �x.
To invert the operator above, we note that for arbitrary operators F and G,

[

F

(

gµν −
∂µ∂ν
�

)

+G

(

∂µ∂ν
�

)]−1

= F−1

(

gµν − ∂µ∂ν

�

)

+G−1

(

∂µ∂ν

�

)

.

This result is a consequence of
(

gµν −
∂µ∂ν
�

)(

gνα − ∂ν∂α

�

)

+

(

∂µ∂ν
�

)(

∂ν∂α

�

)

= gαµ ,

and
(

gµν −
∂µ∂ν
�

)(

∂ν∂α

�

)

= 0 .

Hence, it follows that

G(2)(x, y) = i

[

gµν�−
(

1− 1

a

)

∂µ∂ν

]−1

δ4(x− y)

= i

[

�

(

gµν −
∂µ∂ν
�

)

+
1

a
�

(

∂µ∂ν
�

)]−1

δ4(x− y)

= i

[

1

�

(

gµν − ∂µ∂ν

�

)

+
a

�

(

∂µ∂ν

�

)]

δ4(x− y) .

In momentum space,

G(2)(p, q)(2π)4δ4(p+ q) =

∫

d4x d4y ei(px+qy)G(2)(x, y)

= i

∫

d4x d4y ei(px+qy)

[

1

�

(

gµν − ∂µ∂ν

�

)

+
a

�

(

∂µ∂ν

�

)]

δ4(x− y)

= i

∫

d4x d4y δ4(x− y)

[

1

�

(

gµν − ∂µ∂ν

�

)

+
a

�

(

∂µ∂ν

�

)]

ei(px+qy)

= −i
∫

d4x d4y δ4(x− y)

[

1

p2

(

gµν − pµpν

p2

)

+
a

p2

(

pµpν

p2

)]

ei(px+qy)

= −i(2π)4δ4(p+ q)

[

1

p2

(

gµν − pµpν

p2

)

+
a

p2

(

pµpν

p2

)]

.
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Thus, the momentum space propagator is

G(2)(p,−p) = − i

p2

[

gµν − (1− a)
pµpν

p2

]

.

To be technically correct, we should write

G(2)(p,−p) = − i

p2 + iǫ

[

gµν − (1− a)
pµpν

p2

]

,

The justification for this is given in section 14.4 of Matt Schwartz’s textbook (see pp. 264–266).

(b) Show that this Lagrangian is not invariant under the infinitesimal gauge transforma-
tions,

δψ = ieΛ(x)ψ(x) , (40)

δAµ = ∂µΛ(x) , (41)

where Λ(x) is an arbitrary real function of x that vanishes (sufficiently fast) as |~x| → ∞.

Under the infinitesimal gauge transformations given in eqs. (40) and (41),

δFµν = δ(∂µAν − ∂νAµ) = ∂µδAν − ∂νδAµ = (∂µ∂ν − ∂ν∂µ)Λ = 0 ,

since the partial derivatives commute under the assumption that Λ(x) is a smooth function.
Likewise, since λ is a real function, we have

δ(ψψ) = δψψ + ψδψ = −ieΛψψ + ieΛψψ = 0 ,

δ(ψ/∂ψ) = −ieΛψ/∂ψ + ie(∂µΛ)ψγ
µψ + ieΛψ/∂ψ = ie(∂µΛ)ψγ

µψ ,

δ(ψ /Aψ) = −ieΛψ /Aψ + (∂µΛ)ψγ
µψ + ieΛψ /Aψ = (∂µΛ)ψγ

µψ .

Hence, it follows that

δ
(

ψ(i/∂ + e/A)ψ
)

= −e(∂µΛ)ψγµψ + e(∂µΛ)ψγ
µψ = 0 ,

as expected. Finally, working to first order in the field variations,5

δ(∂µA
µ)2 = 2(∂µA

µ)δ(∂µA
µ) = 2(∂µA

µ)∂µ(δA
µ) = 2(�Λ)∂µA

µ .

Thus, the variation of the QED Lagrangian given in eq. (38) is

δLQED = −1

a
(�Λ)(∂µA

µ) , (42)

which is non-vanishing.

5Alternatively, we can write

δ(∂µA
µ)2 = ∂µ(A

µ + ∂µΛ)∂ν(A
ν + ∂νΛ)− (∂µA

µ)2 = 2(�Λ)∂µA
µ

after dropping terms that are quadratic in Λ.
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(c) Consider the modified Lagrangian:

L = LQED + 1
2
∂µφ∂

µφ , (43)

where φ is a free scalar field. Show that the action is invariant under the generalized (in-
finitesimal) gauge transformation:

δψ = ieǫ φ(x)ψ(x) , (44)

δAµ = ǫ ∂µφ(x) , (45)

δφ = − ǫ

a
∂µA

µ , (46)

where ǫ is an infinitesimal parameter. This has a name: it is called the BRST-transformation.
The action is therefore said to be BRST-invariant.

The results of part (b) still apply where Λ(x) is replaced by ǫ φ(x). It then follows from
eq. (42) that

δLQED = − ǫ

a
(�φ)(∂µA

µ) .

Using eq. (46) and working to first order in the field variations,

δ(∂µφ∂
µφ) = ∂µ(δφ)∂

µφ+ ∂µφ∂
µ(δφ) = −2ǫ

a
(∂µ∂νA

ν)(∂µφ) .

Hence,

δL = − ǫ

a

[

(�φ)(∂µA
µ) + (∂µ∂νA

ν)(∂µφ)
]

= − ǫ

a
∂µ
[

(∂µφ)(∂νA
ν)
]

,

which we recognize as a total divergence. Hence, the variation of the action,

δS =

∫

d4x δL = 0 ,

under the usual assumption that the fields at infinity vanish so that the surface terms vanish.
Hence, the action is invariant under the BRST transformations.

4. Consider the Lagrangian for a non-abelian gauge theory, with gauge field Aa
µ and gauge

field strength tensor F a
µν ,

LYM = 1
4
F a
µνF

µνa ,

which is invariant under the gauge transformation:

δAa
µ(x) = ǫDab

µ ωb(x) , (47)

where ǫ is infinitesimal, Dµ is the covariant derivative, and ωb(x) is an arbitrary function of x.

(a) In order to be able to define a propagator for the gauge field, we must add a gauge-fixing
term:

LGF = − 1

2a
(∂µAa

µ)
2 . (48)
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Show that under the gauge transformation of eq. (47), the gauge invariance is broken due to
an extra term generated:

δLGF = − ǫ

a
(∂µAa

µ)(∂
νDab

ν ωb) .

Under an infinitesimal gauge transformation given in eq. (47), and working to first order
in the field variations,

δ(∂µAa
µ)

2 = 2(∂µAa
µ)δ(∂

νAa
ν) = 2(∂µAa

µ)(∂
νδAa

ν) = ǫ(∂µAa
µ)
(

∂νDab
ν ωb

)

.

Hence,

δLGF = − ǫ

a
(∂µAa

µ)(∂
νDab

ν ωb) . (49)

(b) Attempt to restore the symmetry by adding a new field η(x) and a new term to the
Lagrangian:

LG = −ηa(∂µDab
µ ωb) , (50)

and by postulating the transformation law:

δηa = − ǫ

a
(∂µA

µ
a) . (51)

Show that this does not quite work because Dµ is field dependent and:

δ(LGF + LG) 6= 0 .

Consider a gauge group whose generators obey the commutation relations,

[T a , T b] = ifabcT c , (52)

where we assume that the generators have been chosen such that fabc is completely antisym-
metric under the interchange of any pair of indices. The covariant derivative acting on a field
in the adjoint representation is then given by

Dab
µ = δab∂µ + ig(T c)abAc

µ ,

where the Lie group generator in the adjoint representation is given by (T c)ab = −if cab. That
is,

Dab
µ = δab∂µ + gfabcAc

µ .

Thus, we can rewrite eq. (50) as

LG = −ηa ∂µ
(

∂µωa + gfabcωbA
c
µ

)

. (53)
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Next, we apply an infinitesimal gauge transformation to eq. (53). Working to first order in
the field variations,

δLG = −(δηa)(∂
µDab

µ ωb)− ηa(∂
µδDab

µ ωb) = −(δηa)(∂
µDab

µ ωb)− gfabcηa∂
µ
(

ωbδA
c
µ

)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− gfabcηa∂

µ
(

ωbǫD
cd
µ ωd

)

. (54)

Hence,
δ(LGF + LG) = −gfabcηa∂

µ
(

ωbǫD
cd
µ ωd

)

6= 0 .

(c) Save the day by promoting ω to a field and postulating the transformation law:

δωa =
1
2
ǫgfabcωbωc , (55)

where g is the Yang-Mills coupling constant and the fabc are the structure constants of the
gauge group. Summation over repeated indices is implied. Note that since the fabc are totally
antisymmetric under interchange of a, b and c, the only way to have δω 6= 0 is to require that
ω is an anticommuting field. This immediately implies that η is an anticommuting field and ǫ
is an anticommuting infinitesimal constant. With this in mind, show that LYM + LGF + LG

is invariant under the transformation laws given by eqs. (47)–(55). This enlarged gauge
invariance is called BRST invariance (and δ is called an infinitesimal BRST transformation).

In light of eq. (55), eq. (54) is modified as follows:

δLG = −(δηa)(∂
µDab

µ ωb)− ηa[∂
µ(δDab

µ )ωb]− ηa(∂
µDab

µ δωb)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− gfabcηa∂

µ
(

ωbǫD
cd
µ ωd

)

− 1
2
gf bcdηa ∂

µǫDab
µ (ωcωd)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− ǫgηa∂

µ

{

fabc
(

ωbD
cd
µ ωd

)

− 1
2
f bcdDab

µ (ωcωd)

}

, (56)

where we have made use of the anticommutativity properties of ǫ, η and ω.
Focusing on the term inside the braces in eq. (56),

fabcωbD
cd
µ ωd − 1

2
f bcdDab

µ (ωcωd) = fabcωb(∂µωc + gf cdeωdA
e
µ)− 1

2
f bcd(δab∂µ + gfabeAe

µ)(ωcωd)

= fabcωb∂µωc − 1
2
facd

[

ωc∂µωd + (∂µωc)ωd

]

+ gAe
µ

(

fabcf cdeωbωd − 1
2
f bcdfabeωcωd

)

.

After an appropriate relabeling of indicies,

fabcωb∂µωc − 1
2
facd

[

ωc∂µωd + (∂µωc)ωd

]

= fabc
[

ωb∂µωc − 1
2
ωb∂µωc − 1

2
(∂µωb)ωc

]

= 0 ,

after using the anticommuting properties of ωb and ωc and antisymmetry properties of the
fabc. Likewise, using the same properties and appropriate relabeling of indices,

fabcf cdeωbωd − 1
2
f bcdfabeωcωd = ωcωd(f

bacf bde + 1
2
f bcdf bae)

= 1
2
ωcωd(f

bacf bde + f badf bec + f baef bcd) = 0 , (57)
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where the last step is a consequence of the Jacobi identity. Hence, the expression inside the
braces in eq. (56) vanishes, and we are left with

δLG =
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb) .

Combining with eq. (49) yields
δ(LGF + LG) = 0 .

(d) Define δ 2 to mean the application of δ with anti-commuting parameter ǫ1 followed by
δ with anti-commuting parameter ǫ2. Show that when δ 2 is applied to Aa

µ and ωa, the result
is zero in each case. However δ 2ηa = 0 only if the Lagrange field equations for the ghost fields
ωa are satisfied.

We first compute

δ2Aa
µ = δ

{

ǫ1
[

∂µωa + gfabcωbA
c
µ

]

}

= ǫ1ǫ2

{

1
2
gfabc∂µ(ηbωc) + gfabc(Dcd

µ ωd)ωb +
1
2
gfabcf bdeωdωeA

c
µ

}

= ǫ1ǫ2

{

1
2
gfabc

[

(∂µωb)ωc + ωb(∂µωc)
]

+ gfabc
[

∂µωc + gf cdeAd
µωe

]

ωb +
1
2
g2fabcf bdeωdωeA

c
µ

}

= ǫ1ǫ2g
2ωeωbA

d
µ

(

f cabf cde + 1
2
f cadf ceb

)

= 0 ,

after an appropriate relabeling of indices. The final steps are the same as in eq. (57), where
after some manipulation the Jacobi identity is invoked. Next,

δ2ωa =
1
2
ǫ1gf

abcδ(ωbωc)

= 1
2
ǫ1gf

abc
[

(δωb)ωc + ωbδωc

]

= 1
4
ǫ1ǫ2g

2(fabcf bdeωdωeωc − fabcf cdeωbωdωe)

= 1
4
ǫ1ǫ2g

2(fabcf bde − facbf bdeωcωdωe

= −1
2
ǫ1ǫ2g

2facbf bdeωcωdωe

= −1
6
ǫ1ǫ2g

2facbf bde(ωcωdωe + ωeωcωd + ωdωeωc)

= −1
6
ǫ1ǫ2g

2(facbf bde + fadbf bec + faebf bcd)ωcωdωe = 0 ,

after appropriate relabeling of indices and using the anticommuting properties of the ω and
the antisymmetry of the fabc. Finally, the Jacobi identity is used at the final step.

However, we do not obtain δ2ηa = 0. An explicit computation yields

δ2ηa = −1

a
ǫ1δ(∂

µAa
µ) = −1

a
ǫ1ǫ2∂

µDab
µ ωb 6= 0 . (58)
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Nevertheless, in light of eq. (50), we see that the Lagrange field equations for the ghost field
ηa(x) is

∂µ
∂LG

∂(∂µηa)
− ∂LG

∂ηa
= ∂µDab

µ ωb = 0 .

That is, if we apply the field equations for ωb in eq. (58), we do obtain δ2ηa = 0.

(e) Suppose that the gauge fixing term is chosen to be

LGF = Ba∂µA
µ
a +

a

2
BaBa . (59)

Note that the new field Ba has no kinetic energy term; it is thus an auxiliary field. Show that
if one solves for Ba using the Lagrange field equations, one regains the usual gauge fixing term
given by eq. (48).

Applying the Lagrange field equations for Ba,

∂µ
∂LGF

∂(∂µBa)
− ∂LGF

∂Ba

= −∂µAa
µ − aBa = 0 .

That is,

Ba = −1

a
∂µA

a
µ .

Inserting this result into eq. (59) yields,

LGF = − 1

2a
(∂µA

µ
a)

2 ,

which coincides with eq. (48).

(f) Using the new gauge fixing term given in eq. (59), we now modify the BRST transfor-
mation law of η and define:

δηa = ǫBa , (60)

δBa = 0 . (61)

Show that the full Lagrangian is still invariant under the BRST transformation. Furthermore,
verify that δ 2 = 0 when applied to all fields of the theory, independently of the field equations.

Applying the transformation given by eq. (61) to eq. (59), and using eq. (47),

δLGF = (δBa)∂
µAa

µ +Ba∂
µδAa

µ + aBaδBa = ǫBa∂
µDab

µ ωb .

Next, in light of eq. (60), we see that eq. (56) is now given by

δLG = −(δηa)(∂
µDab

µ ωb) = −ǫBa∂
µDab

µ ωb .
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since the terms inside the braces in eq. (56) cancel by virtue of eq. (57). hence it follows that

δ(LGF + LG) = 0 .

That is, the full Lagrangian is still invariant under the BRST transformation.
Furthermore, the computations of δ2Aa

µ = 0 and δ2ωa = 0 are unchanged from those of
part (d). However, now we have

δ2η = ǫ1δB = 0 ,

and δ2B = 0 as a consequence of eqs. (60) and (61). Thus, δ 2 = 0 when applied to all fields
of the theory, independently of the field equations.

REMARK: One can extend the above results by including a gauge invariant term in the
Lagrangian density involving fermions, Lf = iψiγµD

µ
ijψj with Dµ

ij = δij∂
µ + igT a

ijA
µ
a . Note

that Lf is invariant with respect to the infinitesimal BRST transformation, δψ = −iǫgT aηaψ.
One can show that δ2ψ = 0 as a consequence of eq. (52).

APPENDIX: The reflection principle and its implications

If f(z) is an analytic function in some region of the complex plane, then so is f ∗(z∗).
If f(z) is a real valued function in a region of the complex plane that includes part of the
real axis, then f(z) = f ∗(z∗) along that part of the real axis (since z = z∗ on the real
axis). Consequently, f ∗(z∗) and f(z) are analytic continuations of one another. As long as no
singularities are encountered, it follows that f(z) = f ∗(z∗), which implies that f ∗(z) = f(z∗).
That is, we have proven the reflection principle of complex analysis,

Theorem (Reflection principle): If f(z) is real and analytic on part of the real axis, then
f ∗(z) = f(z∗) at all points in the complex plane where f(z) is analytic.

As an application of the reflection principle, we can show that the Disc Γ(4)(s) is related
to ImΓ(4)(s) . In particular, applying the reflection principle to Γ(4)(s+ iǫ) yields

Γ(4)(s− iǫ) = Γ(4)(s+ iǫ)∗ , (62)

which was quoted in eq. (28). We can therefore conclude that

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s+ iǫ)∗ = 2i ImΓ(4)(s) ,

where we have defined
Γ(4)(s) ≡ lim

ǫ→0
Γ(4)(s + iǫ) .
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