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1. In class, I defined the matrix-valued covariant derivative operator in the adjoint represen-
tation, Dµ, by

DµV ≡ (DµV )aT
a = ∂µV + ig[Aµ , V ] , (1)

where V ≡ V aT a is a matrix-valued adjoint field and (Dµ)ab ≡ δab∂µ+gfcabA
c
µ is the covariant

derivative acting on a field in the adjoint representation. The commutation relations satisfied
by the generators of the Lie group G are given by [Ta , Tb] = ifabcTc, and the indices a, b and c
take on dG possible values, where dG is the dimension of G.

(a) Prove that for any pair of matrix-valued adjoint fields V and W ,

[Dµ , V ]W = (DµV )W ,

where [ , ] is the usual matrix commutator. This means that DµV = [Dµ , V ] holds as an
operator equation.

By definition of the commutator, for adjoint fields V and W ,

[Dµ , V ]W ≡ (DµV − VDµ)W = Dµ(VW )− VDµW

= ∂µ(VW ) + ig[Aµ , V W ]− V ∂µW − igV [Aµ , W ]

= (∂µV )W + ig[Aµ , V ]W =
{
∂µV + ig[Aµ , V ]

}
W

= (DµV )W .

This is true for an arbitrary adjoint field W . Hence,

DµV = [Dµ , V ] , (2)

holds as an operator identity.

(b) Prove that for any matrix-valued adjoint field V ,

[Dµ , Dν ]V = ig[Fµν , V ] ,

where Fµν ≡ F a
µνT

a is the matrix-value field strength tensor of the non-abelian gauge theory.

Using the definition of Dµ given in eq. (1),

[Dµ , Dν ]V = Dµ

(
∂νV + ig[Aν , V ]

)
− Dν

(
∂µV + ig[Aµ , V ]

)

= ∂µ
(
∂νV + ig[Aν , V ]

)
+ ig

[
Aµ , ∂νV + ig[Aν , V ]

]

−∂ν
(
∂µV + ig[Aµ , V ]

)
− ig

[
Aν , ∂µV + ig[Aµ , V ]

]

= ig

{
[∂µAν − ∂νAµ , V ] + ig

[
Aµ , [Aν , V ]

]
− ig

[
Aν , [Aµ , V ]

]}
.

1



Using the Jacobi identity,
[
Aµ , [Aν , V ]

]
+
[
V , [Aµ , Aν ]

]
+
[
Aν , [V , Aµ]

]
= 0 .

and the antisymmetry of the commutator, e.g. [V , Aµ] = −[Aµ , V ], it follows that,

[Dµ , Dν ]V = ig
[
∂µAν − ∂νAµ + ig[Aµ , Aν ] , V

]
.

using the definition of the matrix field-strength tensor,

Fµν = ∂µAν − ∂νAµ + ig[Aµ , Aν ] ,

we end up with
[Dµ , Dν ]V = ig

[
Fµν , V

]
. (3)

An alternative derivation:

Note that by using the definition of the commutator, for adjoint fields V and W ,
(
[Dµ , Dν ]V

)
W = (DµDν − DνDµ)W

=
(
Dµ[Dν , V ]− Dν [Dµ , V ]

)
W

=
([

Dµ , [Dν , V ]
]
−
[
Dν , [Dµ , V ]

])
W , (4)

after using eq. (2). The Jacobi identity implies that the following operator identity holds:
[
Dµ , [Dν , V ]

]
+
[
V , [Dµ , Dν

]
+
[
Dν , [V , Dµ

]
= 0 .

Thus, using the Jacobi identity and the antisymmetry property of the commutator, eq. (4)
yields (

[Dµ , Dν ]V
)
W =

[
[Dµ , Dν ] , V

]
W .

This is true for an arbitrary adjoint field W . Hence,

[Dµ , Dν ]V =
[
[Dµ , Dν ] , V

]
, (5)

holds as an operator identity.
The matrix field strength tensor was initially defined in class via the operator identity

[Dµ , Dν ] = igFµν , (6)

where Dµ is the covariant derivative defined by its action on a field that transforms according
to an arbitrary representation of the Lie group G. In particular, eq. (6) must hold in the
adjoint representation, which implies that

[Dµ , Dν ] = igFµν

holds as an operator identity. Inserting this result into eq. (5) yields

[Dµ , Dν ]V = ig
[
Fµν , V

]
,

which again confirms eq. (3).
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(c) Starting from the non-abelian Maxwell equation,

Dµ F
µν = jν , (7)

prove that the current jν is covariantly conserved. That is,

Dµj
µ = 0 .

Applying Dν to both sides of eq. (7),

Dνj
ν = DνDµF

µν = 1
2
DνDµ(F

µν − F νµ) , (8)

since F µν = −F νµ. After relabeling µ↔ ν in the last term, we can rewrite eq. (8) as

Dνj
ν = 1

2
(DνDµ − DµDν)F

µν = −1
2

[
Dµ , Dν

]
F µν .

Since eq. (3) applies to any matrix-valued adjoint field V , we may use eq. (3) with V = F µν

to obtain
Dνj

ν = −1
2
ig
[
Fµν , F

µν
]
= 0 .

2. (a) Compute the differential cross section at O(α2
s) for qq̄ → tt̄ (where q 6= t is any light

quark and t is the top quark), in terms of the center-of-mass energy
√
s and the squared

four-momentum transfer t. Integrate your result over t to obtain the total cross section as
a function of the squared center-of-mass energy s. In your calculation, average over initial
colors and spins and sum over final colors and spins. You may assume that the initial quark
and anti-quark are massless, but do not neglect the mass of the top-quark.

Only one Feynman diagram contributes,

k1

−k2

p1

−p2

g

q

q

t

t

where the direction of the four-momenta are indicated on the diagram (i.e. the incoming
four-momenta are k1 and k2 and the outgoing four-momenta are p1 and p2).

The invariant matrix element for qḡ → tt̄ is

iM = u(p1)(−igsγµT a)v(p2)
(−igµνδab

s

)
v(k2)(−igsγνT b)v(k1) , (9)

where gs is the strong coupling constant and the square of the center-of-mass energy,

s = (k1 + k2)
2 = (p1 + p2)

2 = 2k1 ·k2 = 2(M2 + p1 ·p2) , (10)

3



where we have neglected the masses of q and q, and we have denoted the top quark mass by
M . It is also convenient to introduce the kinematic invariants,

t = (k1 − p1)
2 = (p2 − k2)

2 =M2 − 2p1 ·k1 =M2 − 2p2 ·k2 , (11)

u = (k1 − p2)
2 = (p2 − k1)

2 =M2 − 2p1 ·k2 =M2 − 2p2 ·k1 . (12)

In particular, note the identity,

s+ t+ u = 4M2 + 2p1 ·(p2 − k1 − k2) = 2M2 , (13)

after applying the conservation of momentum, p1 + p2 = k1 + k2, and using p21 =M2.
Squaring the matrix element and performing an average over initial colors and spins and

sum over final colors and spins, we first focus on the color sum and average. It is instructive
to perform the color sum and average for an SU(N) gauge theory of strong interactions. (One
can set N = 3 which is relevant for QCD at the end of the computation.) Consider the
N × N matrix generators T a in the fundamental representation of SU(N). The standard
normalization for these generators are:

Tr(T aT b) = 1
2
δab . (14)

We shall also employ the following identity [cf. eq. (10) of the class handout entitled, Useful
relations involving the generators of SU(N)],

T aijT
a
kℓ =

1
2

(
δiℓδjk −

1

N
δijδkℓ

)
, (15)

where there is an implicit sum over a = 1, 2, , . . . , N2 − 1. Note that i, j, k, ℓ = 1, 2, . . . , N .
Focusing only on the color degrees of freedom and suppressing all other factors,

|M|2ave =
1

N2

[
T aijδabT

b
kℓ

][
T cijδcdT

d
kℓ

]∗
=

1

N2

[
T aijδabT

b
kℓ

][
T cjiδcdT

d
ℓk

]

=
1

N2
Tr(T aT c)Tr(T aT c) =

1

4N2
δabδab =

N2 − 1

4N2
, (16)

where we have used the fact that the generators are hermitian to write (T cij)
∗ = T cji. Averaging

over the colors of the incoming quark and antiquark yields two factors of 1/N . Returning to
the full expression given in eq. (9), the average over initial spins (which yields two factors of
1/2) and the sum over final spins yields

|M|2ave =
1

4

N2 − 1

4N2

g4s
s2

Tr
[
γµ(/p2 −M)γα(/p1 +M)

]
Tr(γµ/k1γ

α/k2) .

Working out the traces,

|M|2ave =
N2 − 1

4N2

g4s
4s2

· 16
[
p2µp1α + p2αp1µ − gµα(p1 ·p2 +M2)

][
k1µk2α + k1αk2µ − gµαk1 ·k2

]

=
N2 − 1

4N2

8g4s
s2

(p1 ·k1 p2 ·k2 + p1 ·k2 p2 ·k1 +M2k1 ·k2)

=
N2 − 1

4N2

2g4s
s2
[
(M2 − t)2 + (M2 − u)2 + 2M2s

]
,
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where we have used eqs. (10)–(12) to express the matrix element in terms of the invariants s,
t and u. Defining αs ≡ g2s/(4π) and setting N = 3,

|M|2ave =
64π2α2

s

9s2
[
(M2 − t)2 + (M2 − u)2 + 2M2s

]
.

The differential cross section for the scattering of two massless particles is given by

dσ

dt
=

1

16πs2
|M|2ave .

It then follows that

dσ

dt
=

4πα2
s

9s4
[
(M2 − t)2 + (M2 − u)2 + 2M2s

]
.

We now integrate over t to get the total cross section. To obtain the limits of integration,
we use eq. (11) to write

t =M2 − 2p1 ·k1 =M2 − 2EtEq + 2~p1 ·~k1

The corresponding energies are Et = Eq =
1
2

√
s, whereas the magnitudes of the corresponding

three momenta are
|~k1| = 1

2

√
s , |~p1| = 1

2

√
sβ ,

where

β ≡
√

1− 4M2

s
. (17)

Thus
t =M2 − 1

2
s(1− β cos θ) , (18)

where θ is the angle between the three-momenta ~p1 and ~k1. The minimum and maximum of
t correspond to cos θ = −1 and +1, respectively. It is convenient to define t1 ≡ t −M2 and
u1 ≡ u−M2. Then,

σ =

∫ −
1
2
s(1−β)

−
1
2
s(1+β)

dσ

dt1
dt1 =

4πα2
s

9s4

∫ −
1
2
s(1−β)

−
1
2
s(1+β)

(
t21 + u21 + 2M2s

)
dt1

In light of eq. (13),

t21 + u21 + 2M2s = t21 + (s+ t1)
2 + 2M2s = 2t21 + 2t1s+ s(s+ 2M2) .

Hence,

σ =
4πα2

s

9s4

∫ −
1
2
s(1−β)

−
1
2
s(1+β)

[
2t21 + 2t1s+ s(s+ 2M2)

]
dt1

=
4πα4

s

9s4

[
2
3
t31 + t21s+ s(s+ 2M2)t1

]∣∣∣∣
−
1
2
s(1−β)

−
1
2
s(1+β)

=
4πα4

s

9s4

{
− 1

12
s3
[
(1− β)3 − (1 + β)3

]
+ 1

4
s3
[
(1− β)2 − (1 + β)2

]
+ βs2(s + 2M2)

}
.

=
4πα4

s

9s
β

{
1
6

(
3 + β2

)
+

2M2

s

}

5



Using eq. (17), we end up with

σ(qq → tt) =
8πα4

s

27s

(
1 +

2M2

s

)(
1− 4M2

s

)1/2

.

(b) Compute the differential cross section at O(α2
s) for gg → tt̄, where g is a gluon, in

terms of the squared center-of-mass energy
√
s and the squared four-momentum transfer t.

Integrate your result over t to obtain the total cross section as a function of s. In your
calculation, average over initial colors and spins and sum over final colors and spins.

Consider the process gg → tt. The incoming gluon momenta are denoted by k1 and k2,
respectively, and the outgoing momenta of the t and t are denoted [as in part (a) of this
problem] by p1 and p2, respectively. Once again we introduce the three kinematic invariants,

s = (k1 + k2)
2 = (p1 + p2)

2 = 2k1 ·k2 = 2(M2 + p1 ·p2) , (19)

t = (k1 − p1)
2 = (p2 − k2)

2 =M2 − 2p1 ·k1 =M2 − 2p2 ·k2 , (20)

u = (k1 − p2)
2 = (p2 − k1)

2 =M2 − 2p1 ·k2 =M2 − 2p2 ·k1 , (21)

where M is the top quark mass. The identity given in eq. (13) still holds, since the gluon is
massless. Three Feynman diagrams contribute at tree-level to gg → tt,

g

g

p1

−p2

k1

k2

p1−k1

t

t

k1

k1

p1

−p2
g

g

p1−k2

t

t

k1

k2

p1

−p2

g

g

k1+k2
t

t

(a) (b) (c)

and the corresponding invariant amplitudes will be denoted by Ma, Mb and Mc.
Employing the QCD Feynman rules,

iMa = u(p1)(−igsγµT a)
i(/p1 − /k1 +M)

t−M2
(−igsγνT b)v(p2)ǫµa(k1, λ1)ǫνb (k2, λ2) ,

where ǫµa(k, λ) is the polarization vector for a gluon of color a, helicity λ and four-momentum k.
Slightly simplifying the above expression yields,

Ma =
g2s

M2 − t
ǫµa(k1, λ1)ǫ

ν
b (k2, λ2)T

aT b u(p1)γµ(/p1 − /k1 +M)γνv(p2) . (22)

Next, Mb is obtained from Ma by exchanging the two initial gluons. Hence,

Mb =
g2s

M2 − u
ǫµa(k1, λ1)ǫ

ν
b (k2, λ2)T

bT a u(p1)γν(/p1 − /k2 +M)γµv(p2) . (23)
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Finally, Mc involves the three-gluon vertex. After some minor simplification,

Mc =
g2s
s
ǫµa(k1, λ1)ǫ

ν
b (k2, λ2)(ifabcT

c)u(p1)γ
βv(p2)Cµνβ , (24)

where
Cµνβ = gµν(k2 − k1)β + gβµ(2k1 + k2)ν + gνβ(−2k2 − k1)µ . (25)

Since these are complex calculations, it is always a good idea to check your results by some
independent method. Here, I shall check gauge invariance. In class, I showed that given an
invariant matrix element involving two external gluons, which is of the form

Mµνǫ
µ(k1, λ1)ǫ

ν(k2, λ2) ,

where the color labels have been suppressed, then one must obtain zero if either ǫµ(k1, λ1) is
replaced by kµ1 or if ǫν(k2, λ2) is replaced by kµ2 . For example,

kµ1Mµνǫ
ν(k2, λ2) = 0 . (26)

Let us now verify eq. (26). We consider the effect of replacing ǫµ(k1, λ1) with k
µ
1 in Ma, Mb

and Mc, respectively. In the case of Ma, we must evaluate

u(p1)/k1(/p1 − /k1 +M)γνv(p2) = u(p1)/k1(/p1 +M)γνv(p2)

= 2k1 ·p1u(p1)γνv(p2)− u(p1)(/p1 −M)/k1v(p2)

= (M2 − t)u(p1)γνv(p2) . (27)

In obtaining eq. (27), we first used /k1/k1 = k21 = 0 (since the gluon is massless). Next, we used
the anticommutation relations of the gamma matrices, {γµ , γν} = 2gµν , to write

/k1/p1 = 2k1 ·p1 − /p1/k1 =M2 − t− /p1/k1 .

Finally, we made use of the Dirac equation to obtain u(p1)(/p1 −M) = 0.
A similar computation arises when considering Mb.

u(p1)γν(/p1 − /k2 +M)/k1v(p2) = u(p1)γν(/k1 − /p2 +M)/k1v(p2)

= u(p1)γν/k1(/p2 +M)v(p2)− 2k1 ·p2u(p1)γνv(p2)

= (u−M2)u(p1)γνv(p2) . (28)

Note that in this calculation, it was useful to use momentum conservation, p1 − k2 = k1 − p2.
At the penultimate step, we invoked the Dirac equation, (/p2 +M)v(p2) = 0.

When eq. (27) is employed in Ma and eq. (28) is employed in Mb, we note that the
denominators are conveniently canceled. Thus, we conclude that

(Ma +Mb)

∣∣∣∣
ǫ1→k1

= g2sǫ
ν
b (k2, λ2)(T

aT b − T bT a)u(p1)γνv(p2) . (29)
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Finally, we examine Mc with ǫ
µ(k1, λ1) replaced by kµ1 . Then, using eq. (25),

kµ1Cµνβ = k1ν(k2 − k1)β + k1β(2k1 + k2)ν − 2gνβk1 ·k2 ,

after noting that k21 = 0. In what follows, we shall denote ǫν2 ≡ ǫν(k2, λ2). Then,

kµ1 ǫ
ν
2Cµνβ = k1 ·ǫ2(k1 + k2)β − 2k1 ·k2 ǫ2β , (30)

after using k2 ·ǫ2 = 0. The factor of (k1 + k2)β then ends up in the expression,

u(p1)(/k1 + /k2)v(p2) = u(p1)(/p1 + /p2)v(p2) = 0 ,

after using four-momentum conservation and the Dirac equation. After noting that s = 2k1 ·k2,
which conveniently cancels the denominator factor in Mc, we are then left with

Mc

∣∣∣∣
ǫ1→k1

= g2sǫ
ν
b (k2, λ2)(−ifabcT c)u(p1)γνv(p2) .

Combining this with eq. (29),

(Ma +Mb +Mc)

∣∣∣∣
ǫ1→k1

= g2sǫ
ν
b (k2, λ2)

(
T aT b − T bT a − ifabcT c

)
u(p1)γνv(p2) = 0 ,

after employing the commutation relations of the generators, [T a , T b] = ifabcT
c. Thus, the

gauge invariance check is successful.
It should be noted that an essential aspect of the gauge invariance check was keeping the

factor of ǫνb (k2, λ2), since eq. (30) was obtained only after using k2 ·ǫνb (k2, λ2) = 0. This implies
that although eq. (26) is satisfied, the following relations (which do hold in QED),

kµ1Mµν = 0 , kν2Mµν = 0 (31)

do not hold in QCD. In For example, one can easily modify the above computation to obtain

kµ1Mµν =
g2s
s
ifabcT

ck2µu(p1)/k1v(p2) . (32)

Of course, eq. (26) does hold as expected, since if one multiplies the above equation by
ǫνb (k2, λ2) and employs k2 ·ǫνb (k2, λ2) = 0, we do get zero as expected.

Looking ahead to the calculation of the spin and color summed and averaged squared
matrix element, the gluon spin sum is given by

∑

λ

ǫµa(k, λ) ǫ
ν
b (k, λ)

∗ = δab

(
−gµν + kµkν + kνkµ

k ·k

)
, (33)

where kµ = (k0 ; ~k) and k
µ
= (k0 ; −~k). The consequence of eqs. (26) and (32) is that in

a QCD scattering process, one is free to drop the (kµknu + kνkµ)/k ·k term in the spin sum
corresponding to one (and only one) external gluon line. Thus, in the present calculation of
gg → tt, one would have to employ the full expression given by eq. (33) for one of the two
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gluon spin sums. In contrast, if eq. (31) were to hold (as it does in QED), then one would be
justified in making the replacement,

∑

λ

ǫµa(k, λ) ǫ
ν
b (k, λ)

∗ −→ −δab gµν . (34)

Let us now return to eqs. (24) and (25) and note that we can slightly simplify this result
by writing

Mc =
g2s
s
ǫµa(k1, λ1)ǫ

ν
b (k2, λ2)(ifabcT

c)u(p1)γ
βv(p2)C̃µνβ , (35)

where
C̃µνβ = gµν(k2 − k1)β + 2gβµk1ν − 2gνβk2µ . (36)

Here we have eliminated two of the terms in Cµνβ by invoking the properties of the gluon
polarization vectors, k1 ·ǫµa(k1, λ1) = k2 ·ǫνb (k2, λ2) = 0 . Using the version of Mc given in
eq. (35) in the total amplitude Mµν ǫ

µ
a(k1, λ1)ǫ

ν
b (k2, λ2) ≡ Ma + Mb + Mc, it is a simple

matter to verify that eq. (26) holds! Note that we have not actually changed the value of
Mc, but we have changed the value of Mµν . Thus, by employing the form of Mc as given by
eq. (35), we can now safely use eq. (34) in the gluon polarization sums for both gluons!

We are now ready to perform the calculation of the cross section for gg → tt. In computing
the absolute square of the invariant amplitude, there will be six terms,

|M|2 = |Ma|2|+Mb|2 + |Mc|2 + 2Re(MaM∗
b) + 2Re(MaM∗

c) + 2Re(MbM∗
c) . (37)

We first focus on the color factors, suppressing all other factors. As in part (a), it is instructive
to perform all color computations using an SU(N) color group, and only set N = 3 at the end
of the calculation.

In addition to eqs. (14) and (15), the following results, taken from the class handout
entitled Useful relations involving the generators of SU(N), will also prove useful. First, by
setting j = k in eq. (15) and summing over N colors yields the quadratic Casimir operator in
the fundamental representation of SU(N),

(TaTa)iℓ =
N2 − 1

2N
δiℓ . (38)

Also useful is the Casimir operator in the adjoint representation of SU(N), which is given by

fabcfabd = Nδcd , (39)

where there is an implicit sum over the two pairs of repeated indices. Two other trace relations
obtained in eqs. (14) and (24) of the class handout cited above will be used in the computations
that follow,

fabd Tr(T
aT bT c) = 1

4
iNδcd , (40)

Tr(T aT bT aT c) = − 1

4N
δbc . (41)

The color factors for each of the six terms in eq. (37) can now be obtained. We sum over
the final state colors of the t and t and average over the initial gluon colors. Since the gluon
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field transforms under the adjoint representation, it possesses N2−1 colors in an SU(N) gauge
theory. Thus, we must divide by (N2−1)2 to perform the color averaging of the initial gluons.

|Ma|2 :
(T aT b)ij(T

bT a)ji
(N2 − 1)2

=
Tr(T aT bT bT a)

(N2 − 1)2
=

1

(N2 − 1)2

(
N2 − 1

2N

)2

N =
1

4N
,

|Mb|2 :
(T bT a)ij(T

aT b)ji
(N2 − 1)2

=
Tr(T bT aT aT b)

(N2 − 1)2
=

1

4N
,

|Mc|2 :
(ifabcT

c
ij)(−ifabeT eji)

(N2 − 1)2
=
fabcfabe Tr(T

cT e)

(N2 − 1)2
=

Nδceδce
2(N2 − 1)2

=
N

2(N2 − 1)
,

2Re(MaM∗
b) :

(T aT b)ij(T
aT b)ji

(N2 − 1)2
=

Tr(T aT bT aT b)

(N2 − 1)2
= − 1

4N(N2 − 1)2
δbb = − 1

4N(N2 − 1)
,

2Re(MaM∗
c) :

(T aT b)ij(−ifabeT eji)
(N2 − 1)2

= −ifabe Tr(T
aT bT e)

(N2 − 1)2
=

N

4(N2 − 1)2
δee =

N

4(N2 − 1)
,

2Re(MbM∗
c) :

(T bT a)ij(−ifabeT eji)
(N2 − 1)2

= −ifabe Tr(T
bT aT e)

(N2 − 1)2
= − N

4(N2 − 1)2
δee = − N

4(N2 − 1)
.

Note that the factors of 2 appearing in the interference terms are not incorporated in the color
factors obtained above. These factors of 2 will be included separately below.

We now proceed to write out the spin and color averaged matrix element, considering
separately the six terms in eq. (35). The average over gluon helicities is performed using
eq. (34) [although the δab factor has already been employed in obtaining the color factors
above]. The sums over the final state t and t spins are computed in the usual fashion, resulting
in traces of gamma matrices. In the average over initial gluon helicities, we include a factor
of 1/2 for each gluon since we are averaging over two polarization states. Thus, we obtain

|Ma|2ave =
g4s

4(M2 − t)2

(
1

4N

)
Tr
[
γµ(/p1 − /k1 +M)γν(/p2 −M)γν(/p1 − /k1 +M)γµ(/p1 +M)

]
,

|Mb|2ave =
g4s

4(M2 − u)2

(
1

4N

)
Tr
[
γν(/p1 − /k2 +M)γµ(/p2 −M)γµ(/p1 − /k2 +M)γν(/p1 +M)

]
,

2Re(MaM∗
b)ave =

2g4s
4(M2 − t)(M2 − u)

(
1

4N
− N

4(N2 − 1)

)
Tr
[
γµ(/p1 − /k1 +M)γν(/p2 −M)γµ

×(/p1 − /k2 +M)γν(/p1 +M)
]
,

|Mc|2ave =
g4s
4s2

(
N

2(N2 − 1)

)
C̃µναC̃

µνβ Tr
[
γβ(/p2 −M)γα(/p1 +M)

]
,

2Re(MaM∗
c)ave =

2g4s
4s(M2 − t)

(
N

4(N2 − 1)

)
C̃µνβ Tr

[
γβ(/p2 −M)γν(/p1 − /k1 +M)γµ(/p1 +M)

]
,

2Re(MbM∗
c)ave =

2g4s
4s(M2 − u)

( −N
4(N2 − 1)

)
C̃µνβ Tr

[
γβ(/p2 −M)γµ(/p1 − /k2 +M)γν(/p1 +M)

]
,

10



where C̃µνβ is defined in eq. (36). The factor of 2 in the interference terms appear explicitly in
the three initial numerator factors above. The color factors computed earlier are given inside
parentheses in each expression. Note that for the case of 2Re(MaM∗

b)ave, we have written

− 1

4N(N2 − 1)
=

1

4N
− N

4(N2 − 1)
.

The reason for doing this is that one can now see the existence of two independent color
factors, 1/(4N) and 1

2
N/(N2 − 1). Indeed, |M|2ave consists of two independent terms—one

proportional to the first color factor and the other proportional to the second color factor.
Although it may not be obvious, one can show that these two independent terms are separately
gauge invariant. Indeed, this allows one to take the QED limit of the above result, simply
by omitting all terms proportional to 1

2
N/(N2 − 1), since the latter involves the three gluon

vertex, which is absent in QED. But, we also learn that part of 2Re(MaM∗
b)ave must also be

omitted in the QED limit—this is the piece that is sensitive to the non-commuting nature of
the generators T a.

Identifying these two separate pieces is also useful computationally, as one might expect
some significant cancellations within the two independent gauge invariant sets. It should be
emphasized that this separation is only possible if one computes SU(N) color factors rather
than SU(3) color factors, since the N dependence allows one to identify the two independent
pieces of |M|2ave. Of course, at the end of the day, we will set N = 3 to get our final result.

The rest of the computation involves the calculation of traces. This is straightforward
but tedious. After reducing the traces to products of dot products, one makes use of the
kinematics [cf. eqs. (19)–(21)] to express the result in terms of the kinematic invariants. The
end result is summarized below.

|Ma|2ave =
2g4s

(M2 − t)2

(
1

4N

)[
(M2 − t)(M2 − u)− 2M2(M2 + t)

]
,

|Mb|2ave =
2g4s

(M2 − u)2

(
1

4N

)[
(M2 − t)(M2 − u)− 2M2(M2 + u)

]
,

2Re(MaM∗
b)ave =

4g4s
(M2 − t)(M2 − u)

(
1

4N
− N

4(N2 − 1)

)
M2(s− 4M2) ,

|Mc|2ave =
4g4s
s2

(
N

2(N2 − 1)

)
(M2 − t)(M2 − u) ,

2Re(MaM∗
c)ave =

−4g4s
s(M2 − t)

(
N

4(N2 − 1)

)[
(M2 − t)(M2 − u) +M2(u− t)

]
,

2Re(MbM∗
c)ave =

4g4s
s(M2 − u)

( −N
4(N2 − 1)

)[
(M2 − t)(M2 − u) +M2(t− u)

]
.

The invariant cross section is given by

dσ

dt
=

1

16πs2
|M|2ave

11



Adding up the six expressions above, putting N = 3 and defining α2
s ≡ g2s/(4π), we end up

with

dσ

dt
=

2πα2
s

s2

{(
1

12

)
(M2 − t)(M2 − u)− 2M2(M2 + t)

(M2 − t)2
+

(
1

12

)
(M2 − t)(M2 − u)− 2M2(M2 + u)

(M2 − u)2

+

(
− 1

96

)
2M2(s− 4M2)

(M2 − t)(M2 − u)
+

(
3

16

)
2(M2 − t)(M2 − u)

s2

−
(

3

32

)
2
[
(M2 − t)(M2 − u) +M2(u− t)

]

s(M2 − t)
+

(
− 3

32

)
2
[
(M2 − t)(M2 − u) +M2(t− u)

]

s(M2 − u)

}
,

where the color factors for N = 3 are specified inside the parentheses above.
In light of eq. (13), s+ t+u = 2M2, so that at fixed center-of-mass energy

√
s, the variable

u = 2M2−s−t is also a function of t. Note that t is related to the scattering angle as indicated
in eq. (18), which we repeat below:

t =M2 − 1
2
s(1− β cos θ) ,

where

β ≡
(
1− 4M2

s

)1/2

. (42)

The kinematical limits on t are easily obtained by imposing the condition, | cos θ| ≤ 1. It
follows that

M2 − 1
2
s(1 + β) ≤ t ≤M2 − 1

2
s(1− β) . (43)

The final step is to integrate over t to obtain the total cross section. As in part (a), it is
useful to define t1 = t−M2 and u1 = u−M2. Then,

dσ

dt1
=

2πα2
s

s2

{
t1u1 − 2M2(M2 + t1)

12t21
+
t1u1 − 2M2(M2 + u1)

12u21
− M2(s− 4M2)

48t1u1

+
3t1u1
8s2

+
3
[
t1u1 +M2(u1 − t1)

]

16st1
+

3
[
t1u1 +M2(t1 − u1)

]

16su1

}
, (44)

Using eq. (13), it follows that
s+ t1 + u1 = 0 .

Due to the symmetry under the interchange of t1 and u1, it follows that dσ/dt1 = dσ/du1.
This means that in computing the total cross section, the integral of the first two terms in
eq. (44) yields the same result, as does the integral of the last two terms in eq. (44).

In addition, eq. (43) implies that

−1
2
s(1 + β) ≤ t1 ≤ 1

2
s(1− β) ,
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which provides the limits for the integral over t1. Hence, utilizing the symmetry noted above,

σ =
2πα2

s

s2

∫ −
1
2
s(1−β)

−
1
2
s(1+β)

dt1

{
− t1(s+ t1) + 2M2(2M2 + t1)

6t21
+
M2(s− 4M2)

48t1(s+ t1)
− 3t1(s+ t1)

8s2

− 3
[
t1(s+ t1) +M2(s+ 2t1)

]

8st1

}
.

The integration is straightforward. It is simple enough to perform by hand, although a
computer algebra system such as Mathematica is also suitable. The end result is

σ(gg → tt) =
πα2

s

3s

{(
1 +

4M2

s
+
M4

s2

)
ln




1 +

√
1− 4M2

s

1−
√

1− 4M2

s



−1

4

(
1− 4M2

s

)1/2(
7 +

31M2

s

)}
,

after using eq. (42) to express the final result as a function of M2 and s.

3. Consider the following model Lagrangian density for a theory with two real scalar fields φ1

and φ2 and a Dirac fermion field ψ,

L = 1
2

[
(∂µφ1)

2 + (∂µφ2)
2
]
+ 1

2
µ2
(
φ2
1 + φ2

2

)
− 1

4
λ
(
φ2
1 + φ2

2

)2
+ iψ/∂ψ − gψ

(
φ1 + iγ5φ2)ψ , (45)

where the parameters µ2 and λ are assumed to be positive.

(a) Show that this theory possesses the following global symmetry,

φ1 → φ1 cosα− φ2 sinα (46)

φ2 → φ1 sinα + φ2 cosα (47)

ψ → exp
{
−1

2
iαγ5

}
. (48)

Show that the solution to the classical field equations with the minimum energy breaks this
symmetry spontaneously.

Define the transformed fields,

φ′
1 = φ1 cosα− φ2 sinα

φ′
2 = φ1 sinα+ φ2 cosα

ψ′ = exp
{
−1

2
iαγ5

}
ψ .

Then, it is straightforward to check that

1
2

[
(∂µφ

′
1)

2 + (∂µφ
′
2)

2
]
+ 1

2
µ2
[
(φ′

1)
2 + (φ′

2)
2
]
− 1

4
λ
[
(φ′

1)
2 + (φ′

2)
2
]2

= 1
2

[
(∂µφ1)

2 + (∂µφ2)
2
]
+ 1

2
µ2
(
φ2
1 + φ2

2

)
− 1

4
λ
(
φ2
1 + φ2

2

)2
.

13



This is most easily verified using matrix notation by writing
(
φ′
1

φ′
2

)
= O

(
φ1

φ2

)
, where O =

(
cosα − sinα
sinα cosα

)
,

with OTO = 1 (i.e. O is a real orthogonal matrix).
Next,

ψ′γµψ′ = ψ′ †γ0γµψ′ = ψ′ † exp
{

1
2
iαγ5

}
γ0γµ exp

{
−1

2
iαγ5

}
ψ

= ψ′ †γ0γµ exp
{

1
2
iαγ5

}
exp
{
−1

2
iαγ5

}
ψ = ψγµψ ,

after using the anticommutativity property,
{
γ5, γ

µ
}
= 0, to write

exp
{

1
2
iαγ5

}
γ0γµ = γ0γµ exp

{
1
2
iαγ5

}
.

Finally, using (γ5)
2 = 1, one can use the series expansion of the exponential to compute

exp
{
iαγ5

}
= 1+ iαγ5 +

(iα)2

2!
(γ5)

2 +
(iα)3

3!
(γ5)

3 + · · ·

= 1

(
1− α2

2!
+
α4

4!
− · · ·

)
+ iγ5

(
α− α3

3!
+
α5

5!
− · · ·

)
, (49)

which we recognize as
exp
{
iαγ5

}
= 1 cosα + iγ5 sinα . (50)

Multiplying eq. (50) by iγ5 yields

iγ5 exp
{
iαγ5

}
= −1 sinα + iγ5 cosα . (51)

Hence, it follows that

ψ′
(
φ′
1 + iγ5φ

′
2)ψ

′ = ψ exp
{
−1

2
iαγ5

}[
1(φ1 cosα− φ2 sinα) + iγ5(φ1 sinα + φ2 cosα)

]
exp
{
−1

2
iαγ5

}
ψ

= ψ exp
{
−iαγ5

}[
(1 cosα + iγ5 sinα)φ1 + (−1 sinα + iγ5 cosα)φ2

]
ψ

= ψ exp
{
−iαγ5

}
exp
{
iαγ5

}
(1φ1 + iγ5φ2)ψ

= ψ
(
φ1 + iγ5φ2)ψ ,

after employing eqs. (50) and (51) at the penultimate step. That is, L given by eq. (45) is
invariant under the transformation of fields given in eqs. (46)–(48).

The classical field equations are obtained from the Lagrange field equations (cf. Sections
3.1 and 3.2 of Schwartz), which yield

�φ1 = − ∂V

∂φ1

− gψ ψ ,

�φ2 = − ∂V

∂φ2
− igψγ5ψ ,

i /∂ψ = g(φ1 + iγ5φ2)ψ ,
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where we have introduced the scalar potential,

V (φ1, φ2) = −1
2
µ2(φ2

1 + φ2
2) +

1
4
λ(φ2

1 + φ2
2)

2 . (52)

The total energy density can either be identified with the Hamiltonian density (written in
terms of the fields and their derivatives) or by the 00 component of the energy-momentum
tensor. Given the Lagrangian density specified in eq. (45), the corresponding Hamiltonian is

H =
1

2

[(
∂φ1

∂t

)2

+

(
∂φ2

∂t

)2

+ (∇φ1)
2 + (∇φ2)

2

]
− iψ~γ · ~∇ψ+V (φ1, φ2)+gψ

(
φ1+ iγ5φ2)ψ .

The solution to the classical field equations with the minimum energy corresponds to choosing
ψ = ψ = 0, and φ1 = v1 and φ2 = v2, where v1 and v2 are constants chosen to minimize the
function V (v1, v2). This implies that

∂V

∂φ1

∣∣∣∣
φ1=v1 , φ2=v2

=
∂V

∂φ2

∣∣∣∣
φ1=v1 , φ2=v2

= 0 .

These conditions yield
[
−µ2 + λ(v21 + v22)

]
v1 = 0 , (53)

[
−µ2 + λ(v21 + v22)

]
v2 = 0 . (54)

Eqs. (53) and (54) have two possible solutions:

(i) v1 = v2 = 0 , =⇒ V (v1, v2) = 0 ,

(ii) v21 + v22 = µ2/λ =⇒ V (v1, v2) = −µ
2

4λ
.

Since µ2 > 0 and λ > 0 by assumption, it follows that the minimum energy vacuum field
configuration corresponds to ψ = ψ = 0 and φ2

1 + φ2
2 = µ2/λ. The latter condition implies

that at least one of the scalar vacuum expectation values is nonzero.
Without loss of generality, we can choose to expand around the vacuum state corresponding

to vacuum expectation values, 〈Ω|φ1|Ω〉 = v and 〈Ω|φ2|Ω〉 = 0, where

v =
|µ|√
λ
. (55)

However, this choice is not invariant under the transformation of fields given in eqs. (46) and
(47). Indeed any choice of scalar field vacuum expectation values, subject to the require-
ment that 〈Ω| φ2

1 + φ2
2 |Ω〉 = µ2/λ, is not invariant under these transformations. Hence, the

corresponding global symmetry is spontaneously broken.

(b) Without loss of generality, one can assume that φ1 possesses a non-zero vacuum expec-
tation value, 〈φ1〉 = v, in the ground state, whereas 〈φ2〉 = 0. Define new scalar fields σ(x)
and π(x) such that, (

φ1(x) , φ2(x)
)
=
(
v + σ(x) , π(x)

)
. (56)

Write out the Lagrangian in terms of the new scalar fields σ(x) and π(x), and show that the
fermion acquires a mass. Evaluate the fermion mass in terms of g and v.
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Inserting eq. (56) into eq. (45) yields

L = 1
2

[
(∂µσ)

2 + (∂µπ)
2
]
+ 1

2
µ2(v2 + 2vσ + σ2 + π2)− 1

4
(v2 + 2vσ + σ2 + π2)2

+iψ/∂ψ − gψ
(
v + σ + iγ5π

)
ψ ,

= 1
2

[
(∂µσ)

2 + (∂µπ)
2
]
+ 1

2
µ2v2 + µ2vσ + 1

2
µ2σ2 + 1

2
µ2π2 − 1

4
λv2(v2 + 4vσ + 4σ2)

−1
2
λv(v + 2σ)(σ2 + π2)− 1

4
λ(σ2 + π2)2 + iψ/∂ψ − gψ

(
v + σ + iγ5π)ψ .

using eq. (55), we can eliminate µ2 in favor of v. The end result is:

L = 1
4
λv4+ 1

2

[
(∂µσ)

2+(∂µπ)
2
]
−λv2σ2−λvσ(σ2+π2)− 1

4
λ(σ2+π2)2+iψ/∂ψ−gψ

(
v+σ+iγ5π)ψ .

(57)
The constant term, 1

4
λv2 = µ2/(4λ), corresponds to the negative of the vacuum energy, which

can be dropped. The fermion mass would correspond to a term in the Lagrangian density,
L ∋ −mψψψ. Comparing with eq. (57), we conclude that

mψ = gv .

(c) What are the masses of the physical scalar bosons of this model?

To determine the masses of the physical scalars, we compared eq. (57) with

L ∋ −1
2
(m2

σσ
2 +m2

ππ
2) .

It immediately follows that m2
σ = 2λv2 = 2µ2 and mπ = 0. We recognize π as the Goldstone

boson field, which is massless as expected.

4. Consider the Abelian Higgs model (i.e., scalar electrodynamics where the U(1) gauge
symmetry is spontaneously broken).

(a) Suppose you wish to do calculations in the Rξ–gauge. Derive the Faddeev-Popov
Lagrangian and the corresponding Feynman rules for the ghost propagator and vertices.

In class, the Abelian Higgs model Lagrangian (prior to gauge fixing) was given by

L = −1
4
FµνF

µν + (Dµφ)
∗(Dµφ)− V (φ, φ∗) ,

where the covariant derivative acting on the complex scalar field is given by

Dµφ = (∂µ + ieAµ)φ ,

and the scalar potential is given by

V (φ, φ∗) = −µ2φ∗φ+ 1
4
λ(φ∗φ)2 ,
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with µ2 and λ assumed to be positive. It is convenient to express the complex field φ in terms
of two real fields, φ ≡ (Φ1 + iφ2)/

√
2. As in problem 3, the U(1) symmetry is spontaneously

broken. The scalar potential is minimized for v2 ≡ 〈φ2
1 + φ2

2〉 = 4µ2/λ. We therefore define

shifted fields, (φ1(x) , φ2(x) =
(
v + φ̃1(x) , φ̃2(x)

)
. In terms of the shifted fields,

L = 1
2

[
(∂µφ̃1)

2 + (∂µφ̃2)
2
]
− 1

4
λv2(φ̃1)

2 − 1
4
λφ̃1

[
(φ̃1)

2 + (φ̃2)
2
]
− 1

16
λ
[
(φ̃1)

2 + (φ̃2)
2
]2

−1
4
FµνF

µν + evAµ∂
µφ̃2 +

1
2
e2v2AµA

µ + e2vφ̃1AµA
µ + eAµφ̃1

↔

∂µφ̃2 +
1
2
e2AµA

µ
[
(φ̃1)

2 + (φ̃2)
2
]
.

(58)

Note that φ̃1 is the Higgs field, φ̃2 is the Goldstone field, and a photon mass, mγ = ev, has
been generated.

The gauge fixing term for the Rξ-gauge in the Abelian Higgs model is

LGF = − 1

2ξ

(
∂µA

µ − ξevφ̃2

)2
.

Adding LFP to eq. (58) and dropping the total divergence, ev(Aµ∂
µφ̃2+φ̃2∂µA

µ) = ev∂µ(A
µφ̃2),

we end up with

L = 1
2

[
(∂µφ̃1)

2 + (∂µφ̃2)
2
]
− 1

4
λv2(φ̃1)

2 − 1
2
ξm2

γ(φ̃2)
2 − 1

4
λvφ̃1

[
(φ̃1)

2 + (φ̃2)
2
]
− 1

16
λ
[
(φ̃1)

2 + (φ̃2)
2
]2

−1
4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + 1
2
m2
γAµA

µ + emγ φ̃1AµA
µ + eAµφ̃1

↔

∂µφ̃2 +
1
2
e2AµA

µ
[
(φ̃1)

2 + (φ̃2)
2
]
.

(59)

The Faddeev-Popov determinant is

det

(
δF (x)

δΛ(y)

)
, where F (x) ≡ ∂µA

µ(x)− ξevφ̃2(x)− f(x),

and
δF (x)

δΛ(y)
=

∫
d4z

(
δF (x)

δAµ(z)

δAµ(z)

δΛ(y)
+
δF (x)

δφ̃2(z)

δφ̃2(z)

δΛ(y)

)
.

Under an infinitesimal gauge transformation,

Aµ(x) → Aµ(x) + ∂µΛ(x) ,

φ(x) →
[
1− ieΛ(x)

]
φ(x) , (60)

where φ(x) = v + φ̃1(x) + iφ̃2(x). That is, Aµ → Aµ + δAµ and φ̃2 → φ̃2 + δφ̃2, where

δAµ = ∂µΛ , δφ̃1 = eΛφ̃2 , δφ̃2 = −eΛ(φ̃1 + v) .

Hence, it follows that

δF (x)

δΛ(y)
=

∫
d4z
[
�xδ

4(x− z)δ4(y − z) + e2vξ
(
φ̃1(x) + v

)
δ4(x− z)δ4(y − z)

]

=
[
�x + e2v2ξ + e2v ξφ̃1(x)

]
δ4(x− y) . (61)
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Therefore, following the steps given in class, the Faddeev-Popov Lagrangian is obtained via
the path integral representation,

det

(
δF (x)

δΛ(y)

)
= N

∫
Dη∗Dη exp

{
−i
∫
d4x d4y η∗(y)

δF (x)

δΛ(y)
η(x)

}

= N
∫

Dη∗Dη exp
{
−i
∫
d4x η∗(x)

[
�x + e2v2ξ + e2v ξφ̃1(x)

]
η(x)

}

= N
∫

Dη∗Dη exp
{
i

∫
d4xLFP

}
,

where
LFP = ∂µη

∗∂µη − ξm2
γη

∗η − emγ ξφ̃1(x)η
∗η , (62)

after performing an integration by parts (assuming that the fields fall off at infinity so that
we can drop the surface term). Note that we have identified the photon mass, mγ = ev. We
can now read off the squared-mass of the Faddeev-Popov ghost fields, ξm2

γ, and the strength
of the coupling of the Faddeev-Popov ghosts to the Higgs field, gη∗η φ̃1 = −eξmγ .

The Feynman rules for the Faddeev-Popov fields can be immediately read off from eq. (62).
The rules for the Faddeev ghost propagator and interactions are given by:

k i

k2 − ξm2
γ

φ̃1 −ieξmγ

(b) Let mH and mV be the masses of the Higgs boson (H) and vector boson (V ) respec-
tively. Assuming that mH > 2mV , compute the tree-level rate for the decay H → V V .

We identify H = φ̃1 and V = γ. The Feynman rule for the φ̃1γγ vertex can be read off
from eq. (59) and is exhibited below. Note the factor of 2 due to identical photons.

H 2iemγg
µν

µ

ν

The invariant matrix element for H → V V is

M = 2emγ ǫ
∗
1 ·ǫ∗2 , (63)
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where the ǫi are the polarization vectors of the outgoing spin-1 particles. To compute the
decay rate, we shall first square the amplitude and sum over outgoing polarizations. The spin
sum for a massive spin-1 boson is

∑

λ

ǫµ(p, λ)ǫν(p, λ)∗ = −gµν + pµpν

p2
,

where the sum is taken over the three physical polarization states of the massive photon, V .
Thus, denoting the four-momenta of the outgoing massive photons by p1 and p2, it follows
that

∑

λ1,λ2

|M|2 = 4e2m2
γ

(
−gµν + pµ1p

ν
1

m2
γ

)(
−gµν +

p2µp2ν
m2
γ

)
= 4e2m2

γ

[
2 +

(p1 ·p2)2
m4
γ

]
, (64)

where we have employed the mass-shell conditions, p21 = p22 = m2
γ .

In light of the kinematics of the decay, we have

m2
H = (p1 + p2)

2 = 2m2
γ + 2p1 ·p2 ,

from which it follows that p1 ·p2 = 1
2
m2
H−m2

γ . Inserting this result in eq. (64), we end up with

∑

λ1,λ2

|M|2 = e2(m4
H − 4m2

Hm
2
γ + 12m4

γ)

m2
γ

. (65)

In the rest frame ofH , the Higgs boson four-momentum is The total decay rate is p = (mH ; ~0),
and the rate of Higgs boson decay into a pair of massive photons is given by

Γ =
1

2mH(2π)2

∫
d3p1
2E1

d3p2
2E2

δ4(p− p1 − p2)
∑

λ1,λ2

|M|2 , (66)

To evaluate the phase space integral above, we employ the following identity,
∫

d3p1
2E1

d3p2
2E2

δ4(p− p1 − p2) =

∫
d4p1 d

4p2 δ(p
1 −m2

γ)δ(p
2 −m2

γ)δ
4(p− p1 − p2)θ(p10)θ(p20)

=

∫
d4p1 δ(p

2
1 −m2

γ)δ
(
(p− p1)

2 −m2
γ

)
θ(p10) , (67)

after using the delta function to integrate over p2. Next, we make use of a well known delta
function identity and write1

θ(p10)δ(p
2
1 −m2

γ) = θ(p10)δ(p
2
10 − ~p 2

1 −m2
γ) =

1

2p10
δ

(
p10 −

√
~p 2
1 +m2

γ

)
.

Inserting this result in eq. (67), we can immediately perform the integration over p10. Using
p = (mH ; ~0), we obtain (p− p1)

2 −m2
γ = p2 − 2p·p1 = m2

H − 2mHp10. It follows that

1Note that due to the presence of the step function, θ(p10), the second term of the delta function identity

involving δ

(
p10 +

√
~p

2

1
+m2

γ

)
does not contribute.
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∫
d3p1
2E1

d3p2
2E2

δ4(p− p1 − p2) =

∫
d3p1

2
√

~p 2
1 +m2

γ

δ(m2
H − 2mHp10)

∣∣∣∣∣
p10=

√
~p 2

1 +m2
γ

. (68)

We now use spherical coordinates to carry out the integration over ~p. Note that

d3p1 = |~p1|2d|~p1|dΩ = |~p1|E1dE1dΩ ,

where E1 ≡
√

~p 2
1 +m2

γ . Hence, eq. (68) can be evaluated as follows:

∫
d3p1
2E1

d3p2
2E2

δ4(p− p1 − p2) =
1

2

∫
dE1 dΩ

√
E2

1 −mk2γ δ(m
2
H − 2mHE1)

=
1

4mH

∫
dE1 dΩ

√
E2

1 −mk2γ δ(E1 − 1
2
mH)

=

√
m2
H − 4m2

γ

8mH

∫
dΩ . (69)

Thus, eqs. (66) and (69) yield

Γ =

√
m2
H − 4m2

γ

64π2m2
H

∫
dΩ

∑

λ1,λ2

|M|2 .

The integrand is independent of angles, so we can perform the integration over solid angles
immediately. But, we must be careful since the two outgoing massive photons are identical.
Thus, integrating over 4π steradians double counts, since the two outgoing massive photons are
indistinguishable. Thus, we should only integrate over 2π steradians (or equivalently, integrate
over the full 4π steradians and then include an extra factor of 1/2 due to two identical particles
in the final state). Hence,

Γ =

√
m2
H − 4m2

γ

32πm2
H

∑

λ1,λ2

|M|2 .

Employing eq. (65) then yields our final result

Γ(H → V V ) =
e2(m4

H − 4m2
Hm

2
γ + 12m4

γ)

32πm2
γmH

(
1− 4m2

γ

m2
H

)1/2

.

(c) The Equivalence Theorem states that the S-matrix amplitude involving external lon-
gitudinally polarized gauge bosons may be evaluated in the Rξ gauge by substituting the
corresponding Goldstone bosons as external particles. This equality holds up to corrections
of order mV /EV , where EV is the vector boson energy. Verify this theorem by applying it to
the Higgs boson decay of part (b).

20



The amplitude for H → V V was obtained in eq. (63), which we reproduce here:

M = 2emγ ǫ
∗
1 ·ǫ∗2 . (70)

We are interested in the limit where Eγ ≫ mH , where Eγ is the energy of either photon in
the rest frame of the Higgs boson. Indeed, energy conservation applied to the Higgs boson
rest frame yields Eγ = 1

2
mH . To evaluate the amplitude in this limit, we need to examine

the explicit forms for the massive photon polarization vectors, ǫµ(~kγ , λ), where ~kγ , λ are the
photon three-momentum and helicity, respectively, which are given in eqs. (8) and (22) of the
class handout entitled Polarization Sum for Massless Spin-One Particles.2 The transverse and
longitudinal polarization vectors of a massive spin-1 boson traveling in the direction ~k = kγ ẑ
are given by:

ǫµ(kγẑ,±1) =
1√
2

(
0 ; ∓1 , −i , 0

)
(71)

ǫµ(kγ ẑ, 0) =
1

mγ

(
kγ ; 0 , 0 , Eγ) , (72)

where Eγ =
√
k2γ +m2

γ. Note that the polarization vectors satisfy k ·ǫ(~kγ, λ) = 0, where the
four-vector of the massive photon is given by

kµ = (Eγ ; 0 , 0 , kγ) . (73)

Comparing eqs. (72) and (73) and noting the identities,

Eγ
mγ

− mγ

kγ + Eγ
=
E2
γ −m2

γ + kγEγ

mγ(kγ + Eγ)
=

kγ
mγ

,

kγ
mγ

+
mγ

kγ + Eγ
=
k2γ +m2

γ + kγEγ

mγ(kγ + Eγ)
=
Eγ
mγ

,

after employing E2
γ = k2γ +m2

γ , it follows that

ǫµ(kγẑ, 0) =
kµ

mγ
− mγ

kγ + Eγ

(
1 ; 0 , 0 , −1) =

kµ

mγ
+O

(
mγ

Eγ

)
.

Indeed, the result

ǫµ(~kγ , 0) =
kµ

mγ
+O

(
mγ

Eγ

)
, (74)

is more general and applies to a massive photon traveling in an arbitrary direction ~kγ. This
can be easily demonstrated by an appropriate rotation of the coordinate system.

A comparison of eqs. (71) and (74) shows that in the limit of Eγ ≫ mγ , the contribution of
the longitudinal (helicity-zero) polarizations dominates over the contribution of the transverse

2Alternatively, see e.g., Elliot Leader, Spin in Particle Physics (Cambridge University Press, Cambridge,
UK, 2001) p. 71; Hartmut Pilkuhn, The Interaction of Hadrons (North-Holland Publishing Company, Ams-
terdam, 1967) p. 62.
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(i.e., helicity ±1) polarizations in eq. (70). Hence, employing eq. (72) for the polarization
vectors in eq. (74),

M ≃ 2emγ
p1 ·p2
m2
γ

.

Using
2p1 ·p2 = (p1 + p2)

2 − p21 − p22 = m2
H − 2m2

γ ≃ 2m2
H ,

in the limit of Eγ =
1
2
mH ≫ mγ, it follows that

M ≃ em2
H

mγ
. (75)

Hence, summing over the polarizations, the contribution of the longitudinal polarizations
dominates which means that

∑

λ1,λ2

|M|2 = e2m4
H

m2
γ

[
1 +O

(
m2
γ

m2
H

)]
,

which is consistent with the exact result obtained in eq. (65).
We shall now compare the amplitude for the decay of the Higgs boson to a pair of Goldstone

bosons. We identify H = φ̃1 and G = φ̃2, so that the relevant interaction term is the φ̃1(φ̃2)
2

term in eq. (59). This equation also provides the mass of the Higgs boson φ̃1,

m2
H = 1

2
λv2 . (76)

The Feynman rule for the φ̃1(φ̃2)
2 vertex is

H −1
2
iλv = −im

2
H

v

G

G

where we have included a factor of 2 for the identical Goldstone bosons and we have made use
of eq. (76) to express the HGG coupling in terms of the Higgs boson mass. Thus, we identify
the amplitude for H → GG as

M = −m
2
H

v
= −em

2
H

mγ
,

after using mγ = ev. That is, we have verified the relation,

M(H → V V )

∣∣∣∣
mH≫mγ

= −M(H → GG) .

Apart from an unimportant overall minus sign, we have demonstrated that the high energy
limit of the H → V V decay amplitude is given by the amplitude for H → GG computed in
the Rξ gauge. This is an explicit example of the Equivalence Theorem. It is a particularly
useful observation since the computation of the amplitude for a process consisting entirely of
spin-zero bosons is far easier as compared to the computation of the amplitude for a process
that involves massive spin-1 bosons.

22


