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1. Consider the spontaneous breaking of a gauge group G down to U(1). The unbroken
generator Q = caT

a is some real linear combination of the generators of G.

Before we solve parts (a)–(d) of this problem, we review the general structure of sponta-
neously gauge theories that is relevant for the analysis that follows. The Lagrangian for the
gauge theory based on a simple compact gauge group G is

L = −1
4
F a
µνF

µνa + 1
2

(
DµΦ(x)

)
T
(
DµΦ(x)

)
− V (Φ) , (1)

where we are employing a real basis for the scalar fields, Φ(x) =
(
φ1(x), φ2(x), . . . , φn(x)

)
,

and the covariant derivative is defined by

Dµ ≡ ∂µ + igT aAa
µ . (2)

Since the φi(x) are real scalar fields, the generators iT a are real antisymmetric matrices.1 At
the minimum of the scalar potential V (Φ), the scalar field vacuum expectation values are
identified,

∂V

∂φi

∣∣∣∣
φi=vi

= 0 .

We then define shifted scalar fields,
φ̃i ≡ φi − v , (3)

In more detail, the kinetic energy term of the scalar fields is given by

L ∋ 1
2
(∂µφi + igT a

ijA
a
µφj)(∂µφi + igT b

ikA
b
µφk) .

Writing L in terms of the shifted fields defined in eq. (3), we see that terms quadratic in the
gauge fields arise corresponding to replacing φi → vi,

Lmass = −1
2
g2Aa

µA
µb(T a

ijvj)(T
b
ikvk) . (4)

Note that because T a is antisymmetric, we can write T a
ijT

b
ik = −(T aT b)jk. We can identify

the squared-mass matrix of the gauge bosons,

Lmass =
1
2
MabA

a
µA

µb , (5)

where
M2

ab ≡ g2vj(T
aT b)jkvk . (6)

Suppose that the T a are represented by n × n antisymmetric matrices, which act on a
multiplet of n scalar fields. The group G is spontaneously broken down to U(1) when the

1Given a compact group G, the generators T a are necessarily hermitian. In addition, the iT a are real, since
for a real representation of scalar fields DµΦ must also be real. Hence, it follows that the T a are antisymmetric.
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vacuum expectation values of the scalar fields is given by v, which can be represented by a
column vector of n rows. The unbroken generator,

Q = caT
a , (7)

is some real linear combination of the generators of G that satisfies

Qjkvk = 0 , (8)

where there is an implicit sum over k = 1, 2, . . . , n.
If the gauge group G is a direct product of the form G = G1 ×G2 · · ·Gr, where the Gi are

either simple compact Lie groups or U(1), then we associate an independent gauge coupling
g1, g2, . . . , gr with each factor. In this case, we generalize eq. (6) slightly,

M2
ab = gagbvj(T

aT b)jkvk , (9)

where there is no sum over the repeated indices a and b. Here, we associate ga with the
generators that belong to the appropriate subgroup Gi of the direct product. In particular, if
T a and T b are generators of Gi, then ga = gb = gi and

[T a , T b] = ifabcT
c ,

where the fabc are the structure constants of Gi if T
c is a generator of Gi, and fabc = 0 if T c is

a generator of Gj with j 6= i. Likewise, if T a is a generator of Gi and T b is a generator of Gj

with i 6= j, then ga = gi, gb = gj and [T a , T b] = 0 (or equivalently, fabc = 0) as a consequence
of the direct product structure of G. One consequence of these observations is that

(ga − gb)fabc = 0 , (10)

where there is no implicit sum over a and b.

(a) Prove that xb ≡ cb/gb is an (unnormalized) eigenvector of the vector boson squared-
mass matrix, M2

ab, with zero eigenvalue.

We now consider he spontaneous breaking of a gauge group G down to U(1). The unbroken
generator Q = caT

a is some real linear combination of the generators of G. Then,

∑

b

M2
ab

cb
gb

=
∑

b

gagbvj(T
aT b)jkvk

cb
gb

= gavjT
a
jℓ

(
∑

b

cbT
b
ℓk

)
vk = gavjT

a
jℓQℓkvk = 0 ,

after using eqs. (8) and (9). That is, cb/gb is an eigenvector of M2
ab with eigenvalue zero. This

corresponds to the massless U(1) gauge boson which remains massless due to the residual
unbroken U(1) gauge symmetry.

(b) Suppose that Aµ is the massless gauge field that corresponds to the generator Q. Show
that the covariant derivative can be expressed in the following form:

Dµ = ∂µ + ieQAµ + . . . , (11)
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where we have omitted terms in eq. (11) corresponding to all the other gauge bosons and

e =

[
∑

a

(
ca
ga

)2
]
−1/2

. (12)

Employing a real basis for the scalar fields, we define real antisymmetric generators via

La ≡ igaT
a , (13)

where there is no implicit sum over a [cf. the comment following eq. (9)]. Using eq. (4), we
can rewrite the gauge boson squared-mass matrix [cf. eq. (9)] as

M2
ab = (La~v, Lb~v) . (14)

Here, we have employed a convenient notation where the components of ~v are vi and

(x, y) ≡
∑

i

xiyi . (15)

The gauge boson squared-mass matrix is real symmetric, so it can be diagonalized with an
orthogonal similarity transformation:

OM2OT = diag (0, 0, . . . , 0, m2
1, m

2
2, . . .) . (16)

The corresponding gauge boson mass-eigenstates are:2

Ãa
µ ≡ OabA

b
µ . (17)

Likewise, we may define a new basis for the Lie algebra:

L̃a ≡ OabLb . (18)

It then follows that:
(OM2OT)ab = (L̃a~v, L̃b~v) = m2

aδab , (19)

is the diagonalized vector boson squared-mass matrix, and the covariant derivative is given
by

Dµ = ∂µ + LaA
a
µ = ∂µ + L̃aÃ

a
µ = ∂µ + ieQAµ + · · · ,

where Aµ is the gauge boson corresponding to the unbroken U(1) generator.
Let us choose O such that m1 = 0 is the mass of the gauge boson that corresponds to the

unbroken U(1). Then, we can identify the unbroken generator as

L̃1 = ieQ = O1bLb , (20)

where there is an implicit sum over b. Moreover, eq. (19) yields O1aM
2
abO1b = 0 . The rows of

the diagonalizing matrix O correspond to the normalized eigenvectors of M2. Thus,

O1b =
1

N

cb
gb

(21)

is the eigenvector corresponding to the zero eigenvalue found in part (a), and N is a constant.

2Indeed, one can easily check that M2

abA
a
µA

µb =
∑

a m
2
aÃ

a
µÃ

µa.
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The normalization constant N that appears in eq. (21) is chosen such that the eigenvector
has unit length,

N2 =
∑

b

(
cb
gb

)2

. (22)

Eqs. (20) and (21) yield

ieQ =
1

N

∑

b

cb
gb
Lb =

i

N

∑

b

cbT
b =

i

N
Q ,

after making use of eqs. (7) and (13). It immediately follows that e = 1/N . In light of eq. (22),

e =

[
∑

b

(
cb
gb

)2
]−1/2

. (23)

By convention, we take e > 0.

(c) Evaluate Q in the adjoint representation (that is, Q = caT
a, where the (T a)bc = −ifabc

are the generators of the gauge group in the adjoint representation). Show that Qbcxc = 0,
where xc is defined in part (a). What is the physical interpretation of this result?

Using xc = cc/gc and eq. (7), we obtain

Qbcxc = caT
a
bcxc = −ifabc

cacc
gc

= ifacb
cacc
gc

, (24)

using the antisymmetry properties of the fabc. Employing eq. (10),
∑

a,c

facb
cacc
gc

=
∑

a,c

gafacb
cacc
gagc

=
∑

a,c

gcfacb
cacc
gagc

=
∑

a,c

facb
cacc
ga

=
∑

a,c

fcab
cacc
gc

= −
∑

a,c

facb
cacc
gc

,

where in the penultimate step we relabeled a → c and c → a, and in the last step we used
fcab = −facb. Hence, ∑

a,c

facb
cacc
gc

= 0 ,

which means that Qbcxc = 0. The physical interpretation of this statement is that the U(1)
gauge boson is neutral with respect to the unbroken generator Q.

(d) Prove that the commutator [Q , M2] = 0, where Q is the unbroken U(1) generator in
the adjoint representation and M2 is the gauge boson squared-mass matrix. Conclude that
one can always choose the eigenstates of the gauge boson squared-mass matrix to be states of
definite unbroken U(1)-charge.

In the adjoint representation [cf. eq. (24)], Qbc = i
∑

e fecbce , where there is an implicit
sum over the repeated index a. Using eq. (9),

[Q , M2]ac =
∑

b

(
QabM

2
bc −M2

abQbc

)
= ivT

∑

b,e

(
gbgccefebaT

bT c − gagbcefecbT
aT b
)
v , (25)
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where vTT bT cv ≡ vj(T
bT c)jkvk, etc. Note that all sums are explicitly exhibited; there are no

implicit sums over repeated indices in eq. (25). Employing eq. (10),
∑

b

gbfebaT
b =

∑

b

gbfbaeT
b = ga

∑

b

fbaeT
b ,

∑

b

gbfecbT
b =

∑

b

gbfcbeT
b = gc

∑

b

fcbeT
b .

Using the commutation relations of the generators,

ifbaeT
b = ifaebT

b = [T a , T e] = T aT e − T eT a ,

ifcbeT
b = ifecbT

b = [T e , T c] = T eT c − T cT e .

Inserting these results back into eq. (25) yields

[Q , M2]ac = gagcv
T
∑

e

{
ce(T

aT e − T eT a)T c − ceT
a(T eT c − T cT e)

}
v . (26)

The T a are the generators in the representation that acts on the scalar fields. In this
representation the charge operator, which will be denoted by Q to distinguish it from the
charge operator in the adjoint representation Q, is defined by

Q =
∑

e

ceT
e .

Hence, eq. (26) yields

[Q , M2]ac = gagcv
T

{
(T aQ−QT a)T c − T a(QT c − T cQ)

}
v

= gagcv
T
(
T aT cQ−QT aT c)v . (27)

Using the fact that Q is an unbroken generator corresponding to the unbroken U(1) subgroup
of G, it follows that vTQ = Qv = 0. Employing this result in eq. (27) yields

[Q , M2] = 0 .

Thus, one can simultaneously diagonalize M2 and Q. The corresponding simultaneous eigen-
states are gauge boson states of definite mass and unbroken U(1)-charge.

2. In class, we examined in detail the structure of a spontaneously broken SU(2)×U(1)Y
gauge theory, in which the symmetry breaking was due to the vacuum expectation value of a
complex Y = 1, SU(2) doublet of scalar fields. In this problem, a different representation of
scalar fields will be employed.

(a) Consider an SU(2)×U(1)Y gauge theory with a Y = 0, SU(2) triplet of real scalar
fields, Φ. The scalar potential is given by

V (Φ) = −1
2
m2ΦTΦ + λ(ΦTΦ)2 ,
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where m2 and λ are real parameters. After spontaneous symmetry breaking, the electrically
neutral (Q = 0) member of the scalar triplet acquires a vacuum expectation value (where
Q = T3 + Y/2). Identify the subgroup that remains unbroken. Compute the vector boson
masses and the physical Higgs scalar masses in this model. Deduce the Feynman rules for the
three-point interactions among the Higgs and vector bosons.

Consider a model where the SU(2)×U(1) gauge symmetry is broken by a Y = 0 triplet of
real scalar fields, whose neutral member acquires a vacuum expectation value. The generators
of SU(2) in the triplet (adjoint) representation are (T a)bc = −iǫabc. Explicitly,

T 1 =




0 0 0
0 0 −i
0 i 0


 , T 2 =




0 0 i
0 0 0

−i 0 0


 , T 3 =




0 −i 0
i 0 0
0 0 0


 . (28)

Using eq. (13),

L1 = g




0 0 0
0 0 1
0 −1 0



 , L2 = g




0 0 −1
0 0 0
1 0 0



 , L3 = g




0 1 0

−1 0 0
0 0 0



 ,

which act on the scalar field multiplet,

Φ(x) =



φ1(x)
φ2(x)
φ3(x)


 ,

where the φi(x) are real scalar fields. In addition, the generator corresponding to U(1) is

L4 = i1
2
g′Y ,

where Y is the hypercharge operator. Since Φ(x) is a triplet of scalar fields with zero hyper-
charge, it follows that L4Φ = 0.

We now compute the squared-mass matrix of the gauge bosons using eq. (14), where v is
the vacuum expectation value of the electrically neutral member of the scalar triplet. The
electric charge operator is given by

Q = T 3 + 1
2
Y .

In particular, when acting on the scalar triplet (which has hypercharge zero),

QΦ = (T 3 + 1
2
Y )Φ = T 3Φ . (29)

This implies that the electrically neutral member of the scalar triplet must be an eigenstate
of T 3 with zero eigenvalue. Thus, we choose the vacuum expectation value ~v ≡ 〈Φ〉 to have
the form

~v =



0
0
v


 , (30)
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in order to ensure that after spontaneous symmetry breaking, the unbroken gauge group
preserves the U(1) of electromagnetism. We now can compute La~v for a = 1, 2, 3, 4. We
already know that L4Φ = 0, so we need only consider a = 1, 2, 3.

L1~v = g




0 0 0
0 0 1
0 −1 0








0
0
v



 =




0
gv
0



 ,

L2~v = g




0 0 −1
0 0 0
1 0 0





0
0
v


 =



−gv
0
0


 ,

L3~v = g




0 1 0
−1 0 0
0 0 0





0
0
v


 =



0
0
0


 .

Thus, eq. (14) yields the squared-mass matrix of the gauge bosons,

M2 =




g2v2 0 0 0
0 g2v2 0 0
0 0 0 0
0 0 0 0


 . (31)

We conclude that the W± has gained a mass mW = gv, whereas W 3 and B remain massless.
This means that the SU(2)×U(1) gauge symmetry has broken down to U(1)×U(1). One of
the U(1)’s can be identified with the gauge group of electromagnetism. In light of eq. (29),
we can choose the electromagnetic charge operator to be Q = T 3. Using eq. (23), we can
therefore identify the photon field as Aµ = W 3

µ and e = g.
The physical Higgs bosons of the model are obtained from the Higgs scalar potential. The

most general quartic gauge invariant scalar potential is

V (Φ) = −1
2
m2ΦTΦ + λ(ΦTΦ)2 = −1

2
m2(φ2

1 + φ2
2 + φ2

3)
2 + λ(φ2

1 + φ2
2 + φ2

3)
4 . (32)

The minimum of the scalar potential corresponds to Φ = v given by eq. (30). Imposing the
minimum condition, (

∂V

∂φi

)

Φ=v

= 0 ,

yields
−m2v + 4λv3 = 0 . (33)

Assuming that the symmetry is broken, v 6= 0, and we obtain

v =
m

2
√
λ
.

Note that this implies that V (v) = −m2/(16λ). A second extremum corresponding to Φ = 0
(the symmetry conserving minimum) yields V (0) = 0. Hence, if m2 > 0, it follows that the
symmetry-breaking minimum is the global minimum of the scalar potential.
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Next, we identify the Goldstone bosons, which were given in class by

Ga =
1

ma

∑

j

(L̃a~v)jηj , (34)

where the ma are the (non-zero) masses of the gauge bosons and the ηj are the shifted scalar
fields defined by

Φ =




η1
η2

v + η3


 ,

and the L̃a are defined in eq. (18). Since M2 given in eq. (31) is already diagonal, the

diagonalization matrix O = 1 and L̃a = La. Since La~v = 0 for a = 3 and 4, it follows that
there are precisely two Goldstone bosons, η1 and η2. Thus, H = η3 is the physical Higgs
boson.

In the unitary gauge, we set the Goldstone fields to zero. Then,

V (H) = −1
2
m2(H + v)2 + λ(H + v)4 .

Using eq. (33), the term linear in H vanishes. The constant term can be removed by redefining
the energy of the vacuum to be zero. Thus,

V (H) = H2(−1
2
m2 + 6λv2) +O(H3) +O(H4) .

The coefficient of H2 is identified as 1
2
m2

H , where mH is the Higgs mass. Using eq. (33) to
eliminate m2, we obtain

m2
H = −m2 + 12λv2 = 8λv2 .

Hence,
mH = 2

√
2λ v .

The three-point interactions among the Higgs and Gauge bosons arise from the kinetic
energy term,

LKE = 1
2
(DµΦ)

TDµΦ ,

where the covariant derivative acting on the scalar field is given by

(DµΦ)i = ∂µφi + igT a
ijW

a
µφj + i1

2
g′BY φi .

Since Y Φ = 0, Aµ = W 3
µ and g = e, we have

Dµ = ∂µ +
ie√
2

(
T+W+

µ + T−W−
µ

)
+ ieQAµ ,

where T± ≡ T1 ± iT 2 and

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
. (35)

In the unitary gauge,

Φ =




0
0

v +H


 .
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Using

ieT+ = e




0 0 −i
0 0 1
i −1 0



 , ieT− = e




0 0 i
0 0 1

−i −1 0



 , ieQ = e




0 1 0

−1 0 0
0 0 0



 ,

it follows that

{
∂µ +

ie√
2

(
T+W+

µ + T−W−
µ

)
+ ieQAµ

}



0

0

v +H


 =




− ie√
2
(W+

µ −W−
µ ))(v +H)

e√
2
(W+

µ +W−
µ ))(v +H)

∂µH


 .

Therefore, we end up with

1
2
(DµΦ)

TDµΦ = 1
2
(∂µH)2 + 1

4
(v +H)2

[
(W+

µ +W−
µ )2 − (W+

µ −W−
µ )2
]

= 1
2
(∂µH)2 + e2

[
v2 + 2vH +H2

]
W+

µ W µ−

= 1
2
(∂µH)2 + (m2

W + 2emWH + e2H2)W+
µ W µ− ,

after using mW = gv = ev. We can therefore identify the Feynman rule for the trilinear
HW+W− interaction,

H 2iemW gµν

µ

ν

(b) Consider an SU(2)×U(1)Y gauge theory with a Y = 2, SU(2) triplet of complex scalar
fields (again denoted by Φ). The scalar potential is given by

V (Φ) = −m2Φ†Φ + λ1(Φ
†Φ)2 − λ2

∑

a

(Φ†T aΦ)(Φ†T aΦ) ,

where m2 > 0 and λ1 > λ2 > 0. The T a are hermitian generators in the 3-dimensional
representation of SU(2) in a basis where T 3 is diagonal.

Again, assume that the electrically neutral (Q = 0) member of the scalar triplet acquires
a vacuum expectation value (where Q = T3 + Y/2). After symmetry breaking, identify the
subgroup that remains unbroken. Compute the vector boson masses and the physical Higgs
scalar masses in this model.

Consider a model where the SU(2)×U(1) gauge symmetry is broken by a Y = 2 triplet of
complex scalar fields Φ(x), whose neutral member acquires a vacuum expectation value. It is
convenient to employ a basis of hermitian generators

{
T a , 1

2
Y
}
where T 3 and Y are diagonal.
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That is, we shall identify the T a with the standard spin-1 matrices defined in the |j m〉 basis
in quantum mechanics.3 Explicitly,

T 1 =
1√
2




0 1 0
1 0 1
0 1 0


 , T 2 =

1√
2




0 −i 0
i 0 −i
0 i 0


 , T 3 =




1 0 0
0 0 0
0 0 −1


 .

(36)
In analogy with eq. (13), we define La = igT a. In particular,

L1 =
g√
2




0 i 0
i 0 i
0 i 0


 , L2 =

1√
2




0 1 0
−1 0 1
0 −1 0


 , L3 = g




i 0 0
0 0 0
0 0 −i


 ,

(37)
which act on the scalar field multiplet,

Φ(x) =



Φ++(x)
Φ+(x)
Φ0(x)


 ,

where Φ++(x), Φ+(x) and Φ0(x) are complex scalar fields. In addition, the generator corre-
sponding to the hypercharge U(1) is

L4 =
1
2
ig′Y = ig′




1 0 0
0 1 0
0 0 1



 , (38)

where the hypercharge operator is normalized such that L4Φ = ig′Φ.
The electric charge operator is given by

Q = T 3 + 1
2
Y =




2 0 0
0 1 0
0 0 0


 .

This implies that the electrically neutral member of the scalar triplet can be identified with
Φ0. Thus, we choose the vacuum expectation value to have the form

〈Φ〉 = 1√
2



0
0
v


 , (39)

in order to ensure that after spontaneous symmetry breaking, the unbroken gauge group
preserves U(1)EM.

4

3For example, see R. Shankar, Principles of Quantum Mechanics, 2nd edition (Springer Science, New York,
1994) p. 328.

4The factor of 1/
√
2 in eq. (39) is conventional. If we write φ0 = (φ0

R + iφ0

I)/
√
2, then the kinetic energy

term for φ0

R will be canonically normalized. We can choose the vacuum expectation value to be real without
loss of generality, in which case 〈φ0

R〉 = v.
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Following the class handout on gauge theories, one can employ the complex representation
of scalar fields to evaluate the squared-masses of the gauge bosons and Higgs bosons. (Details
can be found at the end of the solution to part (b) of this problem.) However, here we will
perform the computations by employing a real representation of the scalar fields. In the real
representation, the generators are 6 × 6 matrices. We determine these matrices as follows.
First it is convenient to write 5

Φ =
1√
2




φ1 + iφ4

φ2 + iφ5

φ3 + iφ6



 , (40)

where the φi are real fields. In light of

L1Φ =
g

2




0 i 0
i 0 i
0 i 0





φ1 + iφ4

φ2 + iφ5

φ3 + iφ6


 =

g

2




−φ5 + iφ2

−φ4 − φ6 + i(φ1 + φ3)
−φ5 + iφ2


 ,

L2Φ =
g

2




0 1 0
−1 0 1
0 −1 0





φ1 + iφ4

φ2 + iφ5

φ3 + iφ6


 =

g

2




φ2 + iφ5

φ3 − φ1 + i(φ6 − φ4)
−φ2 − iφ5


 ,

L3Φ =
g√
2




i 0 0
0 0 0
0 0 −i





φ1 + iφ4

φ2 + iφ5

φ3 + iφ6


 =

g√
2



−φ4 + iφ1

0
φ6 − iφ3


 ,

L4Φ = ig′
Y
2
Φ = ig′Φ =

g′√
2




−φ4 + iφ1

−φ5 + iφ2

−φ6 + iφ3



 ,

it follows that the corresponding generators in the real representation (denoted by La below)
must satisfy,

L1




φ1

φ2

φ3

φ4

φ5

φ6




=
g√
2




−φ5

−φ4 − φ6

−φ5

φ2

φ1 + φ3

φ2




, L2




φ1

φ2

φ3

φ4

φ5

φ6




=
g√
2




φ2

φ3 − φ1

−φ2

φ5

φ6 − φ4

−φ5




, (41)

5Note in particular the choice of subscripts in eq. (40). This choice is motivated by the observation that
the corresponding 6× 6 real antisymmetric matrix generators La = igT a given in eq. (43) can be expressed in
block diagonal form in terms of the hermitian generators T a via eq. (44). If one instead employs

Φ =
1√
2



φ1 + iφ2

φ3 + iφ4

φ5 + iφ6


 ,

then the resulting expressions for the La are related to the generators given in eq. (43) by an appropriate
permutation of rows and columns, thereby losing the nice block form for the matrices given in eq. (44).
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L3




φ1

φ2

φ3

φ4

φ5

φ6




= g




−φ4

0
φ6

φ1

0
−φ3




, L4




φ1

φ2

φ3

φ4

φ5

φ6




= g′




−φ4

−φ5

−φ6

φ1

φ2

φ3




, (42)

It immediately follows that

L1 =
g√
2




0 0 0 0 −1 0
0 0 0 −1 0 −1
0 0 0 0 −1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0




, L2 =
g√
2




0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 0




,

L3 = g




0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0




. L4 = g′




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




.

(43)

Note that the real antisymmetric generators La = igaT
a are 6×6 real antisymmetric matrices

that can be written in block form in terms of the real and imaginary parts of the 3 × 3
hermitian generators T a,

La = igaT
a = ga

(
−Im T a −Re T a

Re T a −Im T a

)
. (44)

This convenient form for the La provides the motivation for the choice of subscripts in eq. (40)
[cf. footnote 5].

Likewise, the vacuum expectation value [cf. eq. (39)] in the real representation is given by

~v =




0
0
v
0
0
0




. (45)

To determine the vector boson squared-mass matrix, we first compute

L1~v =
g√
2




0
0
0
0
v
0




, L2~v =
g√
2




0
v
0
0
0
0




, L3~v = g




0
0
0
0
0

−v




, L4~v = g′




0
0
0
0
0
v




. (46)
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Using eq. (14), it then follows that

M2
ab = (La~v , Lb~v) =




1
2
g2v2 0 0 0

0 1
2
g2v2 0 0

0 0 g2v2 −gg′v2

0 0 −gg′v2 g′ 2v2




. (47)

We see that there are two degenerate gauge bosons, which we identify as W± [defined in
eq. (35)] with

m2
W = 1

2
g2v2 . (48)

The diagonalization of the lower 2× 2 block of eq. (47) is nearly identical to the computation
of the Standard Model (with a complex, hypercharge-one Higgs doublet). Indeed, the only
difference is the minus sign that appears in the off-diagonal term. The Z corresponds to the
eigenvector,

1√
g2 + g′ 2




0
0
g

−g′


 , m2

Z = (g2 + g′ 2)v2 , (49)

and the massless photon corresponds to

1√
g2 + g′ 2




0
0
g′

g


 , mγ = 0 . (50)

If we define sin θW ≡ g′/
√
g2 + g′ 2 , then we can identify,

Zµ = W 3
µ cos θW −Bµ sin θW ,

Aµ = W 3
µ sin θW +Bµ cos θW .

Note that that SU(2)×U(1) has spontaneously broken down to U(1), which we identify as the
gauge group of electromagnetism.

Following eqs. (16)–(18), we define a new basis for the Lie algebra, L̃a. The computation is
the same as the one performed in class in the case of the electroweak Standard Model. Thus,
we simply employ the results obtained in class,

L̃1 = L1 ,

L̃2 = L2 ,

L̃3 = L3 cos θW − L4 sin θW =
ig

cos θW

(
T 3 −Q sin2 θW

)
,

L̃4 = L3 sin θW + L4 cos θW = ieQ ,

where e = g sin θW = g′ cos θW .
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The explicit forms for L̃3 and L̃4 are as follows,

L̃3 =
g

cos θW




0 0 0 − cos 2θW 0 0
0 0 0 0 sin2 θW 0
0 0 0 0 0 1

cos 2θW 0 0 0 0 0
0 − sin2 θW 0 0 0 0
0 0 −1 0 0 0




, (51)

L̃4 = e




0 0 0 −2 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0




. (52)

To analyze the scalar sector of this model, we must specify the Higgs scalar potential. In
this case, the most general quartic gauge invariant scalar potential is

V (Φ) = −m2Φ†Φ + λ1(Φ
†Φ)2 − λ2

∑

a

(Φ†T aΦ)(Φ†T aΦ) . (53)

Note that this is somewhat more complicated than eq. (32), since there are two independent
gauge invariant quartic interactions for the case of a complex hypercharge-two scalar field.6

One can minimize eq. (53) and demonstrate that form2 > 0, there exists a global minimum
corresponding to eq. (39). Here, let us assume that such a global minimum exists. We can
then identify the Goldstone bosons, which are given by eq. (34). That is,

Ga =
1

ma

∑

j

(L̃a~v)jηj , (54)

where the ma are the (non-zero) masses of the gauge bosons and the ηj are the shifted scalar
fields defined by

Φ =




η1
η2

v + η3
η4
η5
η6




.

Then, eq. (54) yields

G1 = η5 =
√
2 Im Φ+ , G2 = η2 =

√
2Re Φ+ , G3 = −η6 = −

√
2 Im Φ0 , (55)

where we have used eqs. (48) and (49) to simplify our results.

6In the case of a real triplet of scalar fields, (ΦTΦ)2 is the only quartic invariant. Indeed, for a real multiplet
of scalar fields, the generators T a are antisymmetric matrices, and it follows that ΦTT aΦ = ΦiT

a
ijΦj = 0.
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The physical Higgs states are orthonormal to the Ga and can be determined by inspection,

H++ =
1√
2
(η1 + iη4) = Φ++ , H−− = [Φ++]† , H = η3 =

√
2Re Φ0 − v .

Thus, the complex scalar triplet takes the form

Φ =
1√
2





√
2H++

G2 + iG1

v +H − iG3



 ≡




H++

G+

1√
2
[v +H + iG0]



 ,

which defines the Goldstone states of definite charge, G± ≡ (G2 ± iG1)/
√
2 and G0, where

G− ≡ (G+)† and G0 = −G3.
In the unitary gauge, we can set G± = G0 = 0. Then,

Φ†Φ = |H++|2 + 1
2
|H|2 + vH + 1

2
v2 ,

Φ†T 1Φ = 0 ,

Φ†T 2Φ = 0 ,

Φ†T 3Φ = |H++|2 − 1
2
|H|2 − vH − 1

2
v2 .

Hence, eq. (53) yields

V (H++, H) = −m2
(
|H++|2 + 1

2
|H|2 + vH + 1

2
v2
)
+ λ1

(
|H++|2 + 1

2
|H|2 + vH + 1

2
v2
)2

−λ2

(
|H++|2 − 1

2
H2 − vH − 1

2
v2
)2

= constant + v
[
(λ1 − λ2)v

2 −m2
]
+
[
3
2
(λ1 − λ2)v

2 − 1
2
m2
]
H2

+
[
(λ1 + λ2)v

2 −m2
]
|H++|2 + cubic terms+quartic terms . (56)

The terms linear in H must vanish at the minimum of the scalar potential, which implies that

m2 = (λ1 − λ2)v
2 . (57)

I leave it as an exercise for the reader to check that an extremum of the scalar potential given
by eq. (53) exists with the vacuum expectation value of Φ given by eq. (57). Inserting the
result of eq. (57) into eq. (56), we obtain

V (H++, H) = constant + (λ1 − λ2)v
2H2 + 2λ2v

2|H++|2 + cubic terms+quartic terms .

Comparing the terms quadratic in the Higgs field with 1
2
m2

HH
2 +m2

H++ |H++|2, we conclude
that

m2
H = 2(λ1 − λ2)v

2 , m2
H++ = m2

H−− = 2λ2v
2 .

Since the squared-masses of the physical Higgs bosons must be positive, we must demand that
λ1 > λ2 > 0 in order to guarantee that the extremum of the scalar potential corresponding to
eq. (39) is a local minimum. These conditions also require that m2 > 0, in light of eq. (57).
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REMARKS: Using the complex representation of the scalar fields to obtain the gauge boson
and scalar mass eigenstates:

Following Section 4.6 of the class handout entitled Gauge Theories and the Standard Model,
one can make use of the following formulae for the gauge boson squared-mass matrix,

M2
ab = gagbν

†(T aT b + T bT a)ν = −ν†(LaLb + LbLa)ν , (58)

where the T a are hermitian generators and La ≡ igaT a. Using eq. (58), the gauge boson
squared-mass matrix is easily computed. In the complex representation of the scalar fields,
the vacuum expectation value ν ≡ 〈Φ〉 is given by eq. (39). Employing the explicit matrices of
the generators La given in eqs. (37) and (38), the gauge boson squared-mass matrix obtained
from eq. (58) reproduces eq. (47).7 We can diagonalize M2 using

(OM2OT )ab = (L̃aν)
†(L̃bν) + (L̃bν)

†(L̃aν) = m2
aδab .

In light of eqs. (49) and (50), we identify L̃1 = L1, L̃2 = L2, and

L̃3 =
1√

g2 + g′ 2

(
gL3 − g′L4

)
=

ig

cos θW

(
T 3 −Q sin2 θW

)
=

ig

cos θW



cos 2θW 0 0

0 − sin2 θW 0
0 0 −1


 ,

L̃4 =
1√

g2 + g′ 2

(
g′L3 + gL4

)
= ieQ = ie




2 0 0
0 1 0
0 0 0



 .

Note that L̃aν 6= 0 for a = 1, 2, 3 and L̃4ν = ieQν = 0, which implies that three Goldstone
bosons are present and provide masses for the W± and Z. It is convenient to use eqs. (48)
and (49) to write

mW = gv/
√
2 , mZ =

gv

cos θW
. (59)

It is then straightforward to evaluate,

L̃1ν = 1
2
igv



0
1
0


 , L̃1ν = 1

2
gv



0
1
0


 , L̃3ν = − igv√

2 cos θW



0
0
1


 .

Using the complex representation of scalar fields, the Goldstone boson fields are given by

Ga =
1

ma

[
φ

†L̃aν + (L̃aν)
†Φ
]
, (60)

where Φi ≡ νi + Φi and νi ≡ 〈Φi〉 is the (complex) scalar field vacuum expectation value.
Then, eq. (60) yields

G1 =
√
2 Im Φ+ , G2 =

√
2Re Φ+ , G3 = −

√
2 Im Φ0 ,

where we have used eq. (59) to simplify our results. Thus, we have reproduced eq. (55).

7One can repeat this calculation using the generators given in eq. (28). In this case, in order to preserve
U(1)EM, one must choose the vacuum expectation value of the form ν = 1

2
v(1 , −i , 0), so that Qν = 0. One

can check that with this choice, eq. (58) yields the gauge boson squared-mass matrix obtained in eq. (47).
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(c) If both doublet and triplet Higgs fields exist in nature, what does this exercise imply
about the parameters of the Higgs Lagrangian?

In the Standard Model with a complex hypercharge-one Higgs doublet with 〈Φ0〉 = v/
√
2,

one finds

m2
W = 1

4
g2v2 , m2

Z = 1
4
(g2 + g′ 2)v2 =⇒ ρ ≡ m2

W

m2
Z cos2 θW

= 1 .

This can be compared with the results of parts (a) and (b). In a model with a real hypercharge-
zero Higgs triplet with 〈Φ0〉 = v,

m2
W = g2v2 , m2

Z = 0 =⇒ ρ ≡ m2
W

m2
Z cos2 θW

= ∞ .

In a model with a complex hypercharge-two Higgs triplet with 〈Φ0〉 = v/
√
2,

m2
W = 1

2
g2v2 , m2

Z = (g2 + g′ 2)v2 =⇒ ρ ≡ m2
W

m2
Z cos2 θW

=
1

2
.

In a model with multiple Higgs bosons, each vacuum expectation value contributes to the
W and the Z mass. Since experimental observation confirms that ρ ≃ 1, the conclusion of this
analysis is that if Higgs triplet fields also exist, then there are two possibilities. Either, the
vacuum expectation values of the triplet fields are much smaller than that of the doublet field,
in which case we would expect that the relation ρ = 1 would be minimally disturbed. A second
possibility is that the vacuum expectation values are arranged such that the contribution of
the triplet fields to the W and Z masses cancels almost exactly. An example of such a model
was proposed by H. Georgi and M. Machacek in 1985.8

For your amusement, I provide a general formula for ρ in a model with an arbitrary number
of Higgs multiplets of isospin T and hypercharge Y (note that a scalar field with weak isospin
T has 2T + 1 components),9

ρ ≡ m2
W

m2
Z cos2 θW

=

∑
T,Y

[
4T (T + 1)− Y 2

]
|vT,Y |2cT,Y∑

T,Y 2Y 2|vT,Y |2
, (61)

where 〈Φ0(T, Y )〉 ≡ vT,Y defines the vacuum expectation value of each neutral Higgs field of
weak isospin T and hypercharge Y . In addition, we have introduced the notation,

cT,Y =




1 , (T, Y ) ∈ complex representation,

1
2
, (T, Y ) ∈ real representation.

Here, we employ a rather narrow definition of a real representation, which consists of a real
multiplet of scalar fields with integer weak isospin and Y = 0.

It is a simple matter to check that eq. (61) reproduces the cases considered above. Note
that Higgs doublet and triplet fields have weak isospins T = 1

2
and T = 1, respectively.

8H. Georgi and M. Machacek, Nucl. Phys. B262, 463 (1985).
9See eq. (4.1) of J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide (Westview

Press, Boulder, CO, 2000).
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3. In the Standard Model, the Higgs boson H couples to two gluons via a one-loop triangle
diagram containing top quarks in the loop.10

(a) Compute the amplitude for the decay of the Higgs boson to two gluons (H → gg), as a
function of mt, mH , GF (the Fermi constant) and αs ≡ g2s/(4π), using perturbation theory in
the one loop approximation. Simplify your answer by invoking the kinematics of the problem,
i.e. the conservation of four-momentum and the on-shell conditions for the external particles.

There are two Feynman diagrams contributing to H → gg at one loop:

q

q − p

k1, µ, a

k2, ν, b

p q − k1

(A)

q

q − p k1, µ, a

k2, ν, b

p q − k2

(B)

Diagrams (A) and (B) differ in that the outgoing gluons are interchanged. The relevant
Feynman rules for the vertices are:

µ, a

i

j

−igsγ
µT a

ij

i

j

H − igmt

2mW
δij

where i and j are the color indices of the top quark and a is the (adjoint) color index of
the gluon. It is convenient to rewrite g in terms of the Fermi constant GF [cf. eq. (29.74) of
Schwartz],

√
2GF ≡ g2

4m2
W

.

Applying the Feynman rules, and recalling the minus sign for the closed fermion loop,

iMA = −(
√
2GF )

1/2

∫
d4q

(2π)4
i3Tr

[
(−imt)(q/− /p+mt)(−igsγ

ν)(q/− /k1 +mt)(−igsγ
µ)(q/+mt)

]

(q2 −m2
t + iε)

[
(q − p)2 −m2

t + iε
][
(q − k1)2 −m2

t + iε
]

×Tr(T bT a) ǫ∗µa(k1, λ1)ǫ
∗
ν b(k2, λ2) , (62)

where the factor of i3 arises from the three fermion propagators. Next, Mb is obtained from
Ma by interchanging k1 ↔ k2, µ ↔ ν and a ↔ b,

iMB = −(
√
2GF )

1/2

∫
dnq

(2π)n
i3 Tr

[
(−imt)(q/− /p +mt)(−igsγ

µ)(q/− /k2 +mt)(−igsγ
ν)(q/+mt)

]

(q2 −m2
t + iε)

[
(q − p)2 −m2

t + iε
][
(q − k2)2 −m2

t + iε
]

×Tr(T aT b) ǫ∗µa(k1, λ1)ǫ
∗
ν b(k2, λ2) . (63)

10In this problem, we shall work in the approximation where all quarks are massless, with the exception of
the top quark, in which case only triangle diagrams with top quarks in the loop contribute.
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We now evaluate the trace that appears in the numerator in eq. (62). First, the trace over
color yields Tr(T aT b) = 1

2
δab. Next,

Tr
[
(q/− /p+mt)γ

ν(q/− /k1 +mt)γ
µ(q/+mt)

]

= m3
t Tr(γ

µγν) +mt

{
Tr
[
(q/− /p)γν(q/− /k1)γ

µ
]
+ Tr

[
(q/− /p)γνγµq/

]
+ Tr

[
γν(q/− /k1)γ

µq/
]}

= 4m3
t g

µν + 4mt

{
(q − p)µ(q − k1)

ν + (q − p)ν(q − k1)
µ − gµν(q − p)·(q − k1)

+(q − p)νqµ + gµνq ·(q − p)− (q − p)µqν + (q − k1)
νqµ + (q − k1)

µqν − gµνq ·(q − k1)

}

= 4mt

{
gµν
[
m2

t − q2 + 2q ·k1 − p·k1
]
+ 4qµqν − 2qµ(k1 + p)ν − 2kµ

1 q
ν + pµkν

1 + kµ
1 p

ν

}
. (64)

To perform the integral over q, we introduce Feynman parameters. Following Appendix
B.1.1 of Schwartz,

1

ABC
= 2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
1

[xA + yB + zC]3
.

Integrating over z yields,

1

ABC
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[xA + yB + (1− x− y)C]3
. (65)

Identifying A≡ (q−p)2−m2
t , B ≡ (q−k1)

2−m2
t and C ≡ q2−m2

t , the resulting denominator
factor in eq. (65), denoted by D below, is given by

D = (1−x−y)(q2−m2
t )+
[
(q−p)2−m2

t

]
x+
[
(q−k1)

2−m2
t

]
y = q2−2q ·(px+k1y)−m2

t+p2x+k2
1y+iε .

For the physical H → gg decay, we have p2 = m2
H and k2

1 = 0, where mH is the mass of the
Higgs boson. Then,

D = q2 − 2q ·(px+ k1y) +m2
Hx−m2

t + iε .

Hence, the factor of 2 from the Feynman parameter integration cancels the factor of 1
2
from

the color trace, and we obtain

MA = 4ig2sm
2
t (GF

√
2)1/2 ǫ∗µa(k1, λ1)ǫ

∗
ν a(k2, λ2)

∫ 1

0

dx

∫ 1−x

0

dy

×
∫

dnq

(2π)n
gµν
[
m2

t − q2 + 2q ·k1 − p·k1
]
+ 4qµqν − 2qµ(k1 + p)ν − 2kµ

1 q
ν + pµkν

1 + kµ
1p

ν

[
q2 − 2q ·(px+ k1y) +m2

Hx−m2
t + iε

]3 .

It is convenient to isolate the numerator term that is quadratic in q, since this term yields a
potential divergence. Let us write

MA =
[
M(1)µν

A +M(2)µν
A

]
ǫ∗µa(k1, λ1)ǫ

∗
ν a(k2, λ2) , (66)
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where

M(1)µν
A = 4ig2sm

2
t (GF

√
2)1/2

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4q

(2π)4
4qµqν − gµνq2

[
q2 − 2q ·(px+ k1y) +m2

Hx−m2
t + iε

]3

M(2)µν
A = 4ig2sm

2
t (GF

√
2)1/2

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4q

(2π)4

× gµν(m2
t + 2q ·k1 − p·k1)− 2qµ(k1 + p)ν − 2kµ

1 q
ν + pµkν

1 + kµ
1 p

ν

[
q2 − 2q ·(px+ k1y) +m2

Hx−m2
t + iε

]3 .

Using the formulae given in the class handout entitledUseful formulae for computing one-

loop integrals,11

∫
dnq

(2π)n
4qµqν − gµνq2

[
q2 − 2q ·P −M2 + iε

]3 =
−iΓ(ǫ)(4π)ǫ

32π2
(P 2 +M2)−1−ǫ

[
4ǫP µP ν − ǫ(2P 2 +M2)gµν

]
,

where ǫ ≡ 2 − 1
2
n. Using ǫΓ(ǫ) = Γ(1 + ǫ), we see that the above integral is finite as ǫ → 0.

Hence taking the n → 4 limit,

lim
n→4

∫
dnq

(2π)n
4qµqν − gµνq2

[
q2 − 2q ·P −M2 + iε

]3 =
−i
[
4P µP ν − gµν(2P 2 +M2)

]

32π2(P 2 +M2)
,

where one can now set ε = 0 in the denominator.
In computing M(1)µν

a , we identify P = px+ k1y and M2 = m2
Hx−m2

t . Hence,

P 2 +M2 = m2
t −m2

Hx(1− x) + 2p·k1xy = m2
t −m2

Hx(1− x− y) .

At the final step above, we evaluated p·k1 = 1
2
m2

H using the kinematic constraints of the
H → gg decay.12 Hence,

M(1)µν
A =

g2sm
2
t (G

√
2)1/2

8π2

∫ 1

0

dx

∫ 1−x

0

dy

{
−2gµν+

4(px+ k1y)
µ(px+ k1y)

ν + gµν(m2
t −m2

Hx)

m2
t −m2

Hx(1− x− y)

}
.

(67)
Further simplification can be achieved by using the properties of the gluon polarization vectors,

kµ
1 ǫµ(k1, λ1) = kν

2ǫν(k2, λ2) = 0 . (68)

By writing p = k1 + k2 in the numerator of the integrand in eq. (67), we can then omit any
terms proportional to kµ

1 and/or kν
2 . The end result is,

M(1)µν
A =

g2sm
2
t (GF

√
2)1/2

8π2

∫ 1

0

dx

∫ 1−x

0

dy

[
−m2

t +m2
Hx(1− 2x− 2y)

]
gµν + 4x(x+ y)kµ

2k
ν
1

m2
t −m2

Hx(1− x− y)
.

(69)

11Do not confuse ǫ ≡ 2− 1

2
n with the infinitesimal number ε that appears in the propagator denominators.

12Since four-momentum conservation implies that k2 = p− k1, we have

0 = k2
2
= (p− k1)

2 = p2 − 2p·k1 + k2
1
= m2

H − 2p·k1 ,

after using k2
1
= k2

2
= 0 and p2 = m2

H . Hence, we conclude that m2

H = 2p·k1.
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To evaluate M(2)µν
A we can set n = 4 (or equivalently set ǫ = 0) when evaluating the

relevant integral given in the class handout entitled Useful formulae for computing one-loop

integrals, since this loop integral is manifestly finite.

M(2)µν
A =

g2sm
2
t (GF

√
2)1/2

8π2

∫ 1

0

dx

∫ 1−x

0

dy

×gµν
[
m2

t − p·k1 + 2k1 ·(px+ k1y)
]
+ pµkν

1 + pνkµ
1 − 2(px+ k1y)

µ(k1 + p)ν − 2(px+ k1y)
ν(k1 + p)µ

m2
t −m2

Hx(1− x− y)
.

We can simplify this result by imposing the kinematical constraints [cf. footnote 12],

k2
1 = k2

2 = 0 , p2 = m2
H = 2p·k1 .

In addition, we write p = k1+k2 and drop terms proportional to kµ
1 and/or kν

2 , as noted below
eq. (68). The end result it,

M(2)µν
A =

g2sm
2
t (
√
2GF )

1/2

8π2

∫ 1

0

dx

∫ 1−x

0

dy
gµν
[
m2

t +m2
H(x− 1

2
)
]
+ (1− 4x)kµ

2k
µ
1

m2
t −m2

Hx(1 − x− y)
. (70)

Adding up eqs. (69) and (70) yields,

Mµν
A =

g2sm
2
t (
√
2GF )

1/2

16π2

(
m2

Hg
µν − 2kµ

2k
ν
1

) ∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

m2
t −m2

Hx(1− x− y)
.

We can immediately write down the result for Mµν
B by interchanging k1 ↔ k2, µ ↔ ν and

a ↔ b. It follows that Mµν
A = Mµν

B . Hence, the sum of the amplitudes resulting from the two
contributing one-loop Feynman diagrams is

M =
αsm

2
t (
√
2GF )

1/2

2π

(
m2

Hg
µν−2kµ

2k
ν
1

)
ǫ∗µ a(k1, λ1)ǫ

∗
ν a(k2, λ2)

∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

m2
t −m2

Hx(1− x− y)
,

after writing αs ≡ g2s/(4π).

(b) Denote the amplitude for H → gg by Mµν , where µ and ν are the Lorentz indices of
the two gluons. Gauge invariance implies that kµ

1Mµν = kν
2Mµν = 0, where k1 and k2 are

the respective gluon momenta.13 Check that your amplitude obtained in part (a) respect this
requirement.

The result from part (a) yields

Mµν =
αsgm

2
t (
√
2GF )

1/2

2π

(
m2

Hgµν − 2k2µk1ν
) ∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

m2
t −m2

Hx(1 − x− y)
. (71)

13In this computation, no three gluon vertex appears since the gluon does not couple directly to the Higgs
boson. Consequently, the Ward identities of QED also apply here.
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It is straightforward to verify that kµ
1Mµν = kν

2Mµν = 0. For example,

kµ
1

(
m2

Hgµν − 2k2µk1ν
)
= (m2

H − 2k1 ·k2)k1ν = 0 ,

after noting that
2k1 ·k2 = (k1 + k2)

2 − k2
1 − k2

2 = p2 = m2
H , (72)

where we have used p = k1 + k2 and k2
1 = k2

2 = 0. Likewise,

kν
2

(
m2

Hgµν − 2k2µk1ν
)
= (m2

H − 2k1 ·k2)k2µ = 0 .

(c) Work out all integrals explicitly and evaluate the imaginary part of Mµν . For what
range of mt/mH is the amplitude purely real? Check your result for the imaginary part by
using Cutkosky’s rules [cf. problem 2 of Problem Set 2].

HINT: You may find the following integral useful:

∫ 1

0

dy

y
log
[
1− 4Ay(1− y)

]
= −2(sin−1

√
A)2

for 0 ≤ A ≤ 1. For values of A outside this region, you may analytically continue the above
result. The imaginary part of this integral is easily computed once the iǫ factor is restored in
the argument of the logarithm.

We examine the integral,

I =

∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

1− Rx(1− x− y)
, (73)

where R ≡ m2
H/m

2
t . Rewrite the numerator as

4x(1− x− y)− 1 =
4
[
Rx(1− x− y)− 1

]
+ 4− R

R
.

Then,

I = − 4

R

∫ 1

0

dx

∫ 1−x

0

dy +
4− R

R

∫ 1

0

dx

∫ 1−x

0

dy
1

1−Rx(1 − x− y)

= − 2

R
+

R − 4

R2

∫ 1

0

dx

x
ln
[
1− Rx(1− x)

]
. (74)

Thus, we must now evaluate

J ≡
∫ 1

0

dx

x
ln
[
1−Rx(1 − x)

]
.

Using the hint provided,

J = −2
[
sin−1

(
1
2

√
R
)]2

, for 0 ≤ R ≤ 4 .
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To analytically continue beyond R = 4, we make use of

sin−1 z = −i ln
[
iz +

√
1− z2

]

For z > 1, we have
√
1− z2 = ±i

√
z2 − 1, where the sign ambiguity will be addressed shortly.

Then,

sin−1 z = − i ln
[
i
(
z ±

√
z2 − 1

)]
= −i ln

[
eiπ/2

(
z ±

√
z2 − 1

)]

= −i
[
1
2
iπ + ln

(
z ±

√
z2 − 1

)]
= 1

2
π ∓ i ln

(
z ±

√
z2 − 1

)
.

To obtain the final result above, we used the fact that

z −
√
z2 − 1 =

1

z +
√
z2 − 1

,

which implies that
ln
(
z −

√
z2 − 1

)
= − ln

(
z +

√
z2 − 1

)
.

To resolve the sign ambiguity, we shall compute Im J directly following the procedure of
Problem 2 of Problem Set 2. Here, we will need to put back the factor of iε by replacing
m2

t → m2
t − iε. Since R ≡ m2

H/m
2
t , this means that we should replace R → R + iε. Noting

that x(1 − x) > 0 for 0 < x < 1, we examine,

J ≡
∫ 1

0

dx

x
ln
[
1− Rx(1− x)− iε

]
.

Following eqs. (25)–(27) of Solution Set 2, the roots of the argument of the logarithm are
given by

x± = 1
2

[
1±

√
1− 4

R

]
. (75)

Thus,

Im J = Θ(R− 4)

∫ x+

x
−

dx

x
Im ln

[
1− Rx(1− x)− iε

]
= −Θ(R− 4)π

∫ x+

x
−

dx

x

= −Θ(R− 4)π ln

(
x+

x−

)
= −Θ(R − 4)π ln



1 +

√
1− 4

R

1−
√

1− 4
R


 . (76)

It follows that for R > 4, the correct analytic continuation is

J = −2

[
1
2
π + i ln

(√
R

2
+

√
R

4
− 1

)]2
.

We check this by computing Im J ,

Im J = −2π ln

(√
R

2
+

√
R

4
− 1

)
= −π ln

(√
R

2
+

√
R

4
− 1

)2

= −π ln




1 +

√
1− 4

R

1−
√
1− 4

R



 ,
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in agreement with eq. (76). We can thus rewrite J in the following form,

J =





−2
[
sin−1

(
1
2

√
R
)]2

, for 0 ≤ R ≤ 4

−1
2

[
π + i ln

(
1+
√

1− 4

R

1−
√

1− 4

R

)]2
. for R > 4 .

It is convenient to introduce a function f(R) defined by

f(R) =





sin−1
(
1
2

√
R
)
, for 0 ≤ R ≤ 4

1
2

[
π + i ln

(
1+
√

1− 4

R

1−
√

1− 4

R

)]
. for R > 4 .

(77)

Then J = −2[F (R)]2, and eq. (74) yields,

I = − 2

R

{
1 +

(
1− 4

R

)[
f(R)

]2
}

.

In light of eq. (73), we see that eq. (71) yields

Mµν = −αsm
2
t (
√
2GF )

1/2

πm2
H

(
m2

Hgµν − 2k2µk1ν
){

1 +

(
1− 4

R

)[
f(R)

]2
}

. (78)

In particular,

ImMµν =
αsm

2
t (
√
2GF )

1/2

2m2
H

(
m2

Hgµν − 2k2µk1ν
)( 4

R
− 1

)
ln




1 +

√
1− 4

R

1−
√

1− 4
R



Θ(R− 4) . (79)

Thus, ImMµν 6= 0 when R = m2
H/m

2
t > 4, which corresponds to mH > 2mt. In this case,

the kinematics allows the Higgs boson to decay into a tt̄ pair. Thus, we can cut the triangle
diagrams to reveal the on-shell top quarks.

As a check of our calculation, we can evaluate ImMµν directly using Cutkosky’s rules.
There is one way to “cut” each of the two Feynman diagrams contributing to H → gg at one
loop such that the internal cut lines are on-shell:

q

q − p

k1, µ, a

k2, ν, b

p q − k1

q

q − p k1, µ, a

k2, ν, b

p q − k2

The cut propagators are evaluated according to Cutkosky’s cutting rules,

1

q2 −m2 + iε
−→ −2πiδ(q2 −m2)Θ(q0) ,

1

(q − p)2 −m2 + iε
−→ −2πiδ

(
(q − p)2 −m2

)
Θ(p0 − q0) .
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Inserting these replacements in eqs. (62) and (63), we obtain expressions for 2i ImMA and
2i ImMB. As above, it is convenient to write M = Mµν ǫ∗µ a(k1, λ1)ǫ

∗
ν a(k2, λ2) after evaluating

Tr(T aT b) = 1
2
δab and summing over colors. Since the contributions of both diagrams are equal,

it is sufficient to compute 2i ImMA and multiply by 2. This factor of 2 is canceled by the 1
2

from the color trace, and we obtain

ImMµν = 2(
√
2GF )

1/2g2sm
2
t (−2πi)2

∫
d4q

(2π)4
δ(q2 −m2

t )Θ(q0)δ
(
(q − p)2 −m2

t

)
Θ(p0 − q0)

× gµν
[
m2

t − q2 + 2q ·k1 − p·k1
]
+ 4qµqν − 2qµ(k1 + p)ν − 2kµ

1 q
ν + pµkν

1 + kµ
1 p

ν

(q − k1)2 −m2
t + iε

.

after using eq. (64). In light of eq. (68) we can omit any terms proportional to kµ
1 and/or kν

2

(after writing p = k1 + k2). We may use the delta function to set q2 = m2
t in the numerator

and denominator above. In addition, k2
1 = 0 for the massless gluon. The end result is

ImMµν = 32π3(
√
2GF )

1/2αsm
2
t

∫
d4q

(2π)4
δ(q2 −m2

t )Θ(q0)δ
(
(q − p)2 −m2

t

)
Θ(q0 − p0)

× gµν(2q − p)·k1 + 4qµ(q − k1)
ν + kµ

2k
ν
1

2q ·k1
, (80)

after writing g2s = 4παs. Note that it is now safe to drop the iε term. The integral over q in
eq. (80) was evaluated in the solution to problem 2(b) of Problem Set 2. Using eq. (33) of
Solution Set 2 and adapting this solution to the integral of eq. (80), we obtain
∫

d4q

(2π)4
δ(q2 −m2

t )Θ(q0)δ
(
(q − p)2 −m2

t

)
Θ(p0 − q0) =

β

128π4
Θ
(
mH − 2mt

) ∫
dΩq , (81)

where

β ≡
(
1− 4m2

t

m2
H

)1/2

. (82)

Note that in the solution to problem 2(b) of Problem Set 2, there was no dependence on the
angles of the unit three-vector q̂, so the integration over dΩq was replaced by 4π. In eq. (80),
the integrand does depend on angles, so we have retained the integration over dΩq. Hence,

ImMµν =
(
√
2GF )

1/2αsm
2
tβ

4π

∫
dΩq

gµν(2q − p)·k1 + 4qµ(q − k1)
ν + kµ

2k
ν
1

2q ·k1
.

Thus, we need to evaluate three integrals,

I ≡
∫

dΩq
1

2q ·k1
, Jµ ≡

∫
dΩq

qµ

2q ·k1
, Kµν ≡

∫
dΩq

qµqν

2q ·k1
. (83)

It then follows that

ImMµν =
(
√
2GF )

1/2αsm
2
tβ

4π

[
4Kµν + 2gµνk1 ·J − 4Jµkν

1 + (kµ
2k

ν
1 − 1

2
m2

Hg
µν)I

]
Θ(mH−2mt) ,

(84)
after using p·k1 = 1

2
m2

H [cf. footnote 12].
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To evaluate the integrals listed in eq. (83), it is convenient to work in the rest frame of the
Higgs bosons where the gluons are emitted along the z-direction. Since q and p− q represent
incoming on-shell top quarks, it follows that

q = 1
2
mH(1 ; β sin θ cosφ , β sin θ sin φ , β cos θ) ,

k1 =
1
2
mH(1 ; 0 , 0 , 1) ,

k2 =
1
2
mH(1 ; 0 , 0 , −1) ,

p = mH(1 ; 0 , 0 , 0) , (85)

where β is defined in eq. (82). All relevant dot products can now be computed. For example,
2q ·k1 = 1

2
m2

H(1− β cos θ). Thus,

I =
4π

m2
H

∫ 1

−1

d cos θ

1− β cos θ
=

4π

m2
Hβ

ln

(
1 + β

1− β

)
. (86)

Due to the integration over φ, we see that J1 = J2 = 0, whereas

J0 =
2π

mH

∫ 1

−1

d cos θ

1− β cos θ
=

2π

mHβ
ln

(
1 + β

1− β

)
.

J3 =
2πβ

mH

∫ 1

−1

cos θ d cos θ

1− β cos θ
=

2π

mHβ

[
ln

(
1 + β

1− β

)
− 2β

]
.

That is,

Jµ =
4π

m2
H

[
(k2 − k1)

µ +
1

β
ln

(
1 + β

1− β

)
kµ
1

]
. (87)

There is an alternative method for deriving eq. (87), which is based in the observation that
covariance with respect to Lorentz transformations implies that

Jµ = Akµ
1 +Bkµ

2 , (88)

since k1 and k2 are only two independent four-vectors in the problem. Multiplying eq. (88)
by k1µ and k2µ, respectively, yields

B =
4π

m2
H

,

and

A =
2π

m2
H

∫ 1

−1

d cos θ
q ·k1
q ·k2

=
2π

m2
H

∫ 1

−1

1 + β cos θ

1− β cos θ
d cos θ =

4π

m2
Hβ

[
ln

(
1 + β

1− β

)
− β

]
.

Inserting the above expressions for A and B back into eq. (88) confirms the result of eq. (87).
Using k1 ·k2 = 1

2
m2

H , it follows that k1 ·J = 2π.
Likewise, covariance with respect to Lorentz transformations implies that

Kµν = Agµν +
1

m2
H

[
Bkµ

1k
ν
1 + Ckµ

1k
ν
2 +Dkµ

2k
ν
1 + Ekµ

2k
ν
2

]
.
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Multiplying this equation by gµν , k1µk1ν , k1µk2ν , k2µk1ν , and k2µk2ν , respectively, yields five
equations and five unknowns. First,

4A+ 1
2
(C +D) =

∫
dΩq

q2

2q ·k1
= m2

t I =
4πm2

t

m2
Hβ

ln

(
1 + β

1− β

)
, (89)

after using q2 = m2
t (since the top quark is on-shell) and k2

1 = k2
2 = 0 (corresponding to the

massless gluons). The next three equations are:

E =
4π

m2
H

∫ 1

−1

q ·k1 d cos θ = π

∫ 1

−1

(1− β cos θ) d cos θ = 2π , (90)

A+ 1
2
D =

2π

m2
H

∫ 1

−1

q ·k2 d cos θ = 1
2
π

∫ 1

−1

(1 + β cos θ) d cos θ = π , (91)

A+ 1
2
C =

2π

m2
H

∫ 1

−1

q ·k2 d cos θ = 1
2
π

∫ 1

−1

(1 + β cos θ) d cos θ = π . (92)

Eqs. (91) and (92) imply that C = D = 2(π − A) . Subtracting the sum of eqs. (91) and (92)
from eq. (89) yields

A =
2πm2

t

m2
Hβ

ln

(
1 + β

1− β

)
− π . (93)

The fifth equation is

B =
4π

m2
H

∫ 1

−1

(q ·k2)2
q ·k1

d cos θ = 2π

∫ 1

−1

(1 + β cos θ)2

1− β cos θ
d cos θ =

8π

β

[
ln

(
1 + β

1− β

)
− 3

2
β

]
. (94)

Combining the results obtained above, we conclude that

Kµν =
2πm2

t

m2
Hβ

ln

(
1 + β

1− β

)[
gµν − 2

m2
H

(
kµ
1k

ν
2 + kµ

2k
ν
1

)]
+

8π

m2
Hβ

ln

(
1 + β

1− β

)
kµ
1k

ν
1

−πgµν +
2π

m2
H

(
kµ
2k

ν
2 + 2kµ

1k
ν
2 + 2kµ

2k
ν
1 − 6kµ

1k
ν
1

)
. (95)

We may omit all terms proportional to kµ
1 and/or kµ

2 , since these terms will vanish when
contracted with the gluon polarization vectors. Hence, it is sufficient to employ the following
expressions in eq. (84),

Jµ =
4π

m2
H

kµ
2 , (96)

Kµν =
2πm2

t

m2
Hβ

ln

(
1 + β

1− β

)[
gµν − 2

m2
H

kµ
2k

ν
1

]
− π

(
gµν − 4

m2
H

kµ
2k

ν
1

)
. (97)

Noting that

2gµνk1 ·J − 4Jµkν
1 = 4π

(
gµν − 4

m2
H

kµ
2k

ν
1

)
,

it then follows from eq. (84) that

ImMµν =
(
√
2GF )

1/2αsm
2
t

2m2
H

(
4m2

t

m2
H

− 1

)
ln

(
1 + β

1− β

)(
m2

Hg
µν − 2kµ

2k
ν
1

)
Θ(mH − 2mt) . (98)

This result coincides with that of eq. (79), which completes the check of our calculation.
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(d) Evaluate Mµν in the limit of mt → ∞.

The limit of mt → ∞ corresponds to R = m2
H/m

2
t → 0. Using eq. (77), it follows that in

the limit of R → 0,

1 +

(
1− 4

R

)[
f(R)

]2
= 1 +

(
1− 4

R

)[
sin−1

(
1
2

√
R
)]2 ≃ 1 +

(
1− 4

R

)


√
R

2
+

1

6

(√
R

2

)3



2

≃ 1 +

(
1− 4

R

)
R

4

(
1 +

R

24

)2

≃ 1 +

(
R

4
− 1

)(
1 +

R

12

)
≃ R

6
.

Hence, eq. (78) yields

Mµν(H → gg)

∣∣∣∣
mt→∞

= −αs(
√
2GF )

1/2

6π

(
m2

Hgµν − 2k2µk1ν
)
. (99)

(e) The dominant decay of the Higgs boson is into a pair of bottom quarks, H → bb̄.
Evaluate the ratio of decay rates:

Γ(H → gg)

Γ(H → bb̄)

in the limit where mt ≫ mH . In obtaining the decay rates into bb̄ and gg respectively, you
should sum the squared-amplitude over the final state spins and colors, and then evaluate the
results numerically.

Using the results of Section 5.1 of Schwartz, the decay rate in the rest frame of the Higgs
boson is given by

Γ =
|~k|

32π2m2
H

∑

colors
spins

∫
|M|2 dΩ , (100)

where |~k| = 1
2
λ1/2(m2

H , m
2
1, m

2
2)/mH is the magnitude of the three-momentum of one of the

decaying particles in the rest frame of the Higgs boson. Here, m1 and m2 are the final
state particle masses and λ(a, b, c) ≡ (a + b − c)2 − 4ab is the triangle function of relativistic
kinematics. After the sum over final state spins and colors, the resulting squared-amplitude
is independent of angles. Thus, the integration over dΩ is trivial and yields 4π.

For H → gg, the identical particles in the final state imply that the integration over 4π
steradians constitutes double counting, so we must divide by 2. Using |~k| = 1

2
mH (since the

gluons are massless), and including the factor of 1
2
for identical final state particles,

Γ(H → gg) =
1

32πmH

∑

colors
spins

|M|2 . (101)
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Hence, employing eq. (99) in the limit of mt ≫ mH ,

M = −αs(
√
2GF )

1/2

6π

(
m2

Hgµν − 2k2µk1ν
)
ǫµ ∗
a (k1, λ1)ǫ

ν ∗
a (k2, λ2) .

To sum over spins and colors, we make the following replacement14

∑

λ

ǫν ∗
a (k, λ) ǫβb (k, λ) −→ −δab g

νβ . (102)

It then follows that

∑

colors
spins

|M|2 =
√
2GFαs

36π2

(
m2

Hgµν − 2k2µk1ν
)(
m2

Hgαβ − 2k2αk1β
)[
−δabg

µα
][
−δabg

νβ
]
, (103)

=

√
2GFα

2
s

36π2
4(m4

H −m2
Hk1 ·k2 + k2

1k
2
2)δaa =

4
√
2GFα

2
sm

4
H

9π2
, (104)

after using k1 ·k2 = 1
2
m2

H [cf. eq. (72)], k2
1 = k2

2 = 0 and
∑

a δaa = 8 (where we have summed
over the color SU(3) adjoint indices). Inserting the above result into eq. (101), we end up with

Γ(H → gg) =

√
2GFα

2
sm

3
H

72π3
. (105)

The decay H → bb̄ arises at tree-level. We employ the Feynman rule for the Hbb̄ vertex,

p

p1

p2

i

j

H − igmb

2mW
δij

where the momentum of the decaying Higgs boson is p and the two final state momenta p1
and p2 shown above should be taken as outgoing. The indices i and j label the color indices
of the b quarks. The decay amplitude is then given by

iM = −i(
√
2GF )

1/2mbui(p1, λ1)vi(p2, λ2) ,

Squaring the amplitude and summing over spins and colors yields
∑

colors
spins

|M|2 =
√
2GF m2

b δijδij Tr
[
(/p2 −mb)(/p1 +mb)

]

= 4
√
2GF δii(p1 ·p2 −m2

b) = 6
√
2GF m2

b(m
2
H − 4m2

b) , (106)

In the final step, we made use of the kinematics of the decay, where

2p1 ·p2 = (p1 + p2)
2 − p21 − p22 = m2

H − 2m2
b ,

14As discussed in the solution to problem 2(b) in Solution Set 3, eq. (102) is a valid replacement given that
kµ
1
Mµν = kν

2
Mµν = 0 has been verified in part (b) of this problem.
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and we summed over the b quark colors using
∑

i δii = 3. Inserting the result of eq. (106) into

eq. (100), and using |~k| = 1
2

√
m2

H − 4m2
b , we end up with

Γ(H → bb̄) =
3
√
2GFm

2
b(m

2
H − 4m2

b)
3/2

8πm2
H

. (107)

Since mH ≫ mb, we can approximate

Γ(H → bb̄) =
3
√
2GFm

2
bmH

8π
. (108)

Dividing eqs. (105) and (108), and using αs ≃ 0.12, mH ≃ 125 GeV and mb ≃ 4.5 GeV, we
obtain

Γ(H → gg)

Γ(H → bb̄)
≃ α2

sm
2
H

27π2m2
b

≃ 0.04 . (109)

REMARK: It turns out that the tree-level predictions for Γ(H → gg) and Γ(H → bb̄) are
significantly modified by QCD radiative corrections. The numerator of eq. (109) is underes-
timated by nearly a factor of 2 and the denominator is overestimated by nearly a factor of 2.
Consequently the ratio given in eq. (109) is underestimated by a factor of about 3.5. The re-
sults of a more complete computation that takes these radiative corrections into effect are pro-
vided at https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR
and yield Γ(H → gg)/Γ(H → bb̄) ≃ 0.14 for mH = 125 GeV.
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