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Let Θ00(x, t) be the energy density of a classical field theory. We
call a solution φ of the equation of motion (EOM) dissipative if

lim
t→∞

max
x

Θ00(x, t) = 0.

Not all theories need be like this! There exist theories with
non-dissipative behavior and these include some spontaneously
broken gauge theories.
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A simple example

Consider one spatial dimension and ignore derivative interactions

L = 1
2∂µφ∂

µφ− U(φ).

The energy of any field configuration is given by

E =
∫

dx
(1

2 (∂0φ)2 + 1
2 (∂1φ)2 + U(φ)

)
.
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A simple example
For a time independent solution, the EOM reduces to

∂1∂1φ = U ′(φ).

For x ↔ t, φ↔ x this is F = ma for a particle in potential −U.

The equivalent particle problem for the case of φ4 theory [1].
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A simple example

1. If U has only one zero, then the only time independent
solution is where φ is in the ground state forever.

2. If U has more than one zero, we can find a time independent
solution of finite energy such that φ monotonically increases
from one zero of U at x = −∞ to another zero at x = +∞.
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To solve the EOM in the particle metaphor, we just set E = 0,

1
2

(dx
dt

)2
− U(x) = 0

which translates back to field theory like,

1
2 (∂1φ)2 = U(φ).

This has a solution

x = ±
∫ φ

φ0
dφ′

(
2U(φ′)

)− 1
2 .
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Are the solutions stable?

Yes, the EOM for our field is

�φ+ U ′(φ) = 0

Consider a perturbation δ(x , t) to our time independent solution
f (x), φ(x , t) = f (x) + δ(x , t) and keep only O(δ) terms. Our
perturbation must satisfy

�δ + U ′′(f )δ = 0.

This is invariant under time translations!
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Are the solutions stable?

We can write our solution as a superposition of normal modes1,

δ(x , t) = Re
∑

n
aneiωntψn(x)

Where the ψn satisfy the one dimensional Schrödinger equation,

−d2ψn
dx2 + U ′′(f )ψn = ω2

nψn.

If we can show that this Schrödinger equation has no negative
eigenvalues, then we have proved stability.

1 WLOG we work with discrete modes.
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Are the solutions stable?

If f (x) is a solution, then so is f (x + a) (the center of the lump
can be anywhere). For infinitesimal a,

f (x + a) = f (x) + df
dx a ∀x

= f (x) + δ(x , t)
= f (x) + ψ0(x).

So we found an eigenfunction ψ0(x) = df
dx with ω = 0. I claim it is

the ground state.
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Are the solutions stable?

We showed that f (x) is a monotonic function of x . This means
ψ0 = df

dx has no nodes. Recall from QM that, for one-dimensional
Schrödinger problems with arbitrary potential, the eigenfunction
with no nodes is the eigenfunction of lowest energy [5]. We have
bounded the energies to be greater than or equal to zero.
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More dimensions and a discouraging theorem
G.H. Derrick proves that we cannot continue this method for
higher dimensions.

The original paper from Derrick [3].
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More dimensions and a discouraging theorem

Theorem (Derrick’s Theorem)
Let φ be a set of scalar fields (assembled into a big vector) in one
time dimension and D space dimensions. Let the dynamics of
these fields be defined by

L = 1
2∂µφ∂

µφ− U(φ) (1)

and let U be non-negative and equal to zero for the ground
state(s) of the theory. Then for D > 2 the only non-singular
time-independent solutions of finite energy are the ground states.
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A Discouraging Theorem

Proof.
Define V1 ≡ 1

2
∫

dDx(∇φ)2 and V2 ≡
∫

dDxU(φ). V1 and V2 are
both non-negative and are simultaneously equal to zero only for
the ground states. Define

φ(x, λ) ≡ φ(λx)

where λ ∈ R+. For these functions the energy is given by

V [φ(x , λ)] = λ2−DV1 + λ−DV2.
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A Discouraging Theorem

Proof (cont.)
This must be stationary at λ = 1 wrt to all field configurations. So
it is necessary (but not sufficient) that V [φ(λ, x)] is stationary wrt
to the variation produced by λ.

dV [φ]
dλ

∣∣∣∣
λ=1

= 0.

such that we find

(D − 2)V1 + DV2 = 0

For D > 2 we force V1 = V2 = 0. Coleman suggests Derrick’s
theorem even holds for D=2, but this is not correct. Please see
Appendix 1.
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What can we do?

I Introduce gauge fields
I Introduce Fermion fields
I Find time-dependant non-dissipative behavior
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Why do gauge theories get around Derrick’s theorem

Alone, they do not.

Theorem (Gauge Theory Derrick’s Theorem)
For the standard non-Abelian gauge theory with Lagrangian

L = −1
4F a

µνFµνa

all finite energy time independent solutions are gauge transforms of
Aa
µ = 0, except for D = 4.
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Proof.
For a time-independent solution, L simplifies to

L = L1 − L2

where we have defined

L1 ≡
1
2

∫
dD(F a

0i )2 = 1
2

∫
dDx

(
∂i Aa

0 + ef abcAb
0Ac

i

)2

L2 ≡
1
4

∫
dDx(F a

ij )2.
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Proof (cont.)
Define

Aa
0(x ;σ, λ) = σλAa

0(λx)
Aa

i (x ;σ, λ) = λAa
i (λx)

and after substitution we find

L(σ, λ) = σ2λ4−DL1 − λ4−DL2.

This must be stationary wrt to the variations produced by λ and σ
at λ = σ = 1. This gives

(4− D)L1 − (4− D)L2 = 0
2L1 = 0

and so for D 6= 4 we force L1 = L2 = 0. This implies F a
µν = 0, so

that there exists a gauge where Aa
µ = 0 [1].
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Why gauge theories get around Derrick’s theorem
In a gauge theory with a scalar field, the general form of the total
energy is

E =
∫

dx
(
|F |2 + |Dφ|2 + U(φ)

)
≡ V4 + V2 + V0.

We scale the independent scalar and gauge fields as we did in the
previous proofs:

V (λ) = λ4−DV4 + λ2−DV2 + λ−DV0.

We find that for D = 2, 3 being on shell at λ = 1 leaves

V4 − V1 = 0 D = 2
V4 − V2 + 3V1 = 0 D = 3.
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Another path

Another way to find non-dissipative behavior in field theories is to
discover & use topological conservation laws.
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Another path: Topological Conservation laws

Again, finite energy solutions push the fields to a zero of U at
infinity. That is,

U (φ(±∞, t)) = 0,

and since the zeroes of U form a finite set,

∂0φ(±∞, t) = 0.

If U has multiple zeros, this equation can be used to prove the
existence of non-dissipative solutions!
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Another path: Topological Conservation laws
Consider the 1D φ4 theory again, where we shift the minima to
occur at U = 0:

U = λ

2φ
4 − µ2φ2 + µ4

2λ.

If we demand the initial condition at one time,

φ(∞, t) = −φ(−∞, t)

we have it for all time. By continuity in x , for all t there exists
some x s.t. φ = 0. At this point, Θ00(x , t) ≥ U(0). But
U(0) = µ2

2λ such that for all t

max
x

Θ00(x , t) ≥ µ2

2λ.

And so we have found non-dissipative behavior.
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Another path: Topological Conservation laws

What just happened? Recall the conservation law:

∂0φ(±∞, t) = 0.

It did not come from a symmetry in the Lagrangian. Instead, it
arose because we had a discrete set of zeros of the potential. In
another sense, we have divided the space of non-singular
finite-energy solutions at a fixed time into subspaces (labeled by
φ(±∞, t)) which are disconnected “in the normal topological
sense”[1].
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“In the normal topological sense”

Definition (Topological Space).
A topological space is an ordered pair (X , τ) where X is a set and
τ is a collection of subsets of X that satisfy

1. The empty set ∅ and X belong to τ .
2. Any (finite or infinite) union of members of τ belong to τ .
3. Any finite intersection of members of τ belong to τ .

The members of τ are called open.

Definition (Disconnected).
A topological space (X , τ) is said to be disconnected iff a pair of
disjoint, non-empty open subsets X1, X2 exists, such that
X = X1 ∪ X2.
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How many subspaces are there for our simple example? 4.

Recall the 1D φ4 symmetry breaking theory.
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Some vague but beautiful final points
It generalizes, but it’s not obvious how. Consider, for instance,
that in two φ dimensions and two space dimensions there is no
discrete set of zeroes to work with. However, the question of
whether two solutions are connected is intimately related to the
question of whether the corresponding functions from space at
infinity (an r =∞ circle in two dimensions, r =∞ sphere in 3
dimensions, etc.) to the set of zeroes of U are homotopic.
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Some vague but beautiful final points

1. If the theory has no spontaneous symmetry breakdown, the
space of non-singular finite energy solutions has only one
component, and there are no non-trivial topological
conservation laws.

2. If the symmetry breakdown is total there is also only one
component of finite energy solutions.

3. If one Goldstone survives, there are two cases:
3.1 The gauge group when written as a product of simple Lie

groups contains a U(1) factor, and the generator of this U(1)
factor enters the expression for the electric charge (this occurs
in Weinberg-Salam). In this case there are no non-trivial
topological conservation laws.

3.2 In other cases, there are interesting topological conservation
laws (e.g. model of Glashow and Georgi), and it can be shown
that some solutions emanate magnetic flux (but these are not
Dirac monopoles!).
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“I find the work hard, thank God, & almost pleasant.” [7]
– Oppenheimer, on physics.

J Robert Oppenheimer [6].
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Appendix 1: the problem with D=2

The argument that Coleman makes for the case of D = 2 is as
follows. For D = 2, our previous result

(D − 2)V1 + DV2 = 0

only determines that V2 = 0. Then, “if V2 vanishes it is stationary,
since zero is its minimum value. Thus we may apply Hamilton’s
principle to V1 alone, from which it trivially follows that V1 also
vanishes.”[1] This is true in the case when U(φ) has a set of
discrete minima: in the discrete case, if φ(x) has to be at a
minimum of U(φ) for all x , it has to be at the same minimum for
all x . But there are cases of interest when the zeros of U are not
discrete (e.g. the baby-skyrmion in a two dimensional O(3) model).
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