
after cancellation of the UV singularity in the combination (139) or in the MS 
scheme with Jl = Mz. This is discussed in [55] and is equivalent to the method 
described in [28] as well as to the recipe given at the end of ref. [49]. Numerically 
this modification is of some importance in the Mw-Mz correlation for very heavy 
top quarks above 250 GeV. As an example, form,= 300 GeV one obtains a change 
in Mw by about 40 MeV. 

A general comment, however, is in order: The refined treatment of the non­
leading reducible higher order terms can be considered as an improvement only in 
case that the 2-loop irreducible non-leading terms are essentially smaller in size. 
Irreducible contributions of the type aG �~�m�f� log( mt/ M z) are unknown, and one 
has to rely on the assumption that the suppression by 1/ Nc relative to the 2-loop 
reducible term is not compensated by a large coefficient. For bosonic 2-loop terms 
reducible and irreducible contributions are a priori of the same size and one does not 
gain from resumming 1-loop terms. In order to be on the safe side, the differences 
caused by the summation of non-leading reducible terms should be considered as a 
theoretical uncertainty at the level of 1-loop calculations improved by higher order 
leading terms. 

6.3 Numerical results and experimental data 

The correlation of the electroweak parameters, complete at the one-loop level and 
with the proper incorporation of the leading higher order effects, is given by the 
following equation: 

2 ( M(v) Mw 1- M'i 
�~�a� 1 

- �.�.�/�2�G�~� . (1- 6-a) · (1 + �~�6�-�p�)� 
•w - ( f::l.r )remainder 

1 
�.�.�/�2�G�~� . 1-6-r · (155) 

The 6-r in Eq. (155) is an effective quantity beyond the 1-loop order, introduced 
to obtain the formal analogy to the naively resummed first order result in Eq. 
(145). 6-p includes the 2-loop irreducible electroweak and QCD corrections to the 
p-parameter: 

(156) 

The correlation (155) allows us to predict a value for the W mass after the other 
parameters have been specified. These predicted values for Mw are put together in 
table 2 for various Higgs and top masses. The present experimental value for the 
W mass from the combined UA2 and CDF results [2] is 

Mw" = 80.14 ± 0.26 GeV. (157) 
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m, Mu = 60 100 300 1000 
90 79.952 79.925 79.854 79.760 
120 80.109 80.082 80.010 79.915 
150 80.275 80.248 80.173 80.078 
180 80.462 80.433 80.355 80.257 
210 80.674 80.643 80.557 80.454 
240 80.912 80.879 80.783 80.671 

Table 2: TheW mass Mw as predicted by the Standard Model for Mz = 91.187 GeV 
and various top and Higgs masses, based on Eq. (155). The refinement described in 
Eq. (154) was taken into account. Nonperturbative QCD effects associated with the 
tt threshold have been neglected. All masses are in Ge V 

We can define the quantity t.r also as a physical observable by 

JrQ 1 t.r = 1 - -- --,--------,,-
../2G~ MAr (1- ~!) . (158) 

Experimentally, it is determined by Mz and the ratio Mw/Mz. Theoretically, it 
can be computed from Mz, G~, a after specifying the masses Mu, m 1 by solving 
Eq. (155). In Figure 5 we display the prediction for t.r as a function of m, in 
various steps: the first order calculation based on Eq. (145) with the lowest order 
Ll.r, then including the electroweak higher order terms on the basis of Eq. (146), 
and finally including also the QCD corrections related to m 1• Both electroweak and 
QCD higher order effects yield a positive shift to D.r and thus diminish the slope 
of the first order dependence on m 1 for large top masses. The effect on t.r coming 
from the modified p(2) in Eq. (147) for large Mu is shown in Figure 6. It causes an 
additional weakening of the sensitivity to m 1 for large Higgs masses. 

The theoretical prediction for t.r for various Higgs and top masses is dis­
played in Figure 7. For comparison with data, the experimental 1o- limits from the 
direct measurements of Mz at LEP and Mw / Mz in pp are indicated. The exper­
imental input from LEP [1, 4] and from the combined UA2 and CDF results [2] 
IS 

Mz = 91.187 ± 0.007GeV, s~ = 0.2275 ± 0.0052. 

For Mu < 1 TeV these results constrain the top mass to the range m, < 203 GeV 
at the lo- level. The present experimental error does not allow a sensitivity to the 
Higgs mass. Precision measurements of Mw at LEP 200 will pin down the error 
to tit.r = 0.006 (0.004 with high luminosity). This would determine m, with an 
accuracy of about tim, = 10 GeV. A still inherent uncertainty from the unknown 
Higgs mass (with Mu > 60 GeV), however, would give an an additional theoretical 
error of ±17 GeV. The expected precision in the determination of t.r matches the 
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Fig. 5: b.r in O(a) (dotted), in O(a2
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Fig. 6: b.r in O(a2 + aa,) for MH = 1 TeV with the Higgs dependent p-parameter 
(full) and the approximation (148) (dashed). Mz = 91.187 GeV 
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Fig. 7: ~r as a function of the top mass for MH = 60,1000 Ge V (lower. upper· line). 
Mz = 91.187 ± .007 Ge V. 1<7 bounds with s~, = 0.2275 ± 0.0052 from combined U.4.2 
and CDF results {2}. 
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Fig. 8: Sensitivity of the top mass bounds fr·om ~r on the Higgs mass. The allowed 
m 1 range is betu·een the curres. The bound on m 1 from the direct search is also 
indicated. 
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size of (f>.r )remainder and thus will provide some sensitivity also to the Higgs mass 
in case that the top quark would be discovered experimentally. For virtual Higgs 
effects, however, the observables from the Z resonance are more suitable. 

The bounds on m1, following from the experimental constraint 

(f>.r )exp = 0.0489 ± 0.0153 

depend on the Higgs mass. This dependence is illustrated in Figure 8 . The allowed 
m, range is further restricted by the bound [10, 11] from the direct search. 

7 Renormalization schemes 

In a Quantum Field Theory like the electroweak standard model the starting point 
for perturbative calculations is the Lagrangian with a set of free mass and coupling 
parameters. The general discussion of renormalization in Quantum Field Theory 
has shown that the freedom in parametrizing the theory can be used to introduce 
convenient renormalization constants, or counter terms, equivalently, and to absorb 
the divergences in the calculation of S-matrix elements or Green functions. It is 
also possible to deal with the bare parameters of the theory for relating measureable 
quantities to each other, but the bare parameters are cutoff dependent and hence 
have no simple physical interpretation. 

A renormalization scheme is a choice of definite procedures for dealing with 
the parameters of the theory, together with the infinities from the loop amplitudes, 
in terms of measureable physical quantities. In a more general sense, it comprises 
the choice of the regularization procedure, the way of treating field renormalization, 
the specification of the gauge fixing terms and the respective FP ghost part, and a 
set of prescriptions how the formal parameters can be measured. 

Before one can make predictions from the theory, a set of independent pa­
rameters has to be determined from experiment. This can either be done for the 
bare quantities or for renormalized parameters which have a simple physical in­
terpretation. In a more restrictive sense, a renormalization scheme characterizes 
a specific choice of experimental data points to be used as input defining the ba­
sic parameters of the Lagrangian in terms of which the perturbative calculation of 
physical amplitudes is performed. 

Predictions for the relations between physical quanti ties do not depend on 
the choice of a specific renormalization scheme if we perform the calculation to all 
orders in the perturbative expansion. Practical calculations, however, are obtained 
from truncated perturbation series, making the predictions depend on the chosen 
set of basic parameters and thus leading to a scheme dependence. 

Differences between various schemes are formally of higher order than the 
one under consideration. To make this obvious, we consider a simplified model with 
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only a single coupling paramater a. Calculation of a 1-loop amplitude for a process 
with the lowest order amplitude M(o) = a 2 A 0 yields 

M(t) = a 2 A 0 [1 + ba]. 

In another scheme with a' different from a by a 1-loop term 

a'= a [1 + aa] 

the result is 
M'(') = a'2 A0 [1 + b' a']. 

After insertion of a', with b' = b- 2a, one gets 

Without an explicit calculation of the O(a2) correction the difference M'(t)- M(l) 
has to be considered as an uncertainty. The study of the scheme dependence of the 
perturbative results, after improvement by resumming the leading terms, allows us 
to estimate the missing higher order contributions. 

Parametrizations or 'renormalization schemes' frequently used in electroweak cal­
culations are: 

1. the on-shell (OS) scheme with 

2. the G~ scheme with the basic parameters 

3. the low energy scheme with the mixing angle as a basic parameter defined in 
neutrino-electron scattering: 

4. the *scheme where the bare parameters e0 , Cf/., 8~ are eliminated and replaced 
in terms of dressed running (P-dependent) parameters 

5. the MS-scheme. 

Some details on the M S scheme will be given in the next subsection, followed by a 
brief discussion of the other renormalization schemes. 
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7.1 The MS-scheme 

The modified minimal subtraction scheme (MS-scheme) [32, 33, 34, 35] is one of 
the simplest ways to obtain finite 1-loop expressions by performing the substitution 

2 
--l+log47r+logp2

-> iogp~8 t 

in the divergent parts of the loop integrals, Eq. (95). Formally, theM S self energies 
and vertex corrections are obtained by splitting the bare masses and couplings into 
M S parameters and counter terms 

Mo2=M-2+<M-2, -+c-u e0 = e ue, 

where the counter terms together with field renormalization constants 

are defined in such a way that they absorb the singular parts proportional to 

2 
Ll = - - 1 + log 471" . 

t 

(159) 

As a consequence, self energies and vertex corrections in the M S-scheme depend on 
the arbitrary scale p. 

Perturbative calculations start from the Lagrangian with the formal M S parameters 

.C(e,Mw,Mz, ... ). 

The M S parameters fulfill the same relations as the corresponding bare parameters. 
In particular, the mixing angle in the MS-scheme, denoted by 82, can be expressed 
in terms of the M S masses of W and Z in the following way: 

-2 s (160) 

The relation of the MS parameters to the conventional OS-parameters is obtained 
by calculating the dressed vector boson propagators and the dressed electron-photon 
vertex in the Thomson limit in the MS-scheme and identifying the poles with the 
OS masses and the electromagnetic coupling with the classical charge. 
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• The MS charge: 

The MS analogon of the OS charge renormalization condition Eq. (71) reads: 

• (1- ~ rr:r_(o) + ~ E~(o)J = e 2 MS c M~ e. (161) 

The l.h.s. is the coupling constant of the dressed electromagnetic vertex in the 
Thomson limit which has to be identified with the classical charge. 

The M S self energies in Eq. (161) read explicititly: 

II~8(0) 

A'(O) 

• E~(O) ~ MS 

c £/2 z 

•2 

1;7!"2 A'(O), 

4 f1 2 M 2 2 - 3 I; Q} log m2 + 3 log ,"; - 3, 
f f r 

·2 M2 e w = --log-. 
87r2 !12 

(162) 

A natural scale for electroweak physics is given by f1 = Mz. Hence, the correlation 
between e and e involves large logarithms from the light fermions which can be 
resummed according to the RGE (143). The bosonic terms are small. Resummation 
leads to the relation 

1 + ,::2 [Ary(o) + 4 log ~r] · (163) 

Inverting this equation yields the M S charge expressed in terms of the OS charge 

2 
•2 e e -

- 1- ,~:2 [A~(o) + 4 log ~r] · (164) 

Choosing f1 = Mz we can evaluate the expression in (165) to obtain the MS fine 
structure constant at the Z mass scale 

• a 
a= 

1-~& 
(165) 

with the value 

. Sa m1 a (7 2 1) ~a = 0.0684 ± 0.0009 - -log - + - -log cw - -
97r Mz 21r 2 3 

(166) 

The first term is due to the light fermions. It can be obtained from the quantity in 
Eq. (127) by adding the constant term 

a (5 55 as ) - - + -(1+ -) 
7r 3 27 7r 
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The uncertainty in Eq. (166) is the hadronic uncertainty of ~a in Eq. (127). 

a has to be distinguished from the effective charge at the Z scale introduced 
in Eq. (128) which contains only the light fermion contributions. A heavy top quark 
decouples in ~a according to Eq. (122), but does not decouple in ~a. Numerically 
one finds 

a(M~)- 1 128.8 ± 0.1 
(a)- 1 

_ 127.8 - 128.o ± 0.1 (167) 

The variation in a in Eq. (167) corresponds to a top mass range from m, = 90 GeV 
to 250 GeV. 

• The MS masses: 

The M S mass parameters M(v, M'J: enter the corresponding transverse propagators 
together with the self energies as follows (V = W, Z): 

1 
Dv = ----,,~--~~--

k2- M~ + EiJs(k2) 
(168) 

The OS-masses fulfill the pole conditions 

M~- M~ + ReL:iJs(M~) 0 (169) 

yielding M~ expressed in terms of the OS-masses: 

(170) 

The mass parameters M~ are JL-dependent. We can choose Jl = Mz as the natural 
scale for electroweak calaculations, as done also for a. 

The self energies EMs are obtained from the expressions given in section 5.2 
by dropping everywhere the singular term ~ and substituting 

' ' ' e ---+ e, sw ---+ s, cw ---+ c 

in the couplings, with c2 = 1- 82
• It is convenient to remove the overall normaliza­

tion factors and to write for the real parts: 

ReL:ww 
MS 

ReL:zz 
MS 

'2 e 2 
~Aw(k ), 
s 

e_2 2) 
= ,

2
,
2 

Az(k . 
s c 
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• The MS mixing angle: 

The mixing angle 82 in the MS-scheme, defined in Eq. (160), can be related to the 
OS mixing angle sw = 1- Mlv/M} by substituting Mlv,z from Eq. (170), yielding 

-2 2 2 X 
S = sw + Cw MS' c? = cw (1- XMs) 

with 
__ e2 

(Aw(Mlv) _ Az(M})) 
XMs - ·2 M2 •2M2 s w c z 

Making use of the property 

the relation (172) can simplified: 

(
1- e_2 Az(M})) -t 

·2 ·2M2 s c z 

• 2 2 e2 Az(M})- Aw(Mlv) 
s = sw + ,52 

(172) 

(173) 

(174) 

The leading 2-loop irreducible contributions are incorporated by adding in (174) 
the extra term cW 6..p(2) with 6..p(2) from Eq. (156). 

Eq. (174) determines 82 in terms of the OS parameters. e2 has to be taken 
from Eq. (164) or (165), respectively, for Jl = Mz. Numerical values for l? (with 
Jl = Mz) are listed in table 3 together with the corresponding values for the OS 
counter part sw. 

One can obtain 82 also in a more direct way from the experimental data 
points a, G,., Mz, without passing first through the OS-calculation, by deriving the 
effective Fermi constant in the MS-scheme 

1 
(175) 1-M 

where 

e2 Aw(O)- Aw(Mlv) 8 
= '7:2 M2 + VB, s w 

----~~--~~~----~loge~ , _ ~ [6 + 7- 5sw + s2(3cw/c2 -Jo) ] 
47r.SZ 2sw (176) 

together with 

-2 -Mz - c p z, 

p - 1 
(177) 
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I m, (GeV) I MH (GeV) I 
90 60 0.2312 0.2335 
90 300 0.2331 0.2343 
90 1000 0.2349 0.2350 

120 60 0.2282 0.2329 
120 300 0.2301 0.2338 
120 1000 0.2319 0.2345 
150 60 0.2250 0.2322 
150 300 0.2270 0.2330 
150 1000 0.2288 0.2337 
180 60 0.2214 0.2312 
180 300 0.2235 0.2321 
180 1000 0.2254 0.2328 
210 60 0.2173 0.2301 
210 300 0.2196 0.2311 
210 1000 0.2215 0.2318 
240 60 0.2127 0.2289 
240 300 0.2152 0.2299 
240 1000 0.2173 0.2307 

Table 3: The mixing angles s~v and 82 in the on-shell and in the M S-scheme for 
Mz = 91.187 GeV and various top and Higgs masses. 

For given parameters a, G~, Mz, m" MH the solution of this set of equations yields 
the quantities .5 2 , p together with Mw. l:>f is a small correction and has only a mild 
dependence on the top and Higgs masses. For the m,, MH range allowed in Figure 
8 one has 

t:.i' = 0.0050 ± 0.0034 (178) 

where the variation is due to the unknown mass parameters. 
The term Sv B in l:>f is the vertex and box correction to the muon decay 

amplitude in the MS-scheme [34]. The given expression refers to a mixed MS 
- on-shell calculation of the loop diagrams where M S-couplings are used but on­
shell masses in the propagators. Numerically the differences to the corresponding 
expression exclusively with MS parameters is insignificant ( < 3 · 10-4 ). The main 
difference to the on-shell quantity livB in Eq. (137) (besides the parametrization) is 
the extra additive term 

a 
--loge~= 

7r 

, M2 a w --log-
?r /1-2 

for /1- = Mz 

arising from the UV singularity in the sum of the diagrams. 
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The Standard Model prediction for s2 following from the mass range m, > 
90 Ge V and 60 Ge V < MH < 1000 Ge V together with the constraint from the 
experimental values for Mz, Mw is given by 

82 = 0.2330 ± 0.0016. (179) 

This includes the uncertainty induced by the hadronic vacuum polarization in Eq. 
(166) resp. (126). 

The M S quantities &, s2 are formal parameters which have no simple relation 
to physical quantities. The interest in these parameters is based on two important 
features: 

• They are universal, i.e. process independent, and take into account the univer­
sal large effects from fermion loops. Expressing the NC coupling constants for 
the Z f f vertices in terms of&, 82 yields a good approximation to the complete 
results (134): 

•2 

4 ~2 '2 (1 + 8flt ), 
8 c 

8 2 •2 + c•2 
1 - 8 vs1 . (180) 

The flavor dependent residual corrections 8 Pi and 88} are small and practically 
independent of m, and MH. An exception is the Zbb vertex, where also non­
universal large top terms are present [56]. 

• The knowledge of the values for & and 82 at the Z scale allows the extrapolation 
of the SU(2) and U(l) couplings 

(181) 

to large mass scales and, together with the strong coupling constant a 8 (p2) 
in the MS-scheme, to test scenarios of Grand Unification. In particular the 
minimal SU(5) model of Grand Unfication predicts with a and a. as input 
[57]: 

·2 (M2) 0 2102+o.oo37 8 SU(5) Z = · -0.0031 

which is in disagreement with the result (179). Supersymmetric models of 
Grand Unification, however, are in favor [57, 58]. 

7.2 Other renormalization schemes 

We briefly address the other renormalization schemes mentioned in the beginning 
of section 7. We restrict this discussion to parameter renormalization only. 
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• The G~-scheme: 

The eM-scheme [30] with the parameters 

treats G~ as a basic parameter to be renormalized instead of the ~V mass. The 
counter terms, which appear in the bare quantities 

e0 = e + 8e, M~2 = M3; + IJM~, G~ = G~ + IJG~ (182) 

after separating off the renormalized parameters, are determined by the on-shell 
conditions for e and Mz as in the OS-scheme. The renormalization condition for 
G~, which replaces the on-shell condition for Mw, defines G~ as the experimental 
Fermi constant, thus fixing the counter term IJG~ by the requirement of absorbing 
the 1-loop contribution to the p-decay amplitude: 

(183) 

The mixing angle is a derived quantity following from the exact relation between 
the bare quantities 

2 
2 2 eo 

soco = 4 f2co NJ02 (184) 
v" ~ z 

by the one-loop expansion according to (182) 

(185) 

with the counter term in the decomposition s5 = s 2 + 8s2 

(186) 

The physical Wmass is obtained from the pole condition for the W-propagator as 
the solution of the equation 

with 

IJM(v = 
M(v 

(187) 

(188) 
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Because of the large effects associated with the renormalization of e, s2 is a bad 
approximation for the mixing angle in the perturbative expansion. The improved 
mixing angle 

-2 1 ( s = 2 1- (189) 

with a(M~) from Eq. (128) includes the resummed large contribution from the light 
fermions and is hence a better starting point for perturbative calculations. Making 
use of .52

, one has simultaneously to subtract L'>.a from the charge renormalization 
counter term and replace in Eq. (187) 

• The low energy scheme: 

2oe -+ 

e 

8e 
2-- L'>.a. 

e 
(190) 

The scheme withe, G~, sin2 Ov, (31, 32] exclusively deals with parameters related to 
low energy experiments. The mixing angle sin2 Ove = sz, is treated as a fundamental 
parameter determined from v-e scattering in terms of the ratio 

R = a(v~e-+ v~e) = (1- 4s~,) 2 + (1- 4s~,) + 1 . 
a(v~e-+ v~c) (1- 4s~,)2- (1- 4s~,) + 1 

(191) 

The renormalization of e and G~ is the same as in the G~-scheme. For renormalizing 
s~., the counter term in s5 = s~, + 8s~, is fixed by the condition that 8s~, absorbs 
the 1-loop contribution 8R(l) to the ratio R: 

R(s~, + 8s~,) + 8R(l) = R(s~,). (192) 

Taking the experimental result Rexp yields a numerical value for s~,. 

Both vector boson masses are derived quantities following from the pole 
conditions for Wand Z: 

MJv- miv- 8MJv + Rei:ww(Mtv) = 0, 

(193) 

with 
2 

mw= "' ' 
y 2G~s~e 

(194) 

and 

8M'fv 
M2 = 

w 

8e 8G~ 8s~, 
2-----

G 2 ' e J.t sve 

8M2 __ z 
M2 z 

(195) 
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A slightly modified version of this scheme was used in [32]. There the condition 
(192) was imposed in the M S renormalization prescription 

R(s2 ) + 6R(tl = R ve exp 

yielding the M S- version s~e of the low energy mixing angle. 

• The * scheme: 

The bare parameters of the Standard Model can be eliminated in a formally different 
way [36, 37] by introducing a set of 4 effective parameters 

e.(s), s~(s), G~.(s), p.(s), (196) 

where in the minimal model only three are independent. These running parameters 
( s = k2

) contain the real parts of the self energies. They are arranged in such a way 
that the amplitude for a 4-fermion process with self energy corrections is obtained 
from the Born amplitude by the formal replacement 

(197) 

supplemented by the corresponding imaginary parts. When the physical input is 
taken from the experimental data points a, G~, Mz, the result for the 4-fermion 
scattering amplitudes is identical to that of the conventional on-shell scheme with 
self energy corrections after the 2-loop 1-particle irreducible leading contributions 
are built in. 

In the following we give the relation between the conventional expressions of 
section 3.3 and the corresponding ones in terms of the * -parameters. For a more 
detailed dicussion of the propagator corrections in the on-shell scheme we refer to 
the section on e+ e- annihilation. 

on-shell * (198) 

1 + Rel}r(s) 
+-+ e~(s) 

2 fr-rZ(s) 
sw- swcw Re -

1+Il"(s) 
+-+ s~(s) 

e2 1 1 

s?v. s-M?v+EWW(s) 

1 
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The quantities f.z(s), r.w(s) correspond to the imaginary parts of the Z and W 
self energies. The relation to the physical Z width (and similar for W) is given by 

fz = r.z(M~) + tlfz 

1 + "· 
where tlfz denotes the corrections to the Z width in O(a2

) not of the self energy 
type (vertex, QED and QCD corrections), discussed in the next chapter, and "• is 
determined by the residue of the Z propagator in (198): 

s- e~ 1 ( 2 ) ( ) 22 r.; = s- Mz · 1 + "• . 
s.c. 4v2G~·P• 

The zero of the l.h.s. corresponds to the physical Z mass. 

The * star arrangement as well as the on-shell one with resummation of the 
self energies contain higher order terms which are in general not gauge invariant. 
The leading terms, however, arise from light and heavy fermions which belong to the 
gauge invariant subclass of fermion loops, and the resummation yields the reducible 
higher order terms to all orders. The bosonic loop contributions on the other hand 
give gauge invariant results only when they are combined with vertex and box 
diagrams of the same order in a physical matrix element. They have always to be 
understood as expanded to one-loop order when appearing in formally higher order 
expressions. In the 't Hooft-Feynman gauge the numerical differences are irrelevant; 
in the unitary gauge, however, the individual contributions become divergent. 

7.3 Uncertaintie3 of theoretical prediction' 

In order to establish in a significant manner possibly small effects from unknown 
physics we have to know the uncertainties of our theoretical predictions which have 
to be confronted with the experiments. 

The sources of uncertainties in theoretical predictions are the following: 

• the experimental errors of the parameters used as an input. vVith the choice 
a, G~, and Mz from LEP we can keep these errors as small as possible. The 
errors from this source are then determined by 8Mz since the errors of a and 
G~ are negligibly small. For any of the mixing angles with sw, 82 , s} 

8s2 22 8Mz 
(199) = 

s2 c2 - s 2 Mz 

one finds 
8s2 '::e 5 . 10-5 • 
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• the uncertainties from quark loop contributions to the radiative corrections . 
Here, we have to distinguish two cases: the uncertainties from the light quark 
contributions to t.a and the uncertainties from the heavy quark contributions 
to t.p. In both cases the uncertainties are due to strong interaction effects, 
which are not sufficiently under control theoretically. The problems are due 
to: 
(i) the QCD parameters. The scale of <>s and the definition and scale of quark 
masses to be used in the calculation of a particular quantity are quite ambigu­
ous m many cases. 
(ii) the bad convergence and/or breakdown of perturbative QCD. In particular 
at low q2 and in the resonance regions theoretically poorly known nonpertur­
bative effects are non-negligible. 

The theoretical problems with the hadronic contributions of the 5 known 
light quarks to t.a can be circumvented by using the experimental e+ e-­
annihilation cross-section CTtot(e+e--> "t* -t hadrons). The error [44] 

o(t.a) = ±0.0009 

is dominated by the large experimental errors in the continuum contributions 
to CTtat( e+ e- -> 1* -t hadrons) below the 1' threshold, and can be improved 
only by more precise measurements of hadron production in e+e- -annihilation 
in the corresponding low energy region. This uncertainty leads to an error in 
the W-mass prediction 

6Mw _ s~ o(t.r) 
Mw c~- s~ 2(1- t.r) 

of 8Mw = 17 MeV and 6 sin2 11 = 0.0003 in the prediction of the various weak 
n1ixing parameters s~, 32 , sJ. 

The contribution to t.p from quark doublets with large mass splitting exhibits 
large QCD corrections of the weak current quark loops. For a heavy top one 
finds 

with 

../2G~ 2 
t.p = --3m Kqcv + · · · 161r2 t 

l( 21r2 + 6 <>s 
QCD = 1- -

9 1r 

for asymptotically large m, [52]. The corrections obtained are not well deter­
mined numerically because it remains unclear which scale should be chosen 
for <> 8 • Also the ambiguity in the definition of m, has not been taken into 
account. 
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Again, the problem can be controlled better by using dispersion relations. In 
this approach, the remaining uncertainties in Ll.r 

{ 
0.0005 

6(Ll.r)qcD '.:::' 0.0015 · (mt/250GeV) 2 
m, < 150GeV 
m, > 150GeV 

(200) 

have been estimated in [59]. In the heavy top region, where the errors of Ll.r 
and Ll.p are correlated by 6(Ll.r) '.:::' c~/s~6(Ll.p), the uncertainties in the NC 
couplings in Eq. (134) can be estimated in terms of 6Ll..p. The error of the 
normalization turns out to be smaller than 5 · 10-4 , and for the mixing angle 
one finds 

6s2 < 0.00015. 

• the uncertainties from omission of higher order effects. After resummation 
of the leading terms, how large are the omitted higher order effects? Since a 
complete two-loop calculation has not been done, we only can guess how large 
such effects could be. In the calculation of Ll.r the difference is given, in the 
approximation we consider, by using different parameters in the evaluation of 
Ll.rrcmainder defined in Eq. (140). A supposedly conservative estimate of the 
error made by omitting the higher order effects has been given in [60]. 

h(LJ..r)highor-order = ±0.001 (201) 

which can be added quadratically to the hadronic errors. Explicit comparisons 
between OS and M S calculations [35] as well as between different versions 
of the OS scheme [61] for the Z resonance observables have shown to be 
well below the experimental uncertainties. The typical size of the theoretical 
uncertainty of improved one-loop calculations is thus around 0.001. 

8 Extension to larger theories 

We want to conclude this chapter with an outlook on renormalizable generalizations 
of the minimal model and their effect on electroweak observables. Extended models 
can be classified in terms of the following categories: 

(i) extensions within the minimal gauge group SU(2)xU(l) with Ptree = 1 

(ii) extensions within SU(2) X U(l) with Ptree op 1 

(iii) extensions with larger gauge groups SU(2) X U(l) X G and respective extra 
gauge bosons. 

Extensions of the class (i) are, for example, models with additional (sequential) 
fermion doublets, more Higgs doublets, and the minimal supersymmetric version of 
the Standard Model. 
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8.1 Paramatrization of self energy corrections 

If "new physics" would be present in form of new particles which couple to the 
gauge bosons but not directly to the external fermions in a 4-fermion process, the 
formulae for the self energies in section 3.3 are general enough that those effects can 
be built in by calculating the additonalloop diagrams. 

In order to have a description which is as far as possible independent of the 
special type of extra heavy particles, it is convenient to introduce a parametrization 
of the radiative corrections from the vector boson self-energies in terms of the static 
p-parameter 

6.p(O) 

and the combinations 

6.1 - -
1
-II3-r(Ml)- II33(Ml) 

sw 
6.2 II33(Ml)- rrww (M;t,) 

6.a rrn(o)- rr-r-r(Ml). 

The quantities in Eq. (203) are the isospin components of the self-energies 

- ...!:__ ( E3
"' - s?v E"'"') 

cw 

- -
1
- (E33 - 2sw E3-r + s2 E-r-r) cw w 

in the expansions 

(202) 

(203) 

(204) 

(205) 

The 6.-notation above has been introduced in [62]. Several other conventions are 
used in the literature: 

• The S, T, U parameters of [63] are related to (203) by 

1 
T = -6.p(O), 

a 
(206) 

• the E-parameters of [64] by 

(207) 
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• the h-parameters of (65] by 

1 47r 
hv = -Ll.p(O), hAz = 1o 2 t:., 

a v2G~Mw 
(208) 

• and the parameters of (67] by 

1 
Ll.p(O) = 1o Ll.p, Ll.3 = 

4v2G~ 
(209) 

The combinations (203) of self energies contribute in a universal way to the elec­
troweak parameters (the residual corrections not from self-energies are dropped 
since they are identical to the Standard Model ones): 

1. the Mw- Mz correlation in terms of Ll.r: 
c2 c2 s2 

Ll.r = Ll.a- ~ Ll.p(O) - w ~ w Ll.2 + 2Ll.1 
sw sw 

2. the normalization of the NC couplings at M~ 

Ll.pt = Ll.p(O) + Ll.z 

where the extra quantity 

drrzz 
Ll.z = M~ --;u:;z(M~) 

(210) 

(211) 

in (211) is from the residue of the Z propagator at the peak. Heavy particles 
decouple from Ll.z. 

3. the effective mixing angles 

s} = (1 + Ll.~<') .52, (212) 

with 
c?v Ll.1 

2 2 Ll.p(O) + 2 2 · 
cw- sw cw- sw 

(213) 

The finite combinations of self energies (202) and (203) are of practical interest 
since they can be extracted from precision data in a fairly model independent way. 
An experimental observable particular sensitive to Ll.1 is the weak charge Qw which 
determines the atomic parity violation in Cesium (66] 

Qw = -73.20 ± 0.13 - 0.82Ll.p(O) - 102Ll.1 

being almost independent of Ll.p(O). 

(214) 

The theoretical interest in the Ll. 's is based on their selective sensitivity to different 
kinds of new physics. 
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• ~a gets contributions only from light charged particles whereas heavy objects 
decouple. 

• ~p(O) is a measure of the violation of the custodial SU(2) symmetry. It is 
sensitive to particles with large mass splittings in multiplets. As an example, 
we have already encountered fermion doublets with different masses, see Eq. 
(129). Another example are the Higgs bosons of a 2-Higgs doublet model 
[69, 70, 71, 72] with masses MH+, Mh, MH, MA and mixing angles /3, a for the 
charged H± and the neutral h0 , H 0 , A0 Higgs bosons, yielding 

~p(O) = G~ [sin2(a- f3)F(M"fi+,Ml, M"fi) 
81!" 2 2 

+ cos2 (a- f3)F(M"fi+, Ml, M,;)j (215) 

with yz y xy x xz x 
F(x,y,z) = x +--log-- --log-- --log-. 

y-z z x-y y x-z z 

For either MH+ » Mneutral or vice versa one finds a positive contribution 

G ILM~eutral O or 10 >. 
81r2y2 

(216) 

Also a negative contribution 

is possible in the unconstrained 2-doublet model. 

• ~1 is sensitive to chiral symmetry breaking by masses. In particular, a doublet 
of mass degenerate heavy fermions yields a contribution 

(217) 

whereas the contribution of degenerate heavy fermions to ~p(O) is zero. Hence, 
~ 1 can directly count the number Ndeg of mass degenerate fermion doublets: 

~{ = 4.5 • 10-4 
• Ndeg· 

~1 also gets sizeable contributions from models with a large number of ad­
ditional fermions like in technicolor models. For example, ~1 ~ 0.017 for 
Nrc = 4 and one family of technifermions [63, 68]. 
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8.2 Models with Ptree =/- 1 

One of the basic relations of the minimal Standard Model is the tree level correlation 
between the vector boson masses and the electroweak mixing angle 

M2 
Ptree = ~ = 1. 

M~sin Ow 

Many extensions of the minimal model, like those discussed in the previous section, 
preserve this feature. 

The formulation of the electroweak theory in terms of a local gauge theory 
requires at least a single scalar doublet for breaking the electroweak symmetry 
SU(2)xU(1)-> U(1)em· In contrast to the fermion and vector boson part, very 
little is known empirically about the scalar sector. Without the assumption of 
minimality, quite a lot of options are at our disposal, including more complicated 
multiplets of Higgs fields. In general models the tree level p-parameter Ptree = p0 is 
determined by 

L vl[l;(I; + 1) - Jj,J 
Po= 2 " 2[2 

L...ti vi ai 

where v;, !,; are the vacuum expectation values and third isospin component of the 
neutral component of the i-th Higgs multiplet in the representation with isospin 
I;. The presence of at least a triplet of Higgs fields gives rise to p0 =J 1. As a 
consequence, the tree level relations between the electroweak parameters have to be 
generalized according to 

sin2 Ow -+ 

and 

2 Mfv 
so= 1- M2 

Po z 

8 2 2 M2 8 oCePo z 
Writing p0 = (1 - !:J.po)- 1

, we obtain for the mixing angle: 

for the overall normalization factor in the NC vertex: 

e ( r.; 2 ) 1/2 -
2

- = v2G,Mzpo , 
sece 

and for the Mw - Mz interdependence: 

2 ( Mfv ) Mw 1---2 
PoMz - 4..;2G,' 
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(218) 

(219) 

(220) 

(221) 

(222) 



in complete analogy to what we have found from the top quark loops. 

At the level of radiative corrections, a small 6.po may be included by 

for the lvfw-Mz correlation, and 

A 2 2 2 A 
Pt-+ Pi+ upo, sf-+ sf+ cwuPo 

for the normalization and the effective mixing angles of the Z f f couplings. 

(223) 

(224) 

A complete discussion of radiative corrections requires not only the calcu­
lation of the extra loop diagrams from the non-standard Higgs sector but also an 
extension of the renormalization procedure [73, 74]. Since Mw, Mz and sin2 Ow (or 
p0 , eqivalently) are now independent parameters, one extra renormalization con­
dition is required. A natural condition would be to define the mixing angle for 
electrons s~ in terms of the ratio of the dressed coupling constants at the Z peak 

9v =: 1- 4s~ 
9A 

which is measureable in terms of the left-right or the forward-backward asymmetries. 
This fixes the counter term for s~ by 

<5s~ Ce ReE-,z(M~) Ce E-,z(O) 
-2 =- M2 +2- M2 +6.~<e 
Se Se z Se z 

(225) 

with the finite part 6.t<e of the electron-Z vertex correction. The counter terms 
for the other parameters a, Mz are treated as usual. With this input, we obtain 
a renormalized p-parameter and the corresponding counter term for the bare p­
parameter p~ = p + <5p as follows: 

p = 

<5p 

p 

Other derived quantities are: 

• The relation between Mw and G~: 

with 

(226) 

1 
(227) 

1- 6.r 

(228) 
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(229) 

~G M2 [ - L;WW(O)- oMa, os;- 2Se L;~Z(O)- 8 L'l ] 
Y"- " zP 1 M 2 + 2 M 2 VB+ PJ 

W Ce Ce Z 

where L'lpf denotes the finite part of the Zff vertex correction. 

• The effective mixing angles of the Z f f couplings: 

These relations predict the Z boson couplings, Mw and p m terms of the data 
points a, G", 1\fz, s;. By this procedure, the leading m;-dependence of the self 
energy corrections to theoretical predictions is absorbed into the renormalized p­
parameter, leaving a~ logmt/Mz term as an observable effect. For the Zbb-vertex, 
an additional m; dependence is found in the non-universal vertex corrections L'lpb 
and L'l"&· This makes observables containing this vertex the most sensitive top 
indicators in the class of models with Ptree f 1. 

In the minimal Standard Model, the quantity equivalent to (226) can be 
calculated in terms of the data points a, G", Mz and the parameters m, MH. With 
the experimental constraints from Mw in section 5.3 and and s; = 0.2328 ± 0.0007 
from LEP data [1, 4] we obtain 

PSM = 1.0069 ± 0.0040. (230) 

In the extended models we can calculate p from 

1ra 1 
p = ../2G"M~s;c; . 1- L'lr 

(231) 

in terms of the input data a, G"' Mz, s; together with m, and the parameters of 
the Higgs sector. Such a complete calculation, however, does not exist as yet. 
Instead, we can get a value for p from directly using the data on Ma, / M~ and 
s; = 0.2324 ± 0.0011 from forward-backward asymmetries at LEP [1, 4] yielding 

p = 1.0064 ± 0.0069. (232) 

The difference p - PsM can be interpreted as a measure for a deviating tree level 
structure. The data imply that it is compatible with zero. 
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8.3 Extra Z bosons 

The existence of addi tiona! vector bosons is predicted by GUT models based on 
groups bigger than SU(5), like E6 and 50(10), by models with symmetry breaking 
in terms of a strongly interacting sector, and composite scenarios. Typical examples 
of extended gauge symmetries are the SU(2) X U(1) x U(1lx,,v," models following 
from E6 unification, or LR-symmetric models. In the following we consider only 
models with an extra U ( 1). 

The mixing between the mathematical states Zo of the minimal gauge group 
and Z~ of an extra hypercharge form the physical mass eigenstates Z, Z', where the 
lighter Z is identified with the resonance at LEP. The mass eigenstates are obtained 
by a rotation 

Z' -sinOMZo + cosOMZ~ 
with a mixing angle 0 M related to the mass eigenvalues by 

2 M~, - M~ M 2 2 () M2 . 2 () M2 tan ()M = M 2 _ M 2 , z0 = cos M z + sm M Z' • 
Z' Zo 

(233) 

(234) 

M~0 denotes the nominal mass of Z0 • In constrained models with the Higgs fields 
in doublets and singlets only, the usual Standard Model relation holds 

· 2 Mfv sm ew = 1--­M2 
Zo 

between the masses and the mixing angle in the Lagrangian 

£Nc = 92 J~ z~ + 'J~ z' ~ cos()w Zo o g Z~ o 

with 
J M -J~ · 2(} J~ zo- L-Slll W em· 

It is convenient to introduce the quantity 

2 Ma. 2 1 2 
sw = 1 - M2 ' cw = - sw 

z 

(235) 

(236) 

with the physical mass of the lower eigenstate. For small mixing angles ()M we have 
the following relation: 

·2e 2 2" sm w = sw + cw'-"PZ' (237) 
with 

" • 2 (M~, ) upz• = sm ()M M~ - 1 (238) 
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The W mass is obt.,jned from 

M 2 - ?ra 
w- r.; 

v2G~ sin2 llw(1- ~r) 

after the substitution (237): 

M'fv = M1 (1 + .;1 - ?ra ) 
2 ,.fiG~Mlpz' (1 - ~r) 

(239) 

with PZ' = (1 - ~PZ' t'. Formally, PZ' appears as a non-standard tree level p­
parameter. In all present practical applications the radiative correction ~r was 
approximated by the standard model correction. 

The mass mixing has two implications for the NC couplings of the Z boson: 

• ~PZ' contributes to the overall normalization by a factor 

1/2 1 
Pz' ~ 1 + 2~PZ' 

and to the mixing angle by a shift 

2 2 2 A 
Sw --+ Sw + Cw'-'"PZ'. 

Both effects are universal, parametrized by Mz' and the mixing angle liM in 
a model independent way, 

• A non-universal contribution is present as the second term in the vertex 

(Zf f) = cos IIM(Zof f)+ sin IIM(Z~Jf) 

~ (Zoff)+IIM(Z~ff). 

It depends on the classification of the fermions under the extra hypercharge 
and is strongly model dependent. 

Complete 1-loop calculations are not available as yet. The present standard ap­
proach consists in the implementation of the standard model corrections to the Z0 

parts of the coupling constants in terms of the form factors p 1 for the normalization 
and "1 for the effective mixing angles 

2 2 2 
sw--+ s1 = "Jsw. 

In this approaclt the effective Z f f vector and axial vector couplings read: 

vf [,;iG~M~pJ(1 + ~Pz')r/2 [!1- 2QJ(KJS~ + c~~pz,)] 
+ sin liM v~, , 

0 
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Th 't' f f e quanti 1es a Z' Vz, 
0 0 

denote the extra U(l) couplings between the fermion f and 

the z~. 

From an analysis of the electroweak precision data the mixing angle is con­
strained typically to I ()M I< 0.01, not very much dependent on the specification of 
the model [75, 76]. An example is shown in Figure 9. 
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Fig. 9: 90% C.L. contours for mass and mixing angle (03 = ()M) of the extra Z' zn 
the SU(2) x U(l) x U(l)x model, from {76} 
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