Physics 222 BRST invariance in gauge theories Spring 2020

1. BRST invariance of QED

The Lagrangian density of QED is given by:

Lo = — L M 4 (i) + e A — mip — %(@A“)z , (1)

where the electron has charge —e (in a convention where e > 0). The presence of the gauge
fixing term, which is required in order to be able to define a photon propagator, naively spoils
the gauge invariance of QED. To see why, consider the infinitesimal gauge transformation,

0A, () = 0,A(x), (2)
50(r) = ieA(x)i(x). )
oY (x) = —ieA(z)y(z), (4)

where A(x) is an arbitrary real function of x that vanishes (sufficiently fast) as |Z| — oc.
Under the infinitesimal gauge transformations given in egs. (2)—(4),

0F,, =6(0,A, —0,A,) = 0,0A, — 0,04, = (0,0, — 0,0,)A =0,

since the partial derivatives commute under the assumption that A(x) is a smooth function.
Likewise, since A(z) is a real function, we have

5(P1p) = 0t + Potp = —ieAy) + ieAyp =0,
S(TI) = —ie NP + ie(@ N1 + ie NP — ie(D A"
S(pAY) = —ieAPAY + (9, M)y +ieAP Ay = (9, A) 7).
Hence, it follows that

S(P(iQ + eM)y) = —e(0u M)y + e(9, M)y = 0,

as expected. Finally, working to first order in the field variations,*

§(9,A")? = 2(9,A")6(9,A") = 2(8,A"),(0A*) = 2(0N)9, A" .
Thus, the variation of the QED Lagrangian given in eq. (1) is

e = — (ON)(0,4%), o)

which is non-vanishing.

! Alternatively, we can write
§(0,AM)? = B, (AP + 9PN, (A” + 0" A) — (9, A")? = 2(CIA), A

after dropping terms that are quadratic in A.



Consider the modified Lagrangian,?
£ = Zqep + %8;@8“(?7 (6)

where ¢(z) is a free (commuting) scalar field. We now define a so-called generalized gauge
transformation, whose infinitesimal form is given by,

dA,(x) = €0up(z), (7)
o) = iee da)i(x), (8)
5(x) = —iee P (x)p(x), (9)
56(x) = = 9, A", (10)

where € is an infinitesimal parameter. This transformation is called a Becchi-Rouet-Stora-
Tyutin (BRST) transformation.
We now show that the modified action,

S[Auﬂﬁa% (b] = /d4.flf [gQED + %au(b&“(ﬂ ) (11)

is BRST-invariant. Note that eq. (5) is still applicable with A(z) replaced with € ¢(z). It
then follows from eq. (5) that

0Lqep = —2 (O¢) (9, 4") .
Using eq. (9) and working to first order in the field variations,
2e
0(0u 90" ) = 0,(9)0" + 0,00"(5¢) = ——(9,0,47)(8"¢) .

Hence,

52 = —[(00)(0,4") + (0,0,47)(0"9)] = —= " [(8,6)(2,A)]

which we recognize as a total divergence. Hence, the variation of the action,
6Sz/d4x5$:(),

under the usual assumption that the fields at infinity vanish so that the surface terms vanish.
That is, the modified action defined in eq. (6) is invariant under the BRST transformations.

2In QED, we can choose ¢(x) to be either a commuting or an anticommuting scalar field (if ¢(z) is
anticommuting, then € must be an anticommuting Grassmann infinitesimal constant). When we generalize
this construction to a nonabelian gauge theory, we will need to employ an anticommuting scalar in the
modified Lagrangian.



2. Using BRST invariance to derive Ward identities

One can employ the BRST invariance of the modified QED action to derive Ward iden-
tities. As a first step, consider any string of electron and/or photon field operators, denoted
symbolically by O. Then, we shall derive the following relations among Green functions:

(QT(6(x)0)|) =0, (12)
(QUT(¢(2)d(y)0)|) = (AT (¢(x)d(y)) IX(QUT(O)[€2) - (13)

In particular, let

O(Au ¥, 0) = (1) -+ (@) (1) - 0 (Yn) Ay (1) -+ Ay (20)

The generating functional is given by

211, ¢, ¢ J) = N/ DA* D¢ exp [z/ d'z (&L + J, A" + Jo + (o +EC)}
= N/ DA 'D%Diﬂ exp |:Z/ d4SL’ (gQED + JMAH) +Zw +E§:|

X /ng exp {z’/d4x [%8u¢6”¢+<]¢}} ;

where A is chosen such that Z[0,0] = 1, and .Z was given in eq. (6). Employing the explicit
form for .Z, we can carry out explicitly the path integral over the massless free field ¢(x),

Z[J, ¢, ¢ ) =N / D A" Dy Dy exp [z / d*z (Larp + J,A") + b + Eg]
X exp {%i / d*z d*y J(x)(d - ie)_lj(y)} , (14)
where A is chosen such that Z[0,0] = 1. It follows that
(QIT(p(2)0)|) =N / DA* DY D O(A,,, ¥, ) exp {z / d*z (Laep + JMA“)]

X /D(M)(x) exp {z/d‘*:c [30,00"¢ + qu]} =0,

where we have noted that the path integral over ¢(x) vanishes since the integrand is an odd
function of ¢(z). One can reach the same conclusion by taking a functional derivative of
eq. (14) with respect to J(z) and then setting J = 0. Likewise,



(Q\T(¢($)¢(y)0)\9> = N/ DA D@Dw O(A;u% ¢) €xp [Z/ d'z (D%QED + JHA“)}

/D¢¢ exp{ /d4 [;8u¢8”¢+<]¢}}

= (QUTO)NQT (b(x)b(y)) 1) ,

since the path integral over A,, 1 and v and the path integral over ¢ factorize. That is,
Z[J,,¢, ¢, J] can be written as a product of the QED generating functional and the generating
functional for a free massless scalar field. Indeed, by taking functional derivatives with
respect to the sources and then setting those sources to zero, we see that the corresponding
Green functions also factorize.

Egs. (12) and (13) also hold for the corresponding connected Green functions, since a
similar proof can be presented in which the generating functional Z = exp(iWW) is replaced
by W. Henceforth, all Green functions that appear below are assumed to be connected

Green functions,
In light of eq. (12),

QT (W (2)P(y)d(2))[Q2) = 0.
Using the BRST-invariance of the modified QED action, this Green function must remain
zero under an (infinitesimal) BRST-transformation. That is,

QT ((2)(y)(2))|2) = 0. (15)

Using the functional integral representation of the (connected) Green function, it immedi-
ately follows that the operation of § obeys the product rule of the derivative. That is, eq. (15)
yields,

(QUT (59 ()1 (y)6(2))[2) + (AT (P ()09 (y)$(2)) 1) + (T (U ()P (y)de(2))[2) = 0. (16)

Making use of egs. (8)—(10), it follows that
ie [(QUT (U (2)P(y)d(2)$(2))|) = (AT (W (2 (y)(y)o(2))I2)]
—%(QlT(w(x)@(y)auA“(Z))|Q> =0. (17)

Note that

O DB 44(2) = TW@T),A"(2)). 18)

since the equal time commutators that arise when pushing the derivative through the T’
symbol vanish,

0(z0 — w0) [Au(2), ¥(y)] = 8(z0 — o) [Au(2), ¥(x)] = 0. (19)



Hence, it follows that
ie [(QT (¢ (2) 0 (y)p(2)(2))[2) — (AT ((2) ¥ (y)o(y)$(2))[92)]
—= QT (¢ ()Y (y) A*(2))|) = 0. (20)

We now introduce the full fermion propagator and vertex function (using the same no-
tation as in the class lectures),

iS(p) = / 0 P QU4 ()D(0)]) (21)

Vulp:p+4q) = / d'wd'z PN QL) (2)P(0) A, (2)|92) (22)

where translational invariance of the Green functions has been used to set the coordinate
y = 0. Using eq. (13), it follows that

/ d*z d*z e'Prta?) (QUTY(x)(0)¢(2)9(2))|Q)

= / d'z d'z P QT ()9 (0)| QU TH(2) 6 (2)|Q) - (23)

Since ¢(x) is a free massless scalar field, its full propagator corresponds to a free field
propagator,
(QATPN) = [ oo 1)
A ) (2n) c k? —ie

Inserting this result into eq. (23) yields,

/ d*z d*z e'Prtaz) (QUTY(x)(0)¢(2)9(2))|Q)

d4k i —tk(x—2) _i(px+qz ol
= [dteats G g S QT T0)]0)

:/f_k;'w@_w(qw):—q?l _S(p+q),  (25)

(2m)* k2 — e — i€

after recognizing the integral representation of the delta function. Likewise,

: — 1
/ ' 0 QT Y @T0)0(0)0(2)10) = ~—— S(r). (26)
Finally, one integration by parts yields,
4. 34 Ji(pr+qz) d o - n
e dl 07 Ol (@)(0) 4, (2)|0) = —ig V(b0 + 0). (27)

bt



Thus, we can act with

/d4£lf d4Z ei(px-i—qz)
on eq. (20) and make use of eqgs. (25)—(27) to obtain,
. rea
V" = 5 [S(p+4q) - Sp)]- (28)

We can manipulate eq. (28) into a more familiar form by introducing the 1PI three-point
Green function I';, via,

VM(!L"l, Ty,T3) = Z'/054?/1 d4y2 d4y3 ng)(ﬂu"l, yl)G£2)(932> yl)ng) (3, yg)Fu(yl, Y2, Y3) (29)
and its momentum space equivalent,
Vup, 1) = i (q) iS(0') I (p, ') iS(p) , (30)

where p' = p + ¢, G (p) = iS(p), and Z,,(q) is the full photon propagator. Multiplying
eq. (30) by ¢* and employing the identity proved in class (which states that the longitudinal
part of the full photon propagator is equal to that of the tree-level photon propagator),

1agy

1 -
7" Dy (q) Z i (31)
it follows from egs. (28), (30) and (31) that
e . _ iQV /
qg_kﬂﬂp+Q) S(p)] = 7 S O p.p) Sp). (32)

Finally, multiplying the above equation by S™*(p + ¢) on the left and S~*(p) on the right
yields the famous QED Ward-Takahashi identity relating the inverse propagator and the 1PI
vertex function,

¢'Tup,p+q) =e[Sp+qa)— 5 (p)]. (33)

3. BRST invariance in nonabelian gauge theory

Consider the Lagrangian density for a non-abelian Yang-Mills gauge theory, with gauge
field A} and gauge field strength tensor Fj, = 0,47 — 0,A} — g fabeAb Ac

ptvs

Lon = —LF2 e (34)
Eq. (34) is invariant under the gauge transformation,

dAL(T) = eDﬁbwb(z) , (35)

where € is an infinitesimal constant, g is the gauge coupling constant, and wy(x) is an arbitrary
function of z. The covariant derivative acting on a field in the adjoint representation is
Dzb = 5“b8u+ig(TC)“bAﬁ, where the generators of the Lie group in the adjoint representation
are given by (T¢)%® = —ife® That is,

D = §9, + gf AL, (36)



Note that generators of the gauge group (in any representation) satisfy the commutation

relations,

[T, T°) = i f*T°, (37)
and have been chosen such that the structure constants f®¢ are completely antisymmetric
under the interchange of any pair of indices.

As in QED, order to be able to define a propagator for the gauge field, one must add a
gauge-fixing term,

1 a
Fop = 5 (0" AL)?. (38)

However, this term spoils the gauge invariance of the theory. In particular, under an in-
finitesimal gauge transformation given in eq. (35), and working to first order in e,

S(0"A%)? = 2(FA%)5(0” AZ) = 2(9"A%) (9”6 A%) = (9" A%) (8 D) ,

after noting that 6(0* A7) = 9"(A[, + dA}) — O*A; = O (6 A}.). Hence,

0Lar = —— (0" A3)(9" D) (39)

€
a
which is non-vanishing. Of course, we discovered a similar result for QED in eq. (5).
Suppose we attempt to define a generalized gauge symmetry by adding a new field n,(x)
that transforms under the adjoint representation of the gauge group, along with a new term

to the Lagrangian:
g(; = —na(ﬁ”Dzbwb) y (40)

and by postulating the transformation law:
Bi1a() = —=(,4%) . (41)
Using eq. (36), we can rewrite eq. (40) as
Lo = =10 0" (Oywa + gf“bcwaZ) . (42)
Next, we apply an infinitesimal gauge transformation to eq. (42). Working to first order in e,
0L = —(012) (9" Diwy) — 196D wr) = —(01a) (0" D) — gf 10" (w0 AL)
= =(0,A7)(9" Dylwn) — egf 0.0 (wnDifwa) (43)

Hence,
§(Lor + L) = —egf "m0 (wpDiwq) # 0.

In contrast to QED (where fo¢ = 0), we have failed to restore the generalized gauge
symmetry. However, all is not lost. Let us save the day by promoting the function w,(z) to
a field and postulating the transformation law:

Swa(x) = tegf ™™ wyw,, (44)

)
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where summation over repeated indices is implied. Note that since the fo¢ are totally
antisymmetric under interchange of a, b and ¢, the only way to have dw,(z) # 0 is to require
that w,(x) is an anticommuting field that transforms under the adjoint representation of
the gauge group. This immediately implies that n,(z) is an anticommuting field and € is an
anticommuting infinitesimal constant.?

In light of eq. (44), eq. (43) is modified as follows:

6L = —(0na) (0" Diwy) — 1a[0" (0D )ws)] — 1a(0" D by

= £ (0,A)(0" Dyln) = gf P nad* (wneDif) = L9 na 0¥ €D} (o)
= 2(0,,AZ)(8”Dwab) — egnaﬁ“{f“bc (wbDﬁdwd) — %bedDZb(wcwd)} , (45)

where we have made use of the anticommuting properties of €, 1, and w,.
Focusing on the term inside the braces in eq. (45),

fabcwbDZdwd o %bedDzb(chd> — fabcwb(auwc 4 ngdewdAZ> o %fbcd((sabau + gfabeAfL)(wcwd)

— fabcwbauwc o %facd [wcauwd + (auwc)wd} + gAz (fabchdewad o %bedfabeWch) )
After an appropriate relabeling of indicies,
Fw w0 — 2 17 weDuwa + (Opwe)wa] = F [wrDuwe — banduwe — L(Buwn)we] =0,

after using the anticommuting properties of w, and w. and antisymmetry properties of the
faobe. Likewise, using the same properties and appropriate relabeling of indices,

fabchdeCUde o %fbcdfabewcwd — WCWd(fbacfbde + %fbcdfbae)

— %wcwd(fbac']cbde + fbadfbec 4 fbaefbcd) =0 ’ (46)

where the last step is a consequence of the Jacobi identity (that is always satisfied by the
structure constants of a Lie algebra). Hence, the expression inside the braces in eq. (45)
vanishes, and we are left with

5L = 2(8,,Ag)(8“ijbwb) .
Combining with eq. (39) yields
(S(D%GF + g(;) =0.

In conclusion, we have shown that the modified Lagrangian density,

1+ p

1
g7 _lFa Frvae _ %(8,&142)2 o ng(&#Dzbwb> , (47)

is invariant under the following infinitesimal generalized gauge transformations, collectively

3In some books, € is taken to be a commuting infinitesimal constant, in which case one would have to
view § as an anticommuting operator. In this convention, e.g., §(wqws) = (dwq)wp — wedwp. In these notes,
we will not adopt this convention, in which case § satisfies the usual product rule for derivatives when acting
on a product of anticommuting fields, e.g., d(w,wp) = (dwq)wp + wedwp. Instead, the anticommuting nature
of € will generate an extra minus sign when passing through an anticommuting field.



known as the BRST transformations,

OA% () = eDwab(:c) : (48)
5na(w) = == (9,44 ()) (49)
dwa(r) = Jeg f () (). (50)

We recognize Lg [cf. egs. (40) and (42)] as the Faddeev-Popov Lagrangian,* which is usually
derived via the path integral formalism of gauge field theory. Note that the Faddeev-Popov
fields, 0, and w,, are sometimes called n* and 7,, respectively (just to keep you on your toes).

If we add fermions to the theory, one can easily extend the BRST transformation law.
The fermion Lagrangian is given by

ZLr = WDl (51)
with Dﬁ‘j = 050" +ig T} Al (where we employ the generators T appropriate to the represen-
tation of the fermions under the gauge group). Under a generalized gauge transformation,

CW(!L") = —’éegTawa(ZL')w(ZL') ) (52)
55 () = i gTwa(2)(z). (53)

This is to be expected, as eq. (51) is invariant under ordinary gauge transformations.
One critical property of the BRST transformation operator § is that it is nilpotent. That
is, applying ¢ twice to any on-shell field produces zero. In particular, we define 2 to mean
the application of § with anticommuting parameter €; followed by 0 with anticommuting

parameter €. Let us see what happens when we apply 62 to the fields A%, 1), w, and 7,.
We first compute

§2A%(x) = 16 [0uwa + gf "W AL
= e162{ 39" Ou(mwe) + gf (D5 wa)wy, + 591 fP waw A}

= 6162{%g.fabc [(auwb)wc + Wb(auwc)} + g.fabc [auwc + ngdeAZWe} Whp
+%g2fabcfbdewdweAZ}

= €169 g2wewaﬁ(fcabfcde + %fcadfceb) =0 ’ (54)

after an appropriate relabeling of indices. The final steps are the same as in eq. (46), where
after some manipulation the Jacobi identity is invoked. Next,

§*(z) = —iergT*[(dwa) ¥ + wa bt ]
= —ie16 g° [%T“ f“bcwbwc + iT“waawb}
= —ie1€2 ¢ [$T° [P wowy + $i(TT" — T*T*)waws |
= Le163 GPwowy [TT" — T'T* — if**T°] =0, (55)

where we have made use of eq. (E?) and the anticommuting properties of €5 and w,. Likewise
a similar computation yields %1 (z) = 0.

4One typically integrates by parts in the Faddeev-Popov action to obtain the form, % = 6”naDzbwb.
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A slightly more involved computation yields,
we(z) = 319 f0(wpwe)

= %Elgfabc [(5%)% + wbéwc}

- i61€292(fabcfbdewdwewc — fobe feldeywae)
= i€16292(fabcfbde — £ 240 g,

= Leyeag? o 0 00400,

= L6202 f° FP% (Wetwawe + Wewotwq + Wawew)

_ %616292(fab0fbde + fabdfbec + fabebed)wcwdwe — 0’ (56)

after appropriate relabeling of indices and using the anticommuting properties of €5 and w,
and the antisymmetry properties of f%¢. The Jacobi identity was employed in the final step.
However, we do not obtain §%n,(z) = 0. An explicit computation yields

1 1
62, () = —5615(0“143) = —aelega”ijbwb #0. (57)

Nevertheless, in light of eq. (40), the Lagrange field equations yield,

9 0L 0L
"0(0uma) O
That is, if we apply the field equations for wj in eq. (57), we do obtain §%n, = 0. Thus, when
we say that §2 acting on all on-shell fields is zero, we mean that one may have to invoke the
field equations, which (by definition) are satisfied by an on-shell field.

Of course, it would be convenient if 6> would annihilate all fields independently of their
equations of motion, in which case we would say that §% applied to any off-shell field yields
zero. In fact, this can be arranged by the following trick (which is also employed to great ad-
vantage in supersymmetric field theories). The idea is to introduce an appropriate auxiliary
field, B,(x). By definition, its Lagrangian density does not contain any derivative, d,B,(x),
in which case one can trivially eliminate B,(x) via its field equation.

In particular, we shall introduce a modified gauge fixing term to replace eq. (38),

D%GF = BaﬁuAg + %CLBCLBCL, (58)
which depends on a new auxiliary scalar field B,(x) that transforms under the adjoint rep-
resentation of the gauge group. Applying the Lagrange field equations for B,(x),

0ZLr 0ZLr
0 — =—0,A% —aB,=0.
"9(0,B.) 0B, w4

That is, B, = —a‘lﬁuAZ. Inserting this result back into eq. (58) yields,

— 9" D%w, = 0.

1
Zor = —%(@Afj)z, (59)

which coincides with eq. (38). Thus, the gauge theory with gauge fixing term given by eq. (58)
is completely equivalent to the gauge theory with gauge fixing term given by eq. (38).

10



However, one can now make use of this new field to modify the BRST transformation
law of n,(z), while also specifying a transformation law for B,(z),

() = € Bal) (60)
0B, (x)=0. (61)
Applying the transformation law given by eq. (61) to eq. (58), and using eq. (35),
0 Lcr = (6B,)0" A% + B0 (0A%) + aBy0B, = €B,0" Diwy, . (62)
In light of eq. (60), we see that eq. (45) is now given by
0L = —(61a) (0" Ditwy) = —eBo0" Dilwy .

since the terms inside the braces in eq. (45) cancel by virtue of eq. (46). Hence it again
follows that
NLar + %) =0.

That is, the full Lagrangian with the modified gauge fixing term [eq. (58)] is still invariant
with respect to the new version of the BRST transformation laws [which have been modified
as specified in egs. (60) and (61)].

Furthermore, the computations of 02A%(x), 6%¢(x), 6%*(z) and 0%w,(z) are unchanged
from the ones presented above; each of these second variations yields zero. However, we now
have

§*n(z) = e10B(z) = 0, (63)
§*B(z) =0 (64)

as a consequence of eqs. (60) and (61). Thus, 62 = 0 when applied to all fields of the theory,
independently of the field equations.
In summary, we have shown that the Lagrangian density,

L = —1F8, F* + B0, Al + 2aB, B, — 0(0" D3 wy) + i)y, D (65)

is invariant under the following infinitesimal BRST (generalized gauge) transformations,
0AL () = eD“bwb(x) : (66)
59(z) = —ie gT () (x) (67)
00(x) = ie gT wa ()Y (), (68)
dwa(w) = gegf " wy(t)we(z) (69)
() = € Ba(2), (70)
() (71)

on,(x
0B,

i

Moreover,

52AZ(:£) = 6%(z) = 0% (x) = 6*w,(x) = *B(x) =0, (72)
independently of the field equations.
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