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1. BRST invariance of QED

The Lagrangian density of QED is given by:

LQED = −1
4
FµνF

µν + ψ(i/∂ + e/A)ψ −mψψ −
1

2a
(∂µA

µ)2 , (1)

where the electron has charge −e (in a convention where e > 0). The presence of the gauge
fixing term, which is required in order to be able to define a photon propagator, naively spoils
the gauge invariance of QED. To see why, consider the infinitesimal gauge transformation,

δAµ(x) = ∂µΛ(x) , (2)

δψ(x) = ieΛ(x)ψ(x) , (3)

δψ(x) = −ieΛ(x)ψ(x) , (4)

where Λ(x) is an arbitrary real function of x that vanishes (sufficiently fast) as |~x| → ∞.
Under the infinitesimal gauge transformations given in eqs. (2)–(4),

δFµν = δ(∂µAν − ∂νAµ) = ∂µδAν − ∂νδAµ = (∂µ∂ν − ∂ν∂µ)Λ = 0 ,

since the partial derivatives commute under the assumption that Λ(x) is a smooth function.
Likewise, since Λ(x) is a real function, we have

δ(ψψ) = δψψ + ψδψ = −ieΛψψ + ieΛψψ = 0 ,

δ(ψ/∂ψ) = −ieΛψ/∂ψ + ie(∂µΛ)ψγ
µψ + ieΛψ/∂ψ = ie(∂µΛ)ψγ

µψ ,

δ(ψ /Aψ) = −ieΛψ /Aψ + (∂µΛ)ψγ
µψ + ieΛψ /Aψ = (∂µΛ)ψγ

µψ .

Hence, it follows that

δ
(

ψ(i/∂ + e/A)ψ
)

= −e(∂µΛ)ψγ
µψ + e(∂µΛ)ψγ

µψ = 0 ,

as expected. Finally, working to first order in the field variations,1

δ(∂µA
µ)2 = 2(∂µA

µ)δ(∂µA
µ) = 2(∂µA

µ)∂µ(δA
µ) = 2(�Λ)∂µA

µ .

Thus, the variation of the QED Lagrangian given in eq. (1) is

δLQED = −
1

a
(�Λ)(∂µA

µ) , (5)

which is non-vanishing.
1Alternatively, we can write

δ(∂µA
µ)2 = ∂µ(A

µ + ∂µΛ)∂ν(A
ν + ∂νΛ)− (∂µA

µ)2 = 2(�Λ)∂µA
µ

after dropping terms that are quadratic in Λ.
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Consider the modified Lagrangian,2

L = LQED + 1
2
∂µφ∂

µφ , (6)

where φ(x) is a free (commuting) scalar field. We now define a so-called generalized gauge
transformation, whose infinitesimal form is given by,

δAµ(x) = ǫ ∂µφ(x) , (7)

δψ(x) = ieǫ φ(x)ψ(x) , (8)

δψ(x) = −ieǫ ψ(x)φ(x) , (9)

δφ(x) = −
ǫ

a
∂µA

µ , (10)

where ǫ is an infinitesimal parameter. This transformation is called a Becchi-Rouet-Stora-
Tyutin (BRST) transformation.

We now show that the modified action,

S[Aµ, ψ, ψ, φ] ≡

∫

d4x
[

LQED + 1
2
∂µφ∂

µφ
]

, (11)

is BRST-invariant. Note that eq. (5) is still applicable with Λ(x) replaced with ǫ φ(x). It
then follows from eq. (5) that

δLQED = −
ǫ

a
(�φ)(∂µA

µ) .

Using eq. (9) and working to first order in the field variations,

δ(∂µφ∂
µφ) = ∂µ(δφ)∂

µφ+ ∂µφ∂
µ(δφ) = −

2ǫ

a
(∂µ∂νA

ν)(∂µφ) .

Hence,

δL = −
ǫ

a

[

(�φ)(∂µA
µ) + (∂µ∂νA

ν)(∂µφ)
]

= −
ǫ

a
∂µ

[

(∂µφ)(∂νA
ν)
]

,

which we recognize as a total divergence. Hence, the variation of the action,

δS =

∫

d4x δL = 0 ,

under the usual assumption that the fields at infinity vanish so that the surface terms vanish.
That is, the modified action defined in eq. (6) is invariant under the BRST transformations.

2In QED, we can choose φ(x) to be either a commuting or an anticommuting scalar field (if φ(x) is
anticommuting, then ǫ must be an anticommuting Grassmann infinitesimal constant). When we generalize
this construction to a nonabelian gauge theory, we will need to employ an anticommuting scalar in the
modified Lagrangian.
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2. Using BRST invariance to derive Ward identities

One can employ the BRST invariance of the modified QED action to derive Ward iden-
tities. As a first step, consider any string of electron and/or photon field operators, denoted
symbolically by O. Then, we shall derive the following relations among Green functions:

〈Ω|T (φ(x)O)|Ω〉 = 0 , (12)

〈Ω|T (φ(x)φ(y)O)|Ω〉 = 〈Ω|T
(

φ(x)φ(y)
)

|Ω〉〈Ω|T (O)|Ω〉 . (13)

In particular, let

O(Aµ, ψ, ψ) = ψ(x1) · · ·ψ(xn)ψ(y1) · · ·ψ(yn)Aµ1
(z1) · · ·Aµn

(zn) .

The generating functional is given by

Z[Jµ, ζ, ζ, J ] = N

∫

DAµDφ exp

[

i

∫

d4x (L + JµA
µ + Jφ+ ζψ + ψζ)

]

= N

∫

DAµDψDψ exp

[

i

∫

d4x (LQED + JµA
µ) + ζψ + ψζ

]

×

∫

Dφ exp

{

i

∫

d4x
[

1
2
∂µφ∂

µφ+ Jφ
]

}

,

where N is chosen such that Z[0, 0] = 1, and L was given in eq. (6). Employing the explicit
form for L , we can carry out explicitly the path integral over the massless free field φ(x),

Z[Jµ, ζ, ζ, J ] = N ′

∫

DAµDψDψ exp

[

i

∫

d4x (LQED + JµA
µ) + ζψ + ψζ

]

× exp

{

1
2
i

∫

d4x d4y J(x)(�− iǫ)−1J(y)

}

, (14)

where N ′ is chosen such that Z[0, 0] = 1. It follows that

〈Ω|T (φ(x)O)|Ω〉 = N

∫

DAµDψDψO(Aµ, ψ, ψ) exp

[

i

∫

d4x (LQED + JµA
µ)

]

×

∫

Dφ φ(x) exp

{

i

∫

d4x
[

1
2
∂µφ∂

µφ+ Jφ
]

}

= 0 ,

where we have noted that the path integral over φ(x) vanishes since the integrand is an odd
function of φ(x). One can reach the same conclusion by taking a functional derivative of
eq. (14) with respect to J(x) and then setting J = 0. Likewise,
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〈Ω|T (φ(x)φ(y)O)|Ω〉 = N

∫

DAµDψDψO(Aµ, ψ, ψ) exp

[

i

∫

d4x (LQED + JµA
µ)

]

×

∫

Dφ φ(x)φ(y) exp

{

i

∫

d4x
[

1
2
∂µφ∂

µφ+ Jφ
]

}

= 〈Ω|T (O)|Ω〉〈Ω|T
(

φ(x)φ(y)
)

|Ω〉 ,

since the path integral over Aµ, ψ and ψ and the path integral over φ factorize. That is,
Z[Jµ, ζ, ζ, J ] can be written as a product of the QED generating functional and the generating
functional for a free massless scalar field. Indeed, by taking functional derivatives with
respect to the sources and then setting those sources to zero, we see that the corresponding
Green functions also factorize.

Eqs. (12) and (13) also hold for the corresponding connected Green functions, since a
similar proof can be presented in which the generating functional Z = exp(iW ) is replaced
by W . Henceforth, all Green functions that appear below are assumed to be connected
Green functions,

In light of eq. (12),
〈Ω|T (ψ(x)ψ(y)φ(z))|Ω〉 = 0 .

Using the BRST-invariance of the modified QED action, this Green function must remain
zero under an (infinitesimal) BRST-transformation. That is,

δ〈Ω|T (ψ(x)ψ(y)φ(z))|Ω〉 = 0 . (15)

Using the functional integral representation of the (connected) Green function, it immedi-
ately follows that the operation of δ obeys the product rule of the derivative. That is, eq. (15)
yields,

〈Ω|T (δψ(x)ψ(y)φ(z))|Ω〉+ 〈Ω|T (ψ(x)δψ(y)φ(z))|Ω〉+ 〈Ω|T (ψ(x)ψ(y)δφ(z))|Ω〉 = 0 . (16)

Making use of eqs. (8)–(10), it follows that

ie
[

〈Ω|T (ψ(x)ψ(y)φ(x)φ(z))|Ω〉 − 〈Ω|T (ψ(x)ψ(y)φ(y)φ(z))|Ω〉
]

−
1

a
〈Ω|T (ψ(x)ψ(y)∂µA

µ(z))|Ω〉 = 0 . (17)

Note that
∂

∂zµ
T
(

ψ(x)ψ(y)Aµ(z)
)

= T
(

ψ(x)ψ(y)∂µA
µ(z)

)

, (18)

since the equal time commutators that arise when pushing the derivative through the T
symbol vanish,

δ(z0 − x0)
[

Aµ(z), ψ(y)
]

= δ(z0 − x0)
[

Aµ(z), ψ(x)
]

= 0 . (19)
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Hence, it follows that

ie
[

〈Ω|T (ψ(x)ψ(y)φ(x)φ(z))|Ω〉 − 〈Ω|T (ψ(x)ψ(y)φ(y)φ(z))|Ω〉
]

−
1

a

∂

∂zµ
〈Ω|T (ψ(x)ψ(y)Aµ(z))|Ω〉 = 0 . (20)

We now introduce the full fermion propagator and vertex function (using the same no-
tation as in the class lectures),

iS(p) =

∫

d4x eipx〈Ω|ψ(x)ψ(0)|Ω〉 , (21)

Vµ(p, p+ q) =

∫

d4x d4z ei(px+qz)〈Ω|ψ(x)ψ(0)Aµ(z)|Ω〉 , (22)

where translational invariance of the Green functions has been used to set the coordinate
y = 0. Using eq. (13), it follows that

∫

d4x d4z ei(px+qz)〈Ω|Tψ(x)ψ(0)φ(x)φ(z))|Ω〉

=

∫

d4x d4z ei(px+qz)〈Ω|Tψ(x)ψ(0)|Ω〉〈Ω|Tφ(x)φ(z)|Ω〉 . (23)

Since φ(x) is a free massless scalar field, its full propagator corresponds to a free field
propagator,

〈Ω|Tφ(x)φ(z)|Ω〉 =

∫

d4k

(2π)4
e−ik(x−z) i

k2 − iǫ
. (24)

Inserting this result into eq. (23) yields,

∫

d4x d4z ei(px+qz)〈Ω|Tψ(x)ψ(0)φ(x)φ(z))|Ω〉

=

∫

d4x d4z
d4k

(2π)4
i

k2 − iǫ
e−ik(x−z) ei(px+qz)〈Ω|Tψ(x)ψ(0)|Ω〉

=

∫

d4k

(2π)4
i

k2 − iǫ
iS(p− k) δ4(q + k) = −

1

q2 − iǫ
S(p+ q) , (25)

after recognizing the integral representation of the delta function. Likewise,

∫

d4x d4z ei(px+qz)〈Ω|Tψ(x)ψ(0)φ(0)φ(z))|Ω〉 = −
1

q2 − iǫ
S(p) . (26)

Finally, one integration by parts yields,

∫

d4x d4z ei(px+qz) ∂

∂zµ
〈Ω|ψ(x)ψ(0)Aµ(z)|Ω〉 = −iqµV

µ(p, p+ q) . (27)
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Thus, we can act with
∫

d4x d4z ei(px+qz)

on eq. (20) and make use of eqs. (25)–(27) to obtain,

iqµV
µ =

iea

q2 − iǫ

[

S(p+ q)− S(p)
]

. (28)

We can manipulate eq. (28) into a more familiar form by introducing the 1PI three-point
Green function Γµ via,

Vµ(x1, x2, x3) = i

∫

d4y1 d
4y2 d

4y3G
(2)
c (x1, y1)G

(2)
c (x2, y1)G

(2)
c (x3, y3)Γµ(y1, y2, y3) , (29)

and its momentum space equivalent,

Vµ(p, p
′) = iDµν(q) iS(p

′) Γµ(p, p′) iS(p) , (30)

where p′ ≡ p + q, G
(2)
c (p) ≡ iS(p), and Dµν(q) is the full photon propagator. Multiplying

eq. (30) by qµ and employing the identity proved in class (which states that the longitudinal
part of the full photon propagator is equal to that of the tree-level photon propagator),

qµDµν(q) = −
iaqν

q2 − iǫ
, (31)

it follows from eqs. (28), (30) and (31) that

ie

q2 − iǫ

[

S(p+ q)− S(p)
]

= −
iqν

q2 − iǫ
S(p+ q) Γν(p, p

′)S(p) . (32)

Finally, multiplying the above equation by S−1(p + q) on the left and S−1(p) on the right
yields the famous QED Ward-Takahashi identity relating the inverse propagator and the 1PI
vertex function,

qµΓµ(p, p+ q) = e
[

S−1(p+ q)− S−1(p)
]

. (33)

3. BRST invariance in nonabelian gauge theory

Consider the Lagrangian density for a non-abelian Yang-Mills gauge theory, with gauge
field Aa

µ and gauge field strength tensor F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν ,

LYM = −1
4
F a
µνF

µνa . (34)

Eq. (34) is invariant under the gauge transformation,

δAa
µ(x) = ǫDab

µ ωb(x) , (35)

where ǫ is an infinitesimal constant, g is the gauge coupling constant, and ωb(x) is an arbitrary
function of x. The covariant derivative acting on a field in the adjoint representation is
Dab

µ = δab∂µ+ig(T
c)abAc

µ, where the generators of the Lie group in the adjoint representation
are given by (T c)ab = −if cab. That is,

Dab
µ = δab∂µ + gfabcAc

µ . (36)
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Note that generators of the gauge group (in any representation) satisfy the commutation
relations,

[T a , T b] = ifabcT c , (37)

and have been chosen such that the structure constants fabc are completely antisymmetric
under the interchange of any pair of indices.

As in QED, order to be able to define a propagator for the gauge field, one must add a
gauge-fixing term,

LGF = −
1

2a
(∂µAa

µ)
2 . (38)

However, this term spoils the gauge invariance of the theory. In particular, under an in-
finitesimal gauge transformation given in eq. (35), and working to first order in ǫ,

δ(∂µAa
µ)

2 = 2(∂µAa
µ)δ(∂

νAa
ν) = 2(∂µAa

µ)(∂
νδAa

ν) = ǫ(∂µAa
µ)
(

∂νDab
ν ωb

)

,

after noting that δ(∂µAa
µ) ≡ ∂µ(Aa

µ + δAa
µ)− ∂µAa

µ = ∂µ(δAa
µ). Hence,

δLGF = −
ǫ

a
(∂µAa

µ)(∂
νDab

ν ωb) , (39)

which is non-vanishing. Of course, we discovered a similar result for QED in eq. (5).
Suppose we attempt to define a generalized gauge symmetry by adding a new field ηa(x)

that transforms under the adjoint representation of the gauge group, along with a new term
to the Lagrangian:

LG = −ηa(∂
µDab

µ ωb) , (40)

and by postulating the transformation law:

δηa(x) = −
ǫ

a
(∂µA

µ
a) . (41)

Using eq. (36), we can rewrite eq. (40) as

LG = −ηa ∂
µ
(

∂µωa + gfabcωbA
c
µ

)

. (42)

Next, we apply an infinitesimal gauge transformation to eq. (42). Working to first order in ǫ,

δLG = −(δηa)(∂
µDab

µ ωb)− ηa(∂
µδDab

µ ωb) = −(δηa)(∂
µDab

µ ωb)− gfabcηa∂
µ
(

ωbδA
c
µ

)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− ǫ gfabcηa∂

µ
(

ωbD
cd
µ ωd

)

. (43)

Hence,
δ(LGF + LG) = −ǫ gfabcηa∂

µ
(

ωbD
cd
µ ωd

)

6= 0 .

In contrast to QED (where fabc = 0), we have failed to restore the generalized gauge
symmetry. However, all is not lost. Let us save the day by promoting the function ωa(x) to
a field and postulating the transformation law:

δωa(x) =
1
2
ǫgfabcωbωc , (44)
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where summation over repeated indices is implied. Note that since the fabc are totally
antisymmetric under interchange of a, b and c, the only way to have δωa(x) 6= 0 is to require
that ωa(x) is an anticommuting field that transforms under the adjoint representation of
the gauge group. This immediately implies that ηa(x) is an anticommuting field and ǫ is an
anticommuting infinitesimal constant.3

In light of eq. (44), eq. (43) is modified as follows:

δLG = −(δηa)(∂
µDab

µ ωb)− ηa[∂
µ(δDab

µ )ωb]− ηa(∂
µDab

µ δωb)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− gfabcηa∂

µ
(

ωbǫD
cd
µ ωd

)

− 1
2
gf bcdηa ∂

µǫDab
µ (ωcωd)

=
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb)− ǫgηa∂

µ

{

fabc
(

ωbD
cd
µ ωd

)

− 1
2
f bcdDab

µ (ωcωd)

}

, (45)

where we have made use of the anticommuting properties of ǫ, ηa and ωa.
Focusing on the term inside the braces in eq. (45),

fabcωbD
cd
µ ωd −

1
2
f bcdDab

µ (ωcωd) = fabcωb(∂µωc + gf cdeωdA
e
µ)−

1
2
f bcd(δab∂µ + gfabeAe

µ)(ωcωd)

= fabcωb∂µωc −
1
2
facd

[

ωc∂µωd + (∂µωc)ωd

]

+ gAe
µ

(

fabcf cdeωbωd −
1
2
f bcdfabeωcωd

)

.

After an appropriate relabeling of indicies,

fabcωb∂µωc −
1
2
facd

[

ωc∂µωd + (∂µωc)ωd

]

= fabc
[

ωb∂µωc −
1
2
ωb∂µωc −

1
2
(∂µωb)ωc

]

= 0 ,

after using the anticommuting properties of ωb and ωc and antisymmetry properties of the
fabc. Likewise, using the same properties and appropriate relabeling of indices,

fabcf cdeωbωd −
1
2
f bcdfabeωcωd = ωcωd(f

bacf bde + 1
2
f bcdf bae)

= 1
2
ωcωd(f

bacf bde + f badf bec + f baef bcd) = 0 , (46)

where the last step is a consequence of the Jacobi identity (that is always satisfied by the
structure constants of a Lie algebra). Hence, the expression inside the braces in eq. (45)
vanishes, and we are left with

δLG =
ǫ

a
(∂νA

ν
a)(∂

µDab
µ ωb) .

Combining with eq. (39) yields
δ(LGF + LG) = 0 .

In conclusion, we have shown that the modified Lagrangian density,

L = −1
4
F a
µνF

µνa −
1

2a
(∂µAa

µ)
2 − ηa(∂

µDab
µ ωb) , (47)

is invariant under the following infinitesimal generalized gauge transformations, collectively
3In some books, ǫ is taken to be a commuting infinitesimal constant, in which case one would have to

view δ as an anticommuting operator. In this convention, e.g., δ(ωaωb) = (δωa)ωb − ωaδωb. In these notes,
we will not adopt this convention, in which case δ satisfies the usual product rule for derivatives when acting
on a product of anticommuting fields, e.g., δ(ωaωb) = (δωa)ωb + ωaδωb. Instead, the anticommuting nature
of ǫ will generate an extra minus sign when passing through an anticommuting field.
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known as the BRST transformations,

δAa
µ(x) = ǫDab

µ ωb(x) , (48)

δηa(x) = −
ǫ

a

(

∂µA
µ
a(x)

)

, (49)

δωa(x) =
1
2
ǫgfabcωb(x)ωc(x) . (50)

We recognize LG [cf. eqs. (40) and (42)] as the Faddeev-Popov Lagrangian,4 which is usually
derived via the path integral formalism of gauge field theory. Note that the Faddeev-Popov
fields, ηa and ωa, are sometimes called η∗a and ηa, respectively (just to keep you on your toes).

If we add fermions to the theory, one can easily extend the BRST transformation law.
The fermion Lagrangian is given by

LF = iψiγµD
µ
ijψj , (51)

with Dµ
ij = δij∂

µ+ igT a
ijA

µ
a (where we employ the generators T a appropriate to the represen-

tation of the fermions under the gauge group). Under a generalized gauge transformation,

δψ(x) = −iǫ gT aωa(x)ψ(x) , (52)

δψ(x) = iǫ gT aωa(x)ψ(x) . (53)

This is to be expected, as eq. (51) is invariant under ordinary gauge transformations.
One critical property of the BRST transformation operator δ is that it is nilpotent. That

is, applying δ twice to any on-shell field produces zero. In particular, we define δ 2 to mean
the application of δ with anticommuting parameter ǫ1 followed by δ with anticommuting
parameter ǫ2. Let us see what happens when we apply δ 2 to the fields Aa

µ, ψ, ψ, ωa and ηa.
We first compute

δ2Aa
µ(x) = ǫ1δ

[

∂µωa + gfabcωbA
c
µ

]

= ǫ1ǫ2
{

1
2
gfabc∂µ(ηbωc) + gfabc(Dcd

µ ωd)ωb +
1
2
gfabcf bdeωdωeA

c
µ

}

= ǫ1ǫ2
{

1
2
gfabc

[

(∂µωb)ωc + ωb(∂µωc)
]

+ gfabc
[

∂µωc + gf cdeAd
µωe

]

ωb

+1
2
g2fabcf bdeωdωeA

c
µ

}

= ǫ1ǫ2 g
2ωeωbA

d
µ

(

f cabf cde + 1
2
f cadf ceb

)

= 0 , (54)

after an appropriate relabeling of indices. The final steps are the same as in eq. (46), where
after some manipulation the Jacobi identity is invoked. Next,

δ2ψ(x) = −iǫ1gT
a
[(

δωa

)

ψ + ωaδψ
]

= −iǫ1ǫ2 g
2
[

1
2
T afabcωbωc + iT aT bωaωb

]

= −iǫ1ǫ2 g
2
[

1
2
T cf cabωaωb +

1
2
i(T aT b − T bT a)ωaωb

]

= 1
2
ǫ1ǫ2 g

2ωaωb

[

T aT b − T bT a − ifabcT c
]

= 0 , (55)

where we have made use of eq. (37) and the anticommuting properties of ǫ2 and ωa. Likewise
a similar computation yields δ2ψ(x) = 0.

4One typically integrates by parts in the Faddeev-Popov action to obtain the form, LG = ∂µηaD
ab
µ ωb.
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A slightly more involved computation yields,

δ2ωa(x) =
1
2
ǫ1gf

abcδ(ωbωc)

= 1
2
ǫ1gf

abc
[

(δωb)ωc + ωbδωc

]

= 1
4
ǫ1ǫ2g

2(fabcf bdeωdωeωc − fabcf cdeωbωdωe)

= 1
4
ǫ1ǫ2g

2(fabcf bde − facbf bde)ωcωdωe

= 1
2
ǫ1ǫ2g

2fabcf bdeωcωdωe

= 1
6
ǫ1ǫ2g

2fabcf bde(ωcωdωe + ωeωcωd + ωdωeωc)

= 1
6
ǫ1ǫ2g

2(fabcf bde + fabdf bec + fabef bcd)ωcωdωe = 0 , (56)

after appropriate relabeling of indices and using the anticommuting properties of ǫ2 and ωa

and the antisymmetry properties of fabc. The Jacobi identity was employed in the final step.
However, we do not obtain δ2ηa(x) = 0. An explicit computation yields

δ2ηa(x) = −
1

a
ǫ1δ(∂

µAa
µ) = −

1

a
ǫ1ǫ2∂

µDab
µ ωb 6= 0 . (57)

Nevertheless, in light of eq. (40), the Lagrange field equations yield,

∂µ
∂LG

∂(∂µηa)
−
∂LG

∂ηa
= ∂µDab

µ ωb = 0 .

That is, if we apply the field equations for ωb in eq. (57), we do obtain δ2ηa = 0. Thus, when
we say that δ2 acting on all on-shell fields is zero, we mean that one may have to invoke the
field equations, which (by definition) are satisfied by an on-shell field.

Of course, it would be convenient if δ2 would annihilate all fields independently of their
equations of motion, in which case we would say that δ2 applied to any off-shell field yields
zero. In fact, this can be arranged by the following trick (which is also employed to great ad-
vantage in supersymmetric field theories). The idea is to introduce an appropriate auxiliary
field, Ba(x). By definition, its Lagrangian density does not contain any derivative, ∂µBa(x),
in which case one can trivially eliminate Ba(x) via its field equation.

In particular, we shall introduce a modified gauge fixing term to replace eq. (38),

LGF = Ba∂µA
µ
a +

1
2
aBaBa , (58)

which depends on a new auxiliary scalar field Ba(x) that transforms under the adjoint rep-
resentation of the gauge group. Applying the Lagrange field equations for Ba(x),

∂µ
∂LGF

∂(∂µBa)
−
∂LGF

∂Ba

= −∂µA
a
µ − aBa = 0 .

That is, Ba = −a−1∂µA
a
µ. Inserting this result back into eq. (58) yields,

LGF = −
1

2a
(∂µA

µ
a)

2 , (59)

which coincides with eq. (38). Thus, the gauge theory with gauge fixing term given by eq. (58)
is completely equivalent to the gauge theory with gauge fixing term given by eq. (38).
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However, one can now make use of this new field to modify the BRST transformation
law of ηa(x), while also specifying a transformation law for Ba(x),

δηa(x) = ǫBa(x) , (60)

δBa(x) = 0 . (61)

Applying the transformation law given by eq. (61) to eq. (58), and using eq. (35),

δLGF = (δBa)∂
µAa

µ +Ba∂
µ(δAa

µ) + aBaδBa = ǫBa∂
µDab

µ ωb . (62)

In light of eq. (60), we see that eq. (45) is now given by

δLG = −(δηa)(∂
µDab

µ ωb) = −ǫBa∂
µDab

µ ωb .

since the terms inside the braces in eq. (45) cancel by virtue of eq. (46). Hence it again
follows that

δ(LGF + LG) = 0 .

That is, the full Lagrangian with the modified gauge fixing term [eq. (58)] is still invariant
with respect to the new version of the BRST transformation laws [which have been modified
as specified in eqs. (60) and (61)].

Furthermore, the computations of δ2Aa
µ(x), δ

2ψ(x), δ2ψ(x) and δ2ωa(x) are unchanged
from the ones presented above; each of these second variations yields zero. However, we now
have

δ2η(x) = ǫ1δB(x) = 0 , (63)

δ2B(x) = 0 (64)

as a consequence of eqs. (60) and (61). Thus, δ 2 = 0 when applied to all fields of the theory,
independently of the field equations.

In summary, we have shown that the Lagrangian density,

L = −1
4
F a
µνF

µνa +Ba∂µA
µ
a +

1
2
aBaBa − ηa(∂

µDab
µ ωb) + iψiγµD

µ
ijψj , (65)

is invariant under the following infinitesimal BRST (generalized gauge) transformations,

δAa
µ(x) = ǫDab

µ ωb(x) , (66)

δψ(x) = −iǫ gT aωa(x)ψ(x) , (67)

δψ(x) = iǫ gT aωa(x)ψ(x) , (68)

δωa(x) =
1
2
ǫgfabcωb(x)ωc(x) (69)

δηa(x) = ǫBa(x) , (70)

δBa(x) = 0 . (71)

Moreover,
δ2Aa

µ(x) = δ2ψ(x) = δ2ψ(x) = δ2ωa(x) = δ2B(x) = 0 , (72)

independently of the field equations.
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