
Physics 222 Current Conservation and the QED Ward Identity Spring 2020

In these notes, I will demonstrate the relationship between the Ward-Takahashi identity
of quantum electrodynamics (QED) and current conservation.

We begin by rewriting the Lagrangian density of QED in a form that is slightly different
from its usual form by integrating by parts in the expression for the QED action. As a result,
the QED Lagrangian density, with covariant gauge fixing, can be rewritten as,1

L = 1
2
Aµ

[

� gµν −

(

1−
1

a

)

∂µ∂ν
]

Aν + ψ̄(i 6∂ + e 6A−m)ψ , (1)

which differs from the usual form of the QED Lagrangian density by a total derivative (which
can be neglected as it does not contribute to the field equations). In momentum space, the
operator inside the square brackets of eq. (1) is given by

iD−1
µν (k) ≡ −gµνk

2 +

(

1−
1

a

)

kµkν , (2)

where D−1
µν (k) is the inverse of the momentum space tree-level propagator of the photon of

four-momentum k, and a is the gauge fixing parameter.
As a consequence of the gauge symmetry of QED, one can derive the conserved Noether

current,
jµ(x) = −e ψ̄γµψ , (3)

where normal ordering is implicit (but not explicitly indicated). The current is conserved,
∂µjµ = 0 as a consequence of the fields equations. Note that Lint = −jµA

µ, as expected.
Moreover, the photon field satisfies the field equations,

�Aµ −

(

1−
1

a

)

∂µ(∂
νAν) = jµ . (4)

The fermions fields of QED obey canonical equal-time (anti-)commutation relations,
{

ψα(~x, t) , ψ
†
β(~y, t)

}

= δαβ δ
3(~x− ~y) , (5)

{

ψα(~x, t) , ψβ(~y, t)
}

=
{

ψ†
α(~x, t) , ψ

†
β(~y, t)

}

= 0 , (6)
[

ψα(~x, t) , Aµ(~y, t)
]

=
[

ψ†
α(~x, t) , Aµ(~y, t)

]

= 0 . (7)

Using these relations, one can derive the following equal-time commutation relations
[

j0(~x, t) , ψ(~y, t)
]

= eψ(x)δ3(~x− ~y) , (8)
[

j0(~x, t) , ψ̄(~y, t)
]

= −eψ̄(x)δ3(~x− ~y) , (9)
[

j0(~x, t) , Aµ(~y, t)
]

= 0 . (10)

The time-independent charge operator is Q =
∫

j0(~x, t) d
3x. Thus eqs. (8) and (9) yield,

[

Q , ψ(y)
]

= eψ(y) ,
[

Q , ψ̄(y)
]

= −eψ̄(y) . (11)

That is, a positron of charge e is created by the field operator ψ (and annihilated by ψ̄),
whereas an electron of charge −e is created by the field operator ψ̄ (and annihilated by ψ).

1By convention, the coupling e is positive and the electric charge of the electron is −e.
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We now consider the following Green function,

〈Ω| T jµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµp

(zp) |Ω〉 , (12)

where |Ω〉 is the vacuum state. We would like to compute the partial derivative of this Green
function with respect to x. In order to carry out this computation, we will need to pass the
derivative past the time ordered product symbol T . Recall that for two operators A and B,

T
[

A(x)B(y)
]

= Θ(x0 − y0)A(x)B(y)±Θ(y0 − x0)B(y)A(x) , (13)

where the sign is chosen on the basis of the statistics of the operators A and B. For example,
given a bosonic operator Aµ(x),

∂µx 〈Ω|T Aµ(x)B(y) |Ω〉 = 〈Ω| ∂µx
{

Θ(x0 − y0)Aµ(x)B(y) + Θ(y0 − x0)B(y)Aµ(x)
}

|Ω〉

= 〈Ω|T ∂µAµ(x)B(y) |Ω〉+ δ(x0 − y0) 〈Ω|
[

A0(x) , B(y)
]

|Ω〉 , (14)

where ∂µx ≡ ∂/∂xµ. The last term above is an equal time commutator, which can be evaluated
by employing the canonical equal-time commutation relations. Generalizing eq. (14), it follows
that

∂µx 〈Ω| T jµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

= 〈Ω| T ∂µjµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

+
n

∑

i=1

〈Ω|T ψ(x1) · · ·ψ(xi−1)
[

j0(x), ψ(xi)
]

δ(x0 − xi0)ψ(xi+1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)

×Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

+

n
∑

i=1

〈Ω|T ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yi−1)
[

j0(x), ψ̄(yi)
]

δ(y0 − y0i)ψ̄(yi+1) · · · ψ̄(yn)

×Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

+

p
∑

i=1

ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµi−1

(zi−1)
[

j0(x), Aµi
(zi)

]

δ(z0 − zi0)

×Aµi+1
(zi+1) · · ·Aµp

(zp) . (15)

Employing ∂µjµ = 0 and the equal-time commutation relations given in eqs. (8)–(10), we end
up with,

∂µx 〈Ω| T jµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

= e 〈Ω|T ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn)Aµ1
(z1) · · ·Aµp

(zp) |Ω〉

n
∑

i=1

[

δ4(x− xi)− δ4(x− yi)
]

.

(16)

Eq. (16) is another form of the Ward-Takahashi identity, whose derivation relied on the con-
servation of the current, ∂µjµ = 0.
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In order to understand the connection between eq. (16) and the Ward-Takahashi identity
obtained in class, we must relate the Green function on the left hand side of eq. (16) to the
ordinary Green functions given by the time ordered product of photon and fermion fields. We
can accomplish this by considering

[

� gµν −

(

1−
1

a

)

∂µx∂
ν
x

]

〈Ω| T Aν(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn) |Ω〉

= 〈Ω| T jµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn) |Ω〉 , (17)

after employing eq. (4). Note that we can bring the differential operator in the first line of
eq. (17) through the time ordered product symbol T , since additional terms arising that are
proportional to equal time commutation relations vanish in light of eq. (7). We now Fourier
transform the above equation by operating on both sides of eq. (17) with

∫

· · ·

∫

ei[p1x1+...+pnxn+kx−(p′
1
y1+...+p′nyn)]d4x d4x1 · · · d

4xn d
4y1 · · · d

4yn . (18)

Note the signs in the exponent correspond to an incoming photon of four-momentum k, incom-
ing fermions of four-momenta pi, and outgoing fermions of four-momenta p′i. The differential
operator can then be moved over to operate on the exponential factor in eq. (17) by two
successive integration by parts (dropping all surface terms by assuming that the fields die off
at infinity), thereby producing a factor of iD−1

µν (k) [cf. eq. (2)]. We thus end up with,

iD−1
µν (k)

∫

· · ·

∫

d4x d4x1 · · ·d
4xn d

4y1 · · · d
4yn e

i[p1x1+...+pnxn+kx−(p′
1
y1+...+p′nyn)]

×〈Ω| T Aν(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn) |Ω〉

=

∫

· · ·

∫

d4x d4x1 · · · d
4xn d

4y1 · · ·d
4yn e

i[p1x1+...+pnxn+kx−(p′
1
y1+...+p′nyn)]

×〈Ω| T jµ(x)ψ(x1) · · ·ψ(xn)ψ̄(y1) · · · ψ̄(yn) |Ω〉 , (19)

where D−1
µν is given in eq. (2).

We now apply eq. (19) to the three-point connected Green function of the photon field
and two fermion fields,2

Vµ(x, x1, y1) ≡ 〈Ω|Aµ(x)ψ(x1)ψ̄(y1) |Ω〉 . (20)

The corresponding momentum-space Green function is defined by

Vµ(p, p
′)(2π)4δ(p+ k − p′) =

∫

d4x d4x1 d
4y1 e

i(px1+kx−p′y1) 〈Ω|T Aµ(x)ψ(x1)ψ̄(y1) |Ω〉

= −iDµν(k)

∫

d4x d4x1 d
4y1 e

i(px1+kx−p′y1) 〈Ω| T jν(x)ψ(x1)ψ̄(y1) |Ω〉 ,

(21)

after employing eq. (19).
2In QED, all three-point Green functions are connected since all one-point functions vanish (and discon-

nected vacuum graphs do not appear once the generating functional is normalized such that Z[0] = 1).
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One can relate Vµ(p, p
′) to the momentum space three-point 1PI Green function of the

photon field and two fermion fields by following the derivation given in part (b) of problem 1
on Problem Set 1. The analogue of eq. (18) of the solutions to Problem Set 1 is

Vµ(x, x1, y1) ≡ 〈Ω| T Aµ(x)ψ(x1)ψ̄(y1) |Ω〉

= i

∫

d4z1 d
4z2 d

4z3 Dµν(x, z1)G
(2)
c (y1, z3)Γ

ν(z1, z2, z3)G
(2)
c (x1, z2) , (22)

where Dµν(x, z1) is the exact two-point photon Green function and G
(2)
c (x1, z2) and G

(2)
c (y1, z3)

are exact two-point fermion Green functions (all of which are connected Green functions in
light of footnote 2), and Γν(z1, z2, z3) ≡ Γ(3) ν(z1, z2, z3) is the 1PI three-point (amputated)
Green function of the photon field and two fermion fields. The order of the terms appearing
in the second line eq. (22) is dictated by the suppressed spinor indices (and corresponds to
the natural order expected for the multiplication of matrices).

We can convert the above equation to momentum space by multiplying both sides of
eq. (22) by

∫

d4x d4x1 d
4y1 e

i(px1+kx−p′y1) . (23)

In addition, we can write

Dµν(x, z1) =

∫

d4p2
(2π)4

e−ip2(x−z1)Dµν(p2) , (24)

G(2)
c (x1, z2) =

∫

d4p1
(2π)4

e−ip1(x1−z2)G(2)
c (p1) , (25)

G(2)
c (y1, z3) =

∫

d4p3
(2π)4

e−ip3(y1−z3)G(2)
c (p3) , (26)

Γν(z1, z2, z3) =

∫

d4q1
(2π)4

d4q2
(2π)4

d4q3
(2π)4

e−i(q1z1+q2z2−q3z3)(2π)4δ4(q1 + q2 − q3)Γ
ν(q1, q3) .

(27)

Plugging these results back into eq. (22), we see that the integrals over x1, x2, x3, z1, z2 and
z3 produce six delta functions which then allow us to immediately perform the remaining
integrals over p1, p2, p3, q1, q2 and q3. The end result is,

Vµ(p, p
′) = iDµν(k)G

(2)
c (p′)Γν(p, p′)G(2)

c (p) . (28)

It is traditional to change the notation slightly by defining

iS(p) ≡ G(2)
c (p) . (29)

Then, in light of eqs. (21) and (28), it follows that

(2π)4δ4(p+ k − p′)Dµν(k)S(p
′)Γν(p, p′)S(p)

= Dµν(k)

∫

d4x d4x1 d
4y1 e

i(px1+kx−p′y1) 〈Ω|T jν(x)ψ(x1)ψ̄(y1) |Ω〉 . (30)
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We now multiply both sides of eq. (30) by kµ. In class, we proved that

kµDµν(k) = kµDµν(k) = −
iakν
k2

, (31)

since the multiplication by kµ annihilates the transverse piece of the photon two-point function,
whereas the longitudinal piece is not renormalized. Moreover, by writing

kν e
i(px1+kx−p′y1) = −i∂xν e

i(px1+kx−p′y1) , (32)

we can then perform an integration by parts to move the derivative over to act on the term
〈Ω|T jν(x)ψ(x1)ψ̄(y1) |Ω〉 in the second line of eq. (30). Then, it follows that

(2π)4δ4(p+ k − p′)S(p′)kνΓ
ν(p, p′)S(p)

= i

∫

d4x d4x1 d
4y1 e

i(px1+kx−p′y1)∂xν 〈Ω| T j
ν(x)ψ(x1)ψ̄(y1) |Ω〉 . (33)

Using the Ward-Takahashi identity [cf. eq. (16)], it follows that

∂xν 〈Ω| T j
ν(x)ψ(x1)ψ̄(y1) |Ω〉 = e 〈Ω|T ψ(x1)ψ̄(y1) |Ω〉

[

δ4(x− x1)− δ4(x− y1)
]

= eG(2)
c (x1, y1)

[

δ4(x− x1)− δ4(x− y1)
]

. (34)

Hence, eq. (33) yields,

(2π)4δ4(p+ k − p′)S(p′)kνΓ
ν(p, p′)S(p) = ie

∫

d4x1 d
4x2G

(2)
c (x1, y1)

[

ei[(p+k)x1−p′y1] − ei[px1+(k−p′)y1]
]

= ie(2π)4δ4(p+ k − p′)
[

G(2)
c (p′)−G(2)

c (p)
]

, (35)

after recognizing the definition of the momentum space fermion two-point Green function,

G(2)
c (p)(2π)4δ4(p+ p′) =

∫

d4x d4y ei(px+p′y)G(2)
c (x, y) . (36)

After putting iS(p) ≡ G
(2)
c (p) on the right hand side of eq. (35), we end up with,

S(p+ k)kνΓ
ν(p, p′)S(p) = e

[

S(p)− S(p+ k)
]

, (37)

where we have used the momentum conserving delta function to set p′ = p + k. Finally,
multiplying the above equation on the left by S−1(p + k) and on the right by S−1(p), we
obtain our final result,

kνΓ
ν(p, p′) = e

[

S−1(p+ k)− S−1(p)
]

, where p′ = p+ k (38)

which we recognize as the Ward identity of QED that relates the vertex function to the inverse
fermion propagators.
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