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In class, I provided two different derivations of the effective potential, Veff(Φ). The first
method was based on employing the Green functions of the symmetric theory evaluated at
zero external momentum. Setting Φ(x) = Φ to be a constant field, we obtained

Veff(Φ) = −

∞∑

n−1

1

n!
Γ(n)(0, 0, . . . . , 0) ΦΦ · · ·Φ

︸ ︷︷ ︸

n

. (1)

A second derivation was based on the Green functions for the shifted theory which is obtained
by shifting the scalar field, φ → φ+ Φ. In this case, we obtained the formula,

dVeff(φ)

dφ

∣
∣
∣
∣
φ=Φ

= −Γ
(1)
Φ (0) , (2)

where iΓ
(1)
Φ (0) is the sum of one-point Green functions (tadpoles) of the shifted theory with

zero external momentum. One can then integrate eq. (2) to determine Veff(Φ) up to an
overall integration constant which can be chosen such that Veff(Φ = 0) = 0. In these notes,
I shall provide a third derivation that makes use of the functional integral representation of
the generating functional of the Green functions of the quantum field theory. This method
of analysis was first introduced in Ref. [1] by Roman Jackiw.

For simplicity, we consider the field theory of a real scalar field. with Lagrangian density,

L = ∂µφ∂
µφ− 1

2
m2φ2 −

λ4

4!
φ4 . (3)

Consider the generating functional,

Z[J ] = N

∫

Dφ exp

{
i

~

∫

d4x
[
L
(
φ(x), ∂µφ(x)

)
+ J(x)φ(x)

]
}

, (4)

where we have inserted the factor of Planck’s constant, ~ explicitly (rather than setting it
equal to one) for later convenience. The prefactor N is chosen such that Z[0] = 1.

Our strategy will be to perform the so-called loop expansion, which will be an expansion
in ~. The semiclassical approximation is equivalent to evaluating the functional integral
above in the limit of ~ → 0.1 We shall follow closely the derivation provided in Ref. [4].

1Technically, we should really rotate from Minkowski space to Euclidean space before considering the
semiclassical approximation. In this case, the evaluation of Z[J ] would be performed using the method
of steepest descent (a well known technique in asymptotic analysis). The idea is to expand the integrand
about the field φ where the integrand is stationary. In the limit where ~

−1 is large, the contributions to the
functional integral from field configurations far away from the stationary point are suppressed. Although
this argument is valid only if the stationary point represents a real minimum, the method can also generate
a correct asymptotic series in the case of a saddle point. Nevertheless, I will stick to Minkowski space.
Although this puts us on shakier ground mathematically, the results that we will end up deriving will be
correct and can be justified by performing the appropriate Wick rotation.

1



We begin by writing,
φ(x) = φ0(x) + φ̃(x) , (5)

where φ0(x) corresponds to a stationary action, where the action is equal to the integral of
L + J(x)φ(x). This means that φ0(x) satisfies the field equations of the Lagranigan density
in the presence of the source term. That is, φ0(x) satisfies

(�+m2)φ0(x) +
1
6
λφ3

0(x) = J(x) , (6)

where � ≡ ∂µ∂
µ. If we plug eq. (5) into the expression for L + J(x)φ(x), we obtain,

L
(
φ, ∂µφ

)
+ Jφ = L

(
φ0, ∂µφ0

)
+ Jφ0 +

[
∂µφ0∂

µ −m2φ0 −
1
6
λφ3

0 + J
]
φ̃

+1
2
∂µφ̃∂

µφ̃− 1
2

(
m2 + 1

2
λφ2

0

)
φ̃2 − 1

6
λφ0φ̃

3 − 1
24
λφ̃4 , (7)

where we have isolated above the terms linear in φ̃ in the first line of eq. (7). However, using
eq. (6), it follows that

[
∂µφ0∂

µ −m2φ0 −
1
6
λφ3

0 + J(x)
]
φ̃(x) = ∂µ(φ̃∂

µφ0) , (8)

which is a total divergence and thus does not contribute to the action. Thus, we can discard
the linear term, which leaves

L
(
φ, ∂µφ

)
+Jφ = L

(
φ0, ∂µφ0

)
+Jφ0+

1
2
∂µφ̃∂

µφ̃− 1
2

(
m2 + 1

2
λφ2

0

)
φ̃2− 1

6
λφ0φ̃

3− 1
24
λφ̃4 . (9)

Plugging eq. (9) back into eq. (4), we can now change the integration measure, Dφ = Dφ̃,
since φ0(x) is now fixed by the field equations given in eq. (6). It is then convenience to
rescale the field φ̃ by redefining

φ̃ = ~
1/2φ . (10)

Yes, I know I should use a different symbol instead of reusing the symbol φ in eq. (10). But
since we no longer need to deal with eq. (5), I hope you can tolerate this redefinition of the
symbol φ. Plugging eq. (10) back into eq. (9) and inserting the resulting expression back
into eq. (4), we end up with

Z[J ] = N ′ exp

{
i

~

∫

d4x[L (φ0, ∂µφ0) + Jφ0

]
}

×

∫

Dφ exp

{

i

∫

d4x
[
1
2
∂µφ∂

µφ− 1
2
(m2 + 1

2
λφ2

0)φ
2 − 1

6
~
1/2φ0φ

3 + 1
24
~λφ4

]
}

,(11)

where N is a new constant that is fixed by the condition Z[0] = 0. Eq. (11) is the starting
point for the loop expansion. We can now expand in powers of ~ and develop a set of
Feynman rules in a very natural way.

One remarkable feature of eq. (11) is that one can derive the one-loop effective action by
simply setting ~ = 0 in terms that appear on the second line of eq. (11). (Those terms come
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into play for the first time when deriving the effective action at two loops.) The functional
integral can now be explicitly evaluated since the integrand is a gaussian. In particular,

∫

Dφ exp

{

i

∫

d4x
[
1
2
∂µφ∂

µφ− 1
2
(m2 + 1

2
λφ2

0)φ
2
]
}

= N ′(detA)−1/2 , (12)

where N ′ is yet another constant and A is an hermitian differential operator,

A(x, x′;φ0) =
(
�x +m2 + 1

2
λφ0

)
δ4(x− x′) . (13)

It is convenient to employ the well-known identity,

(detA)−1/2 = exp
(
−1

2
Tr lnA

)
. (14)

Inserting these results back into eq. (11) yields,

Z[J ] = N exp

{
i

~

∫

d4x[L (φ0, ∂µφ0) + Jφ0

]
}

exp
(
−1

2
Tr lnA

)
, (15)

after adjusting the constant N again to ensure that Z[0] = 1. Note that the determinant
and trace that appear in the above expressions are the functional determinant and trace.
However, if φ has internal degrees of freedom (e.g. suppressed color and/or flavor indices),
then A will also be a matrix with color and/or flavor indices, in which case the determinant
and trace operations also act in the usual way on the matrix indices.

Introducing the generating functional W [J ] such that

Z[J ] = eiW [J ]/~ , (16)

it follows from eq. (15) that

W [J ] =

∫

d4x [L (φ0, ∂µφ0) + Jφ0

]
+ 1

2
i~Tr ln

(
A(x, x′;φ0)

A(x, x′; 0)

)

. (17)

which has the correct normalization W [0] = 0, since the unique solution to the differential
equation given by eq. (6) when J = 0 is φ0 = 0, under the assumption that both J(x) and
φ0(x) vanish at infinity.

Finally, we introduce the effective action,

Γ[Φ] = W [J ]−

∫

d4xJ(x)Φ(x) , (18)

where the classical field is defined by,

Φ(x) =
δW [J ]

δJ(x)
= φ0(x) +O(~) , (19)

in light of eq. (17). In particular, if we perform an ~ expansion,

Γ[Φ] = Γ0[Φ] + ~Γ1[Φ] +O(~2) , (20)
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then it follows from eqs. (17)–(19) that

Γ0[Φ] =

∫

d4xL
(
φ0, ∂µφ0) =

∫

d4x
[
1
2
∂µΦ∂

µΦ− 1
2
m2Φ2 − 1

4!
λΦ4

]
, (21)

which we recognize as the classical action. Likewise, we can obtain an explicit expression for
Γ1[Φ] defined in eq. (20),

~Γ1[Φ] = S[φ0]− S[Φ] + 1
2
i~Tr ln

(
A(x, x′;φ0)

A(x, x′; 0)

)

, (22)

where

S[Φ] ≡

∫

d4x [L (Φ, ∂µΦ) + JΦ
]
, S[φ0] ≡

∫

d4x [L (φ0, ∂µφ0) + Jφ0

]
. (23)

Noting that φ0 is a stationary point of S, when we expand S[Φ] about φ0, the linear term is
absent. This implies that

S[Φ]− S[φ0] ≃
1

2

∫

d4x

(
δ2S

δΦ2

)

Φ=φ0

[
Φ(x)− φ0(x)

]2
∼ O(~2) , (24)

in light of eq. (19). Thus, this term actually belongs in the O(~2) term in eq. (20) and should
be deleted from eq. (22). We end up with the exact expression,

Γ1[Φ] =
1
2
iTr ln

(
A(x, x′;φ0)

A(x, x′; 0)

)

. (25)

Note that it is consistent within the ~ expansion to put φ0 = Φ on the right hand side of
eq. (25) in light of eq. (19). Hence,

Γ1[Φ] =
1
2
iTr ln

(
A(x, x′; Φ)

A(x, x′; 0)

)

. (26)

To obtain the effective potential from eq. (26), we consider the case of a constant classical
field, Φ(x) = Φ. In this case,

Γ[Φ] = −

∫

d4xVeff(Φ) . (27)

It immediately follows from eq. (21) that

Veff(Φ) =
1
2
m2Φ

2
+ 1

4!
λΦ

4
+O(~) . (28)

This equation provides the functional form of the effective potential, so we can simply omit
the bars and write,

Veff(Φ) =
1
2
m2Φ2 + 1

4!
λΦ4 +O(~) . (29)

4



The one-loop effective potential is of O(~). This is easily obtained from eq. (26). In light of
eq. (13),

A(x, x′; Φ) =
(
�x +m2 + 1

2
λΦ
)
δ4(x− x′) =

∫
d4k

(2π)4
(
�x +m2 + 1

2
λΦ
)
eik(x−x′)

=

∫
d4k

(2π)4
(
−k2 +m2 + 1

2
λΦ
)
eik(x−x′) . (30)

It follows that

Tr lnA(x, x′; Φ) =

∫

d4x

∫
d4k

(2π)4
ln
(
−k2 +m2 + 1

2
λΦ
)
. (31)

Note that the trace of the operator lnA(x, x′; Φ) sums over the diagonal elements, i.e., by
setting x = x′ and summing over x. Since x is a continuous variable, this means that the
sum is in fact an integral over x as indicated above. If Φ has internal degrees of freedom,
then the operator lnA(x, x′; Φ) would also be a finite dimensional matrix, and the trace
would instruct you to sum over its diagonal elements. For simplicity, we assumed in eq. (3)
that there no internal degrees of freedom associated with the scalar field, in which case no
additional summation is required.

Therefore eq. (26) yields,

1
2
iTr ln

(
A(x, x′; Φ)

A(x, x′; 0)

)

= 1
2
i

∫

d4x

∫
d4k

(2π)4
ln

(

1−
1
2
λΦ2

k2 −m2

)

. (32)

Finally, choosing Φ(x) = Φ and employing eq. (28) we end up with

Veff(Φ) =
1
2
m2Φ2 + 1

4!
λΦ4 − 1

2
i~

∫
d4k

(2π)4
ln

(

1−
1
2
λΦ2

k2 −m2 + iε

)

+O(~2) , (33)

after dropping the bars as we did in obtaining eq. (29), and restoring the usual factor of iε.
Indeed, eq. (33) is the same formula obtained for the effective potential either via eq. (1) or
via eq. (2). Note that the effective potential is defined such that the vacuum energy is zero.
Of course, in dimensional regularization, we would replace d4k/(2π)4 with dnk/(2π)n.

Let us denote the one loop effective potential by V
(1)
eff . Then, the above results are

equivalent to statement that [1],

V
(1)
eff (Φ) = −1

2
i~

∫
d4k

(2π)4
ln

(
iD−1(Φ; k)

iD−1(0; k)

)

, (34)

where D−1(Φ; k) is the inverse tree-level propagator obtained from a free field Lagrangian
that consists of the terms quadratic in the fields obtained by shifting the scalar field of the
original Lagrangian by φ → φ + Φ, where Φ is a constant field. To check this assertion, we
can perform the indicated shift to obtain,

1
2

∫

d4x

{

−φ(x)�xφ(x)− (m2 + 1
2
λΦ2)φ2(x)

}

≡ 1
2

∫

d4x d4y φ(x)iD−1(Φ; x, y)φ(y) , (35)
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after an integration by parts, where

iD−1(Φ; x, y)φb(y) =
[
−�x − (m2 + 1

2
λΦ

2
)
]
δ4(x− y) . (36)

In momentum space,

iD−1(Φ; k) =

∫

d4x eikx iD−1(Φ; x, 0) = k2 − (m2 + 1
2
λΦ

2
) . (37)

Plugging this result back into eq. (34) reproduces eq. (33), as advertised.
The derivation eq. (33) or its equivalent form given in eq. (34) is easily extended to

the case in which the scalar field possesses internal degrees of freedom. In this case, the
scalar fields that appear previously possess a suppressed index, in which case one must take
these indices into account when evaluating the determinant and trace. For example, the
generalization of eq. (34) is as follows in the case of multiple scalar fields,

V
(1)
eff (Φa) = −1

2
i~

∫
d4k

(2π)4
[
ln det iD−1

ab (Φ; k)− ln det iD−1
ab (0; k)

]
, (38)

where the determinant [whose origin is the multi-field generalization of eq. (12)] acts on the
matrix inverse propagators D−1.

As an illustration of eq. (38), consider the Lagrangian density,

L = 1
2
∂µφ1∂

µφ1 +
1
2
∂µφ2∂

µφ2 −
1

4
λ(φ2

1 + φ2
2)

2 . (39)

Performing the shifts, φ1 → φ1 + Φ1 and φ2 → φ2 + Φ2 and retaining only the terms that
are quadratic in the fields, the corresponding action is given by,

1
2

∫

d4x

{

−φ1(x)�xφ1(x)− φ2(x)�xφ2(x)− λ
[
(3Φ

2

1 + Φ
2

2)φ
2
1(x) + (Φ

2

1 + 3Φ
2

2)φ
2
2(x)

+4Φ1Φ2φ1(x)φ2(x)
]
}

≡ 1
2

∑

a,b

∫

d4x d4y φa(x)iD
−1
ab (Φ; x, y)φb(y) , (40)

after an integration by parts, where

iD−1
ab (Φ; x, y) =

{

−δab�x − λ
[
δab(Φ

2

1 + Φ
2

2) + 2ΦaΦb

]
}

δ4(x− y) . (41)

In momentum space,

iD−1
ab (Φ; k) =

∫

d4x eikx iD−1
ab (Φ; x, 0) = k2δab − λ

[
δab(Φ

2

1 + Φ
2

2) + 2ΦaΦb

]
. (42)

A straightforward computation yields,

det iD−1
ab (Φ; k) = det

(

k2 − λ(3Φ
2

1 + Φ
2

2) −2λΦ1Φ2

−2λΦ1Φ2 k2 − λ(Φ
2

1 + 3Φ
2

2)

)

= (k2 − 3λΦ
2
)(k2 − λΦ

2
) ,

(43)

where Φ
2
≡ Φ

2

1 + Φ
2

2. Hence, eqs. (38) and (43) yields,
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Veff(Φ1,Φ2) = −1
2
i~

∫
d4k

(2π)4

{

ln

(

1−
3λ(Φ2

1 + Φ2
2)

k2 − iε

)

+ ln

(

1−
λ(Φ2

1 + Φ2
2)

k2 − iε

)}

, (44)

which reproduces the result obtained in class based on eq. (2).
Due to the SO(2) global symmetry of eq. (39), we could have simplified the above com-

putation by using the SO(2) symmetry to “rotate” the scalar shift entirely into one of the
two scalar fields, say φ1 → φ1 + Φ and φ2 → φ2, where Φ is defined below eq. (43). In this
case, the matrix iD−1 is diagonal, and we easily obtain eq. (44).

Indeed, since the general form for the inverse propagator is

iD−1
ab = k2δab −M2(Φ)ab , (45)

it follows that by diagonalizing the Φ-dependent squared mass matrix, M2
ab,

S−1M2S = diag(m2
1, m

2
2, . . .) , (46)

one obtains,

ln det iD−1 = Tr ln iD−1 = Tr
[
S−1 ln iD−1S

]
= Tr ln

[
S−1iD−1S

]
=
∑

i

ln(k2 −m2
i ) , (47)

which is consistent with the result exhibited in eq. (44).
It is not too difficult to extend the analysis presented in these notes to theories that

involve fermions and gauge bosons. One can easily include the functional integration over
fermion fields and gauge fields, if present. The analysis employed above quickly reveals that
the one-loop effective action simply requires one to perform the scalar field shifts mentioned
above and retain only the terms of the Lagrangian that are quadratic in the fields that are
present in the theory. The corresponding functional integration then can be carried out
directly and results in an inverse determinant [as in eq. (12)] when integrating over scalar
and/or vector boson fields, or a determinant when integrating over anticommuting fermion
fields or anticommuting Faddeev-Popov ghost fields.2 Thus, the generalization of eq. (38) is

V
(1)
eff (Φa) = −1

2
i~C

∫
d4k

(2π)4
(−1)A

[
ln det iD−1

ab (Φ; k)− ln det iD−1
ab (0; k)

]
, (48)

where (−1)A = +1 [−1] for commuting [anticommuting] fields and C = 1 [C = 2] for real
(complex) fields. The inverse propagators are computed in the usual way by shifting the
scalar fields, φa → φa +Φa. Note that one does not shift the fermion, vector boson or ghost
fields. Nevertheless, due to the interactions of these fields with the scalars, the result of
shifting the scalar fields will yield additional quadratic terms involving fermion fields, gauge
boson fields and Faddeev-Popov ghost fields.

2More precisely, the functional integration over real commuting fields yields the square root of an inverse
determinant [as in eq. (12)], whereas integration over complex commuting fields yields an inverse determinant.
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To give one example, consider the Lagrangian density given in eq. (39). If we now gauge
the SO(2) symmetry by adding a gauge field Aµ and replacing the derivatives with covariant
derivatives, we then arrive at the abelian Higgs model with a massless charged scalar field,

L = −1
4
FµνF

µν + 1
2
(∂µφ1 − eAµφ2)

2 + 1
2
(∂µφ2+ eAµφ1)

2 − 1
4
λ(φ2

1+φ2
2)

2−
1

2ξ
(∂µA

µ)2 , (49)

where we have included the Lorenz gauge fixing term. Note that the Faddeev-Popov ghosts
[not shown explicitly in eq. (49)] are free fields and thus have no impact on the considerations
below.

After shifting the scalar fields, the terms quadratic in the gauge field are:

1
2

∫

d4xAµ(x)

[

(�x + e2Φ
2
)gµν −

(

1−
1

ξ

)

∂µ∂ν

]

Aν(x) ≡ 1
2

∫

d4x d4y Aµ(x)D−1
µν (Φ; x, y)A

ν(y) ,

(50)

after an integration by parts, where Φ
2
≡ Φ

2

1 + Φ
2

2 and

iD−1
µν (Φ; x, y) =

{

gµν(�x + e2Φ
2
)−

(

1−
1

ξ

)

∂µ∂ν

}

δ4(x− y) . (51)

In momentum space,

iD−1
µν (Φ; k) =

∫

d4x eikx iD−1
µν (Φ; x, 0) = (−k2 + e2Φ

2
)gµν +

(

1−
1

ξ

)

kµkν . (52)

With a little help from Mathematica, it follows that

det iD−1 ≡ det(iD−1)µν = −(k2 − e2Φ
2
)3
(
1

ξ
k2 − e2Φ

2
)

. (53)

Unfortunately, shifting the scalar fields, φi → φi +Φi in eq. (49) also generates a mixing
between the gauge field and the derivative of the scalar fields. Thus, in order to compute
the one-loop effective potential, we need to evaluate the determinant of a more complicated
inverse propagator that includes the effects of this mixing. Starting from eq. (49), one can
easily identify the mixing of the scalar and vector fields,

eAµ
[
(φ1 + Φ1)∂µφ2 − (φ2 + Φ2)∂µφ1

]
= eAµ

[
Φ1∂µφ2 − Φ2∂µφ1

]
+ cubic and quartic terms

= 1
2
eΦ1(A

µ∂µφ2 − φ2∂µA
µ)− 1

2
eΦ2(A

µ∂µφ1 − φ1∂µA
µ)

+total derivative terms + cubic and quartic terms. (54)

The relevant terms in the action that are quadratic in the fields is then given by,

1
2

∫

d4x

{

−φ1(x)�xφ1(x)− φ2(x)�xφ2(x)− λ
[
(3Φ

2

1 + Φ
2

2)φ
2
1(x) + (Φ

2

1 + 3Φ
2

2)φ
2
2(x)

+4Φ1Φ2φ1(x)φ2(x)
]
}

+ eAµ
(
Φ1∂µφ2 − Φ2∂µφ1

)
− e
(
Φ1φ2 − Φ2φ1

)
∂µA

µ

+Aµ(x)

[
(
�x + e2(Φ

2

1 + Φ
2

2)
)
gµν −

(

1−
1

ξ

)

∂µ∂ν

]

Aν(x) . (55)
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Eq. (55) can be rewritten in matrix form,

1
2

∫

d4x d4y FT(x)iD−1(Φ1,Φ2; x, y)F (y) , (56)

where FT(x) is a six component row vector of fields and F (x) is a six component column
vector of fields,

FT(x) =
(
φ1(x) φ2(x) Aµ(x)

)
, F (y) =





φ1(y)
φ2(y)
Aν(y)



 , (57)

and the 6× 6 matrix iD−1 is given by,

iD−1(Φ1,Φ2; x, y) = δ4(x− y)×






−�x − λ(3Φ
2

1 + Φ
2

2) −2λΦ1Φ2 eΦ2∂ν

−2λΦ1 Φ2 −�x − λ(Φ
2

1 + 3Φ
2

2) −eΦ1∂ν

−eΦ2∂µ eΦ1∂µ
(
�x + e2(Φ

2

1 + Φ
2

2)
)
gµν −

(

1− 1
ξ

)

∂µ∂ν






.(58)

which is an hermitian matrix differential operator. In momentum space, iD−1 is an hermitian
matrix,

iD−1(Φ1,Φ2; k) =

∫

d4x eikx iD−1
µν (Φ1,Φ2; x, 0) =







k2 − λ(3Φ
2

1 + Φ
2

2) −2λΦ1Φ2 −ieΦ2kν

−2λΦ1Φ2 k2 − λ(Φ
2

1 + 3Φ
2

2) ieΦ1kν

ieΦ2kµ −ieΦ1kµ
(
−k2 + e2(Φ

2

1 + Φ
2

2)
)
gµν +

(

1− 1
ξ

)

kµkν







. (59)

With a little help from Mathematica, we readily obtain,

det iD−1(Φ1,Φ2; k) = −
(
k2 − 3λ(Φ

2

1 + Φ
2

2)
)[
k2 − e2(Φ

2

1 + Φ
2

2)
]3

×

{
(
k2 − λ(Φ

2

1 + Φ
2

2)
)
(
k2

ξ
− e2(Φ

2

1 + Φ
2

2)

)

+ e2k2(Φ
2

1 + Φ
2

2)

}

. (60)

Another technique for evaluating the determinant given in eq. (60) makes use of the well-
known formula for the determinant of a partitioned matrix [2],

det

(
A B
C D

)

= detA det(D − CA−1B) , (61)

in the special case of C = B†, under the assumption that detA 6= 0. This is essentially the
method employed by Ref. [1]. Hence, the one-loop contribution to the effective potential for
the massless Abelian Higgs model is given by,
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V (1)(Φ1,Φ2) = −1
2
i~

∫
d4k

(2π)4

{

ln

(

k2 − 3λ(Φ
2

1 + Φ
2

2)

k2

)

+ 3 ln

(

k2 − e2(Φ
2

1 + Φ
2

2)

k2

)

+ ln

[(

k2 − λ(Φ
2

1 + Φ
2

2)

k2

)(

k2 − ξe2(Φ
2

1 + Φ
2

2)

k2

)

+
ξe2

k2
(Φ

2

1 + Φ
2

2)

]}

,

(62)

in agreement with the result obtained in Ref. [1]. For notational convenience, the iε factors
have been suppressed in eq. (62).

If we set ξ = 0 in eq. (62), we recover the well known expression for the one-loop
contribution to the effective potential for the massless Abelian Higgs model in the Landau
gauge [3]. Remarkably, this observation implies that in the Landau gauge, one can simply
neglect the mixing of the scalar bosons and vector bosons in the computation of the one-loop
effective potential.

One subtle point should be mentioned here. If dimensional regularization is used, then
one must replace d4k/(2π)4 by dnk/(2π)n to regulate the integrals, and then replace the
bare parameters and fields with the corresponding renormalized parameters and fields. In
particular, the determinant of the 4 × 4 matrix evaluated in eq. (53) must be replaced by
the determinant of an n×n matrix. For example, it is not difficult to convince yourself that
in n = 4− 2ǫ dimensions, one eq. (53) should be replaced by

det iD−1 = −(k2 − e2Φ
2
)3−2ǫ

(
1

ξ
k2 − e2Φ

2
)

. (63)

Similarly, in eq. (60), one would replace the power 3 with 3 − 2ǫ. Hence, it follows that
eq. (62) should be modified by replacing d4k/(2π)4 by dnk/(2π)n and by replacing the 3
with 3− 2ǫ.

Eq. (62) is not the result obtained in eq. (13.234) of Ref. [4] in the case of ξ 6= 0 (even
taking into account the different normalization used in defining λ and the inclusion of a
tree-level scalar mass term). The result obtained by Ref. [4] simply included the separate
contributions of the scalar and vector bosons while ignoring the mixing of the scalar and
vector fields. The authors justified the latter by making use of the Rξ gauge. However, the
Rξ gauge fixing term was employed only after performing the shift of the scalar fields, which
seems contrary to the rules of the formalism developed in these notes. An attempt to correct
this error was proposed in Refs. [5, 6] where a slightly modified Rξ gauge fixing term was
introduced. However, the calculations presented in these works made the assumption that

the effective potential was a function of Φ
2

1 + Φ
2

2 alone (in which case they could perform
their calculations by setting Φ2 = 0). In light of the Rξ gauge fixing term employed in
these works, I believe that their assumption was incorrect, and thus the end result of their
calculations is untrustworthy.

One can extend the functional derivation of the effective potential presented in these
notes beyond the one-loop level. Indeed, such an analysis was presented already in Ref. [1].
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However, many of the simplifications that we were able to make good use of in the one-loop
analysis cannot be extended beyond one-loop. Nevertheless, the functional techniques still
provide an excellent framework for computing the two-loop contributions (and beyond) to
the effective potential. In this regard, Refs. [7,8] are especially useful additions to the recent
literature.
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