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In the history of QED, it was crucial to test predictions
of the theory against high-precision experiments. To do
this for the SU(2)xU(1) electroweak theory, we need to
know how to derive finite predictions for observables.



basic notation for the electroweak theory:
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Z boson observables:
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It is useful to define s° as the value, inserted into this
formula, that gives the observed value of A,.



Some of these quantities are now known very accurately:

o' = 137.035999150 (33)
o t(my) = 128.922 (18)
Gr = 1.1663787 (6) x 107°GeV ~*
mz = 91.1876 (21) GeV
My — 80.379 (12) GeV
['; = 2.4955 (23) GeV
s; = 0.23153 (16)

To match this accuracy, we need to generate predictions
at the 1- (and, today, 2-) loop level.




To see how this works, compute 1-loop corrections due to
an SU(2)xU(1) multiplet of heavy scalars. This is an easy,
separately gauge invariant, case.

All of the effects come from vacuum polarization
diagrams.
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then the measurable value of « is shifted by
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Let’s go through the effects on other processes. The

structure of the vacuum polarizations is exactly the same,

except for the overall coefficients. )
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5 the Z coupling is modified to
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Now we have many examples of EW radiative corrections.
However, all of these expressions are UV divergent.



In QED, we renormalize to fix the measurable
constants m. and « ; then the predictions of the

theory are made finite.

In the electroweak theory, it is not so clear what to
do.

However, we have a lesson from the SO(N) linear o

model: 1 . 1 . 1 |
L= (0,02 4 Sp2(@)? = JA((@1)?)?

spontaneous breaking of SO(N) leads to a large
number of possible vertices, but these are made
finite by counterterms for the field strength 2, the
mass parameter 11> and the coupling A .



Ben Lee’s Theorem:

In a renormalizable QFT with a symmetry that is
spontaneously broken, the infinities are removed
by the counterterms of the symmetric theory.

corollary:

In a renormalizable QFT with a symmetry that is
spontaneously broken, any relation of observables
that is zero at the tree level will receive only
finite radiative corrections.



In the SU(2)xU(1) theory, all of the observables | have
discussed depend only on 3 parameters

g,9 v

at the tree level. Then, if we renormalize to fix the values
of 3 observables, any further prediction will be finite. This
is called “on-shell renormalization”.

An alternative is to perform MS subtraction. Then the
predictions for any observable in terms of the MS couplings
is scheme-dependent, but any relation of 4 observables is
scheme-independent. This makes calculation easier but is
less “physical”.

The PDG defines the parameters of the SU(2)xU(1) model as
the set of M S couplings giving the best fit to the full corpus
of electroweak data.



The simplest on-shell scheme is to define a reference value

s¢  using the three best-measured EW observables.

a(my)

Any other combination of observables equal to Sfu at tree

level will differ from s; at 1-loop by a finite correction.

The measured value of s is  sg = 0.231079(36) .
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In the following, | use s, c* for tree-level quantities.



In the model discussed above:
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(the Marciano-Sirlin definition of sZ, )
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compare to the expression for s-:
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In both cases, the difference of values of s is free of the
infinite term L . The finite residue is of order m2 /M?
(“decoupling”).



Let’s next discuss a physically more relevant set of
radiative corrections, those from a 4th-generation quark
or lepton doublet. In this case also, only vacuum
polarization corrections are important.

The value of the QED vacuum polarization amplitude is

i(g* g™ — q"q")( & 2) dr 8x(1 — x) F(22—_j/22)
(4m)27 J, A2-d/

As in the previous example, for heavy fermions, this is
composed of an infinite term and a term that is order

q°/M? that is, decoupling.

However, when we compute the vacuum polarization
amplitudes of chiral currents, the result is not so simple.



Consider a heavy lepton doublet with masses My and Mg ;
write
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Now A = xMJQV -+ (1 — x)M]%; — $(1 — $)QZ
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so the W vacuum polarization becomes
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We know that the infinite term will cancel, so look at the
finite terms. Unlike the previous case, these persist in the
limit M? — oo . There are two separate “nondecoupling”
effects, one that vanishes at ¢° = 0 and one that does not
vanish at ¢> = 0 but depends on the mass difference within
an electroweak doublet.

The presence of these terms should not be a surprise. The
mass of a heavy fermion is given by

M = \v/V?2
It is perfectly possible to have terms proportional to
)\2/M2

These are finite as M~ — oo because the Yukawa coupling
becomes extremely large in that limit.



How do these corrections affect EW observables?

It is possible to do a quite general analysis for the class of
models in which 1-loop corrections come only from
vacuum polarization diagrams. Particles that modify the
SM Higgs sector without (large) couplings to the light
fermions satisfy this description. Supersymmetry is not in
this class.

In a paper with the late lamented Bryan Lynn, we called
these “oblique corrections”.

Theories with non-oblique corrections require a
framework with more parameters, the “Standard Model
Effective Field Theory” (SMEFT). See arXiv:2003.05435.



There are 4 relevant vacuum polarization amplitudes
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The possibly divergent terms are the leading terms in a
Taylor series in  ¢*

Moq(q®) = Ag” + -+ Note that IIgpp and
Is0(q°) = Bg* + - - - HgQ must vanish at

Q(Q ) N 2 = (0 due to the QED
[I35(¢°) =C+ Dg” + - Ward identity.
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Of these 6 coefficients, only 3 linear combinations can be
divergent. Finite predictions of the EW theory will
depend only on the orthogonal 3 combinations,
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S = oz 33(m%) — M33(0) — Mg (m%)]

4
T = 2 m? 1111 (0) — II33(0),
160 > W

U = 2 —5 (11 (m%) — 11 (0) — M33(m7) + H33(0)]

The W and Z masses are renormalized by the same
counterterm, which preserves m%y m7c2, . Tis the
correction to this relation. The ¢° terms in the 33 and
3Q vacuum polarizations are corrected by the same
counterterm, which is the SU(2) field strength
renormalization. S is the residual finite effect. U has a
double suppression and is very small in most models.



It is a nice exercise to plug the general vacuum
polarization amplitudes into the expressions | derived for

the tree-level zero relations

2 _ g2 $2 _ 2

and watch these expressions reduce to a linear
combination of S, T, and U. The results are
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There are formulae like this for all finite electroweak
observables.



At the same time, each model yields a relatively simple
formula for the (non-decoupling) terms in S, T, and U.

For example, the heavy lepton doublet gives

1 1 AM?)?
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67 48ms%c? my, M?
S and T turn out also to be a simple way to describe the
relatively large EW corrections due to the top quark and
the Higgs boson. If we define the SM with specific

reference values, the effect of changing those values is
summarized as
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A way to search for new physics beyond the SM is to fit
the corpus of EW data to the SM (with fixed m,;, my ),
plus arbitrary values of S and T. Note that different
observables have linear combinations of S and T with
different slopes, so, in principle, the data can
determine nonzero values of these two parameters
independently.

Here are results from three different eras.



S, T fit c. 1991
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S, T fit c. 2008
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LEP EWWG: within the MSM  myp, < 144 (182) GeV (95% CL)



S, T fit c. 2014
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The SM with m; = 173 GeV, m; = 125 GeV gives an
excellent fit to electroweak data today. You can view
this either as a success or as a challenge.



