Physics 222 One-loop QCD correction to the v*qq vertex Spring 2020

1. Introduction

In class, we worked out the one-loop QCD correction to the process ete™ — hadrons.
We showed how to reframe the calculation as the one-loop QCD correction to the process
v* — qq, where v* is an off-shell photon of timelike four-momentum p. One of the ingredients
of this computation was the analysis of the one-loop QCD virtual correction to the vqq vertex.
In these notes, I will provide a derivation of the result that was quoted in class.

The diagram that is to be evaluated is shown below.

The color factor associated with this vertex is §*T*T? = Crl. We have suppressed the
factor of e associated with the photon vertex. We have also taken all quark masses to be
zero. Hence, the invariant matrix element in the Feynman gauge is given by,
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The Dirac algebra can be simplified by a judicious application of the anticommutation rela-
tions of the gamma matrices,

Vo d"(d = Fr = K2)7™ = =2(d — b — F2)V"d + (4 = )@ (4 — k2 — F2)
= 2 =n)d"g + 20k + k)7 — (4 = )" (fr + F2)
= (2= n)(24q" — ¢*7") +2(F1 + o)y — (4 — n)dy" (K1 + K2) - (2)
After making use of the massless Dirac equation, u(ky)§1 = Kav(k2) = 0, it then follows that
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2. The Passarino-Veltman functions for the one-loop vertex

In the evaluation of eq. (3), we shall employ the Passarino-Veltman functions introduced
in part (c) of problem 1 of Problem Set 3, along with some obvious generalizations:
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where p + p; + po = 0, with all external four-momenta pointing into the triangle graph.

Note that the usual factors of ic have been suppressed. It is straightforward to use Lorentz
covariance to decompose C* and C'* as follows,
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where the Cj; are Lorentz invariant functions of their arguments,
Cij = Cz'j(P%aP%aP% mf, m%, m%) . (7)

To evaluate eq. (3), we will need to compute C* and C*” in the case of m; = my = mg =0
and p? = p2 = 0. In this limit, these loop functions can be easily evaluated. Making good
use of the class handout entitled Useful formulae for computing one-loop integrals, it is
instructive to first evaluate,
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after using p? = p2 = 0. Integrating over ¢ yields,
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where n = 4 — 2¢. Using p + p; + p» = 0 along with p? = p3 = 0, it follows that p? = 2p;-ps.
Hence, we obtain
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Employing the definition of the Beta function,
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we end up with,
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Next, we evaluate,
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Using eq. (5) it follows that
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Finally, the complete evaluation of
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is provided in the Appendix. In addition, note that g,,C""(p1,p2,p;0,0,0) = 0, which is
easily demonstrated as follows,
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since p2 = 0 by assumption. This result is confirmed again in eq. (A.5).

3. Evaluating the one-loop QCD correction to the v*qq vertex

Starting from eq. (3), we first perform one additional simplification with the help of the
anticommutation relations of the gamma matrices,
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after again using u(k1)f1 = F2v(k2) = 0. Inserting these results into eq. (3) yields,
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after employing eq. (15), where
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Using egs. (5) and (6),
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Inserting these results back into eq. (16) and using p* = 2k, -ky along with the massless Dirac
equation, we end up with
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We recognize the tree-level (Born) matrix element,
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Hence,
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Finally, we make use of egs. (12), (13) and (A.4) to obtain,
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Note that in class, the expression inside the square brackets of eq. (23) was given as,
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which differs from the result obtained above only in the O(€) term, which is irrelevant since
one will take the limit of € — 0 once the effects of the real emission process, v* — qqg, are
included in the calculation of the O(ay) corrections to

o(v* — hadrons) = o(v* = ¢q) + o(7v* = qqg) . (27)
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APPENDIX: Explicit computation of C*”(py, p2,p;0,0,0)

In this Appendix, we provide an explicit computation of

Y d"q q"q”
cr (0,0;p;0,0,0)=/(2ﬁ)n 5

1672

_l_
d / a“q”
Y 5 3"
[¢% +2¢- [pr(1 — 2y) + pa(1 — 2)] + p2(1 — )]
Integrating over q yields,

cr (p17p27pﬂ0 O 0

—1—e

¢*(q+p1)*(¢+p1+ p2)?
—2/ xdx/
0 [

xda:/ dy[2pr-pa(1 — 2y) (1 — ) — p*(1 — 2)]

X {6[29?(1 —ay) +ph(1—2)| [p{(1 — 2y) + P (1 — )]

~ 30 el — o)1 - 0) (1 - )] |
In light of eq. (6) it follows that,
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One useful check of eqgs. (A.3) and (A.4) can be performed by verifying eq. (15). In

particular, using eq. (6) and putting p? = p2 = 0, it follows that
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