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Abstract 

A renormalization scheme for the electroweak standard model is presented in which the electric 
charge and the masses of the gauge bosons, Higgs particleandfermionsare used as physical para- 
meters. The photon is treated such that  quantum electrodynamics is contained as a simple sub- 
structure. Field renormalization respecting the gauge symmetry gives finite propagators andvertex 
functions. The Ward identities between the Green functions of the unphysical sector allow a re- 
normalization that  maintains the simple pole structureof the propagators in the t’Hooft-Feynman 
gauge. We give a complete list of self energies and all renormalization constants also in  the un- 
physical Higgs and ghost sector. Explicit results aregiven for the renormalized self energies, vertex 
functions and boxes tha t  enter the evaluationof 1-loop radiative corrections to  fermionic processes. 

We calculate the 1-loop radiative corrections to  purely leptonic reactions like ,u decay, vPe 
scattering and p pair production in e+e-annihilation. A testof the standard model is performed by 
comparing these low energy data with the results of the P P  collider experimedts for the W and 2 
boson masses, 

(-) 

1. Introduction 

The recent discovery of the W and 2 bosons a t  the P P  collider a t  CERN [l] with values 
for the masses of these particles very close to those predicted by the GLASHOW-SALAM- 
WEINBERG model [2]  was an important step in establishing this model as a good candi- 
date for the gauge theory of the electroweak interaction. But also the experiments with 
low momentum transfers (lqzl < MW2)  [3] and a t  e+e- storage rings [4] contribute to a 
steady improvement of the determination of the structure and parameters of the electro- 
magnetic and weak interaction. The accuracy of these experiments has reached a level 
which requires the inclusion of radiative corrections for an adequate theoretical dis- 
cussion. This will be even more the case when the e+e- machines with energies up to 
100 GeV, which are dedicated for the investigation of the detailed properties of the elec- 
troweak hosons, go into operation [5 ] .  

The standard model is a non-Abelian gauge theory of the electroweak interaction 
where the masses of the particles are generated with help of the Higgs mechanism. The 

l) supported by the Deutsche Forschungsgerneinschaft. 
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renornializability of quantum field theories of this class was proved already in 1971 by 
'T HOOFT [S]. This means that those parts occuring in the evaluation of Feynman dia- 
grams of higher order which without regularization would become ultraviolet divergent 
can be absorbed by renormalization of the fields and couplings. The importance of the 
renornialization constants is not only to absorb divergences but also to complete the 
definition of the quantized field theory. The finite parts of the renornialization eonstants 
- fixed by the renormalization conditions - influence the results of the calculation of 
radiative corrections and therefore of physically observable effects. 

Electroweak theories contain much more fields and parameters than quantum electro- 
dynamics, moreover their structure is more complicated because of their non-Abelian, 
non-simple, spontaneously broken gauge symmetry. The choice of the renormalized 
parameters and their definition via measurable quantities as well as the definition of the 
weak mixing angle is not unique beyond the tree level. 

Consequently several different schemes have been proposed in the literature [7 -  171. 
The greater part [lo, 12-55] deals with processes where /q21 < MW2,  like p decay and \I 

scattering; refs. [9, 11, 16, 171 consider high y2 e'e- annihilation. An attempt for their 
characterization can be made using the following criteria : 

- Schemes with and without field renormalization; in the latter case 8-matrix ele- 
ments hut not the Green functions such as self energies and %point vertex functions 
are finitr. 

- Field renormalization respecting the original gauge synmetry or not ; Green func- 
tions are finite but have complicated properties under gauge transformations in the 

- Determination of the parameters froni low energy experiments like p decay and vpe 
latter case. (-1 

scattering or from high energy experiments i.e. measurements of the W ,  2 masses. 

Of course, not all papers on electroweak radiative corrections fit simply into one of these 
categories. 

In this paper we present a renormalization scheme for the standard electroweak model 
which is defined by the following conditions : 

i) The physical parameters are the electric charge e ,  the masses of the W and Z bosons, 
the Higgs mass and the fermion masses. This set was introduced by SIRLIN [lo] and 
later used also by other authors [l l ,  151. e is defined as the strength of the electro- 
magnetic coupling in the Thomson limit, the masses as the position of the poles of 
the renormalized propagators. These parameters are directly accessible to  experi- 
ment, since only the nieasurement of the fine structure constant cx and of masses is 
required. The determination of masses in direct resonance production experiments 
is only very little influenced by radiative corrections. Bare niasses and couplings do 
not occur ; this avoids possible confusions in calculating cross sections in higher 
orders. The weak mixing angle Ow and the Fernii constant GF are no fundamental 
parameters. cw = cos eW = M w / M z ,  sw = f l  - cw2 are only shorthand notations 
to simplify the formulas. 

ii) Real photons couple to the electron without any admixture of Zo contributions. The- 
refore the &ED subpart of the model is realized in a simple way. Consequently pho- 
tonic radiative corrections can be treated separately; especially for ei e- + f f  they 
can be taken over from pure &ED calculations [18, 191. 

iii) Complete field renormalization respecting gauge invariance and the use of the 
't Hooft-Feynnian gauge lead to UV finite renormalized Green functions reflecting 
the gauge symmetry structure. We investigate the restrictions of the Slavnov-Taylor 
identities for the renormalization of the unphysical Green functions. Especially we 
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perform a renornialization of the gauge fixing parameters in such a way that their 
poles are situated a t  Mz2, MW2, 0. 

We add some comments on the relation of this scheme to previous work by other 
authors. 

The on-shell scheme (i) with e and the particle masses as parameters has been widely 
used for various applications in the last years [8-12, 151. Counter terms in the physical 
sector and amplitudes for scattering between spin l / Z  particles are presented in ref. [S] 
in a unitary gauge calculation. 

A vanishing renormalized photon-Z0 mixing for on-shell photons (ii), which allows to be 
as close as possible to  &ED, has also been used by the authors of refs [S, 11,12,15]. The 
treatment of field renormalization in [ l l ,  151 differs from [8, 121 and ours, since more 
renornialization constants than symmetry multiplets are introduced. For physical 
8-matrix elements the results should be equivalent. This is also the case for the scheme 
without field renormalization [lo]. 

The method of SAKAKIBARA [ 121 to generate counter terms and his renormalization 
conditions are nearly identical to ours in the physical sector ; for the unphysical gauge 
boson, Higgs and ghost parts ref. [ 121 contains less counter ternis since the gauge fixing 
part is not renormalized, according to Ross and TAYLOR [12]. One consequence of Sa- 
kakibara’s procedure is that the relation sin2 Ow = 1 - Mw2JMZ2 is no longer valid in 
higher order. This should not affect physical results if Mw, Mz are rigorously used and 
auxiliary quantities avoided in final results. Since the evaluation and renornialization 
of all longitudinal gauge boson, Higgs and ghost self energies is not performed in [12] an 
explicit check of the equivalence of the pole structure also in the unphysical sector is not 
possible so far. However, Ross and TAYLOR [12] claim that in this scheme which has no 
gauge parameter renornialization the poles of the individual unphysical propagators 
are not the corresponding tree levels poles. 

The intention of this paper is to give a self contained and elaborate discussion of the 
standard model renormalization and to  provide the basis for the calculations of radiative 
corrections, in particular to e+e- annihilation, deep inelastic scattering and Pp anni- 
hilation with Ip21 
Sect. 2 of this paper contains the definition of the complete Lagrangian and its parame- 
ters, sect. 3 the discussion of the Slavnov-Taylor resp. Ward identities, sect. 4 the re- 
normalization conditions. The complete list of the Feynman rules including the counter 
ternis can be found in the appendix A. In sect. 5 we list the 1-loop formulas for the un- 
renormalized self energies, the ferniion gauge boson vertex functions and the renormali- 
zation constants. We give also all the unphysical Higgs and ghost self energies together 
with the renoImalization constants which have not yet been presented so far. Sect. 6 
contains the renormalized boson self and mixing energies and simple formulas for the 
renormalized gauge boson ferniion vertices for arbitrary momentum transfer. Numerical 
results are shown for those self energies, vertices and box diagrams that enter the radia- 
tive corrections to  electroweak processes between fermions. In  the last section 7 we 
apply this renornialization scheme to the purely leptonic reactions p decay, vpe scattering 
and lepton pair production in e+e--annihilation. A test of the standard model is perfor- 
med using as input the experimental data for these processes together with the nieasu- 
red values for Mw and M z  [l]. 

MW2. The paper is organized as follows : 

(-) 
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2. The RenormaIized Lagrangian and the Feynman Rules of the Standard 
Electroweak Model 

1.1 The classical Lagrangian, parameter and fields 

Gauge theories of the electroweak interaction are constructed in such a way that a t  low 
energies and in lowest order the experimentally successful Fermi model is recovered. In 
the case of the standard model [2] the universality of the weak interaction is realized in 
the form of the gauge group SU(2)  x U( 1). The gauge symmetry is spontaneously broken 
with help of a minimal Higgs mechanism with a SU(2) doublet of scalar fields such that 
the electromagnetic gauge invariance U (  l)em is maintained. The standard model allows 
to predict from low energy experiments the masses Mw, Mz of the heavy gauge bosons 
JV*, 2. The existence and main properties of these particles have recently been con- 
firmed by experiments at the PP collider [ 11. 

The classical Lagrangian of the standard model Y c  is composed of the gauge, Higgs 
and fermion part : 

Yc = fYM + YhJ + Y F .  (2.1) 

According to the gauge group XU(2) x U (  1) we have an isotriplet WPa(x) and an isosing- 
let BJx) of gauge fields with gauge coupling constants g2 and g1 leading to the Yang- 
Mills Lagrangian : 

1 (a, wp - a, w; + p2&abe w; w p c ) 2  - 
1 

Yynf = -- 
4 

The complex Higgs doublet q(z) 

(a,B, - ayB,)2. (2.2) 

with hypercharge Y = 1 is coupled to the gauge bosons and has a self coupling: 

with the covariant derivative : 
Y 

D, = a, - w,a + igl B, . (2.4) 

The left-handed fermion fields &(x)  are grouped into doublets (i = doublet index, 
(T = component of the doublet) of the weak isospin, the right-handed fields y$(x) into 
singlets, the hypercharges respecting the Gell-Mann Nishijima relation Q = I 3  + Y/2 .  
The Lagrangian YF which describes the interaction between the fermions, the gauge 
fields and the scalars then has the form2) : 

2) We do not writ,e explicitly colour indices and thecabbibo transformationof the quark fields i.e. 
we assume the coupling matrix gii = g$ii to  be diagonal. 
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This completes the const,ruction of Y c  in terms of the fields WPa, B,, v, yz, yRand the 
parameters 

Pc is invariant under local transformations of the group XU(2) x U (  1) : 

namely 
SYc 
-- - 0, myx) a = {u,  Y }  

A forinulation where the physical content of the theory is more - but the symmetry 
less - transparent can be obtained by performing the following transforination of the 
gauge fields : 

and using the following parameters : 

e ,  *WW, Mz, MH,  mi, 
wit.h 

(2.8) 

- 
ittH = 1 2  p, mi, = ginp fzjn. (2.10) 

Each of the parameters (2.9) is directly accessible to experiments since for their deter- 
mination measurements of the Thomson scattering cross section (for the electric charge e )  
and of the masses of the W boson, 2 boson, Higgs boson and the fermions are required. 
This is the reason why we prefer the set of more physical fields (2.8) and parameters (2.9) 
as the basis for the formulation of the electroweak Lagrangian f c .  It may be that for 
low energy processes the use of other parameters like the Fermi constant GF and the 
weak mixing angle Ow is more convenient [lo, 12, 131. The relation between Mw, iMz 
and GF, Ow to lowest order is: 

(2.11) 

Depending on the specific renormalizationschenie some of the relations (2.8)- (2.11) get 
corrections from higher order contributions. 
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2.2 

For the systematic treatment of the quantization of Tc  and higher order calculations it is 
convenient to choose a renornializable gauge. We introduce linear gauge fixings Fa( W ,  B, 
y )  of the 't Hooft type: 

Gauge fixing and ghost fields 

F+ = ([lw)-1/2 @W,+ iMw(E2w)1/2 fp*, 

(2.12) 

1 
TfiX = -- 2 (F")2 (2.13) 

2 a 

and introduce the Faddeev-Popov ghost fields ua(z) resp. u*(z), uz(z), uy(z) with the 
Lagrangian [21]: 

(2.14) 

A particular choice of the gauge parameters 5 is : 

t 1 W  = t e W  = E 1' 3 - - 6 2 3 - - (p - = t z B  = 1.  (2.15) 

This 't Hooft-Feynman gauge has the advantage that at least to lowest order the poles 
of the longitudinal parts of the gauge boson propagators, the unphysical Higgs fields 
y*, x and the ghost fields are situated at  MW2 or MZ2 and that no gauge field - Higgs 
field mixing occurs. 

With YfiX and Ypp we have completed the constructionof a renormalizableLagrangian 

(2.16) f = -f '~ + Yfix + YFP 

for the standard electrowealr model. 

2.3 Multiplicative Renormalization 

The Lagrangian (2.16) is the starting point for the calculation of Green functions and S 
matrix elements including radiative corrections. We renormalize not only the physical 
parameters but also the fields in order to arrive a t  Green functions that are finite. For 
S-matrix elements the results should of course be equivalent to those obtained without 
field renormalization (see e.g. SIRLIX [ 101). Since symmetry arguments were important 
in the construction of d f c  we perform t,he multiplicative renormalization of P in such a 
way that the gauge symmetry is respected : 

W,'J + (Z2w)1/? W,Q, B, + (ZZB)'l2 B,, 

y + (ZV)1/2 fp, 

yb --f (ZLi)"2 y ; ,  

g2 + z 1 w ( z , ~ ~ ) - 3 / 2  gz,  

yio R -+ (ZRi@)1/2 y z ,  

g1 + z1~(ze~)-3~2 gl', (2.17) 
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(2.17) 

These definitions of renormalized fields and parameters induce corresponding expressions 
for the fields (2.8) i.e. W,*, Z,, A ,  and the parameters (2.9). Writing 

zi = 1 + dZj (2.18) 

we obtain Y -+ Y + 6Y where the expression for Y in the renormalized quantities is 
identical with the original one, but now contains the renormalized physical parameters 
and fields. The quantities 6Zi, 6v, 6p2, S t ;  occur in the counter term Lagrangian 62'. 
Their finite parts have to be fixed by the explicit renormalization conditions. Before 
doing this we study the restrictions which are imposed on the renormalization procedure 
by the Slavnov-Taylor identities of the theory. 

The Feynman rules belonging to 2' and the counter terms from 6P are listed in app. A.  

3. Slavnov-Taylor Identities 

8.1 The Beeehi- Rouet-Stora transformation 

The original gauge invariance of lc ig lost after the introduction of YflX and Y F p  but the 
complete Lagrangian Y is invariant under gauge transformations involving also ghost 
fields uu(x).  In  order to discussthis point we use the following condensed notation for the 
fields and their transformations : 

@a = { W,a(4, % 6 ( 4 ,  d4, Y C ( 4  Y 2 ( Z ) I ?  

ma = (d,a + g ~ ~ p t )  68". 

(3.1) 

(3.2) 

The inhomogeneous tern1 AaU acts only on the gauge field part of @, Tb denotes the rep- 
resentation matrices of the SU(2)  x U(1) generators. The transformation under which 
L is invariant - the Becehi-Rouet-Stora transformation [22] - is constructed in such 
a way that the parameters of the infinitesimal gauge transformation 6P contain the 
ghost fields : 

Se.(Z) = u"(x) . I .  (3.5) 

(2 is independent of x and has ghost number - 1). Since (3.2) together with (3.3) defines 
a gauge transformation Y c  is still invariant. The transformation of the ghost fields ua, z a  

is defined in such a way that 2'fix + Y p p  is also invariant : 

6iP = FO * 2 ,  (3.4) 

where FYI is the linear gauge fixing operator (2.12), K the Faddeev-Popov kernel (2.14) 
and C a B y  the structure constant of the gauge group. 
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3.2 The Slavnov-Taylor identities 

The BRS symmetry of Y induces symmetry relations between the Green functions of the 
theory. They can be derived in a compact form with the help of the path integral for- 
nialisni. The generatling functional Wof theGreen functions ts,...s, = (01 TDs3 . . . !Psn 10): 

(3.6) 

is defined by: 

W[j ,  w, = s D@,D;iiDu exp {i 1 d 4 x [ 9  + QSja + Zaom + iZaua]). (3.7) 

Here we have introduced sources is for the fields Ds ans sources ma, wa for the (anti)- 
ghost fields. From the invariance of Y ,  DQS and DaDu under BRS transformations one 
obtains for W the identity : 

From this Slavnov-Taylor identity [23] follow the desired relations between the Green 
functions t by taking suitable derivatives with respect to  the sources is and putting 
afterwards all j s  = 0. 

A special class of relations, those which do not directly contain Green functions of 
ghost fields, results if the gauge fixing operator Pa is applied to eq. (3.8) : 

(3.9) 

This equation relates the gauge boson propagators A",(k) to  the gauge boson Higgs 
mixing propagators APni(k)  and the unphysical Higgs propagators Ai i (k )  : 

&kYA;(k) + 2MwkpdPw9(k) + MW2AP(k) = --i, 

(3.10) 

k@kYA;f(k) - i,klzkPA,~x(k) = 0. 

In order to get relations between self energies 2 we decompose the gauge field propaga- 
tors into t'heir transverse and longitudinal parts 

make use of the Lorentz covariance of the gauge Higgs mixing propagators 

split off the free parts of the propagators 

k 2 - M 2  
i 

k2 - Ma2 A;tL(k2) = 

(3.11) 

(3.12) 

(3.13) 
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(3.14) 

-4s a consequence of U (  l)e*l gauge invariance the longitudinal photon self energy vanishes 
identically as is the case in pure &ED. 

By adding the appropriat,e counter terms (app. A) we arrive a t  identities for the 
renornialized self energies 2 : 

k2(tLW + 2Mw2Wv) - Mw2i'q = (k2  - MW2) [k2(SZ,w - allW) 
- Mw2(6t2'+' + 629)  - 6Mw2], 

k2(LLZ - 2iMz2zx) - Mz2tX = (k'? - Mz2)  [k2(6ZZZ - 
- Mz2(6E2Z + 6ZV) - bl%fz2], 

~ L Y  = k2(6Z27 - 6 E I y ) ,  

(i.,~z - ilWz,2Tx) 

(3.15) 

-4s a consequence of these results the number of independent renorinalization conditions 
for the unphysical propagators A $ ,  Apui ,  dij is reduced. But eq. (3.15) is compatible 
with a renornialization where the poles of these propagators are located a t  MW2, Mz2, 0. 
This means that the structure which is realized in lowest order in the Feynman gauge 
can be maintained in all orders by a suitable renorinalization of the gauge fixing para- 
meters [1s2. 

We do not work out the relations like (3.9) between the "unphysical" parts of higher 
Green functions since we do not need thein for the investigation of the restrictions on the 
renormalization constants in the unphysical sector. 

Let US have a look now a t  the ghost propagators. Differentiation of eq. (3.8) with re- 
spect to the sources of the gauge fields yields: 

(3.16) 

Here G'B(k) denotes the ghost propagator and Gn8*6p = (01 (Tua$W,6) 10) the gauge field 
- ghost three point function. Eq. (3.16) is in lowest order the usual relation between the 
longitudinal part of the gauge field propagator and the ghost propagators, in 1-loop 
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order it allows to determine the ghost self energies from ZL@, Pi and the diagram on the 
r.h.s. An important consequence of eq. (3.16) is that renornialization in the ghost sector 
can be performed in such a way that the poles of the ghost propagators remain at Mw2,  
MZZ, 0. 

The identities (3.16) read in 1-loop order for the self energies: 

(3.17) a cw ZJz~(k' )  - i M z . D ~ ( k 2 )  - DZ(k2)  = - - - k2Bo(k" M w ,  M w ) ,  
4x sw 

cw') 
4n sw- 

ZLz(k2) - iMzZZx(k') - ,Zz(k2) = - -z, (k2 - MZ') Bo(k': Mw,  M w )  , 

ZLW(k2)  + M p P y k Z )  - Z'W(k2) 

- - - (k' - Mw') -2 B,(k2 ; Mw,  Mz) + Bo(k2: Mw,  0 )  , I 01 CW? 

4n [s W 

where the singular 1-loop integral B, is defined in eq. (5.4). Adding the appropriate 
counter terms of app. A we obtain the identities for the renornialized self energies: 

(3.18) 

2Bo(k2,. v, Mu-) > 

(3.18') 
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3.3 Generalized Ward identities 

The identities (3.10) and (3.16) relate unphysical parts of Green functions. In analogy to 
the &ED-Ward identity [24] between the eey-vertex and the electron propagator we can 
derive from eq. (3.8) by differentiating twice with respect to the sources of the fermion 
fields identities relating ferniion vertices to fernlion propagators : 

k' IM, C -  

6" 

The physical content of these identities can he seen by evaluating them in 1-loop approx- 
imation and inserting the results (3.17). Keglecting terms of order a . m i a / ( f p ,  Mw, Mz) 
the following generalizations of the ordinary &ED- Ward identity are valid : 

and similar relations for the other fernlion generations, The vertex functions Apaoa' are 
the 1-loop contributions to  the amputated %point Green functions tp The ferniion 
self energies Zsa follow from the propagators : 

A4 a result the &ED identities for each separate charged ferniion are replaced by similar 
identities for the ferniion doublets. In addition we have found analogous relations for the 
vertices of the fermions and the heavy gauge boson Z (written for the first ferinion 
doublet) : 

kp(ApZvv(k, p , q )  + ilpzee"(, p ,  Q )  

(3.22) 



698 M. BOHM eta]., On the 1-Loop Renormalization 

k p ( 4 A Z U U ( k  P,  9)  - ApZdd(k P, !I)) 

4. Renormalization Conditions in the On-Shell Scheme 

The study of the counter ternis in the Lagrangian and of the detailed Slavnov-Taylor 
identities allows us to forniulate explicitly the renormalization conditions. Thereby not 
only the ultraviolet divergencies occuring in the loop expansion are absorbed in the in- 
finite parts of the renormalization constants but also the finite parts are fixed. These 
lead to physically observable consequences. As already mentioned in the introduction 
various niore or less elaborate renormalizations for the standard model are used in the 
literature, They differ in the choice of the physical parameters and the prescriptions for 
the finite parts of the field renormalization constants. Although the results including 
radiative corrections obtained with different consistent renormalizations formally devi- 
ate from each other only on higher order ternis it may be that the l-loop corrections 
itself calculated with a low energy renornialization scheme and applied to  high energy 
experiments differ from high energy renoriiialization calculations. 

We present a renoriiialization scheme which is defined by the following conditions3) : 
- The poles of the renormalized propagators lie at MW3, Mz2,  0, MH2,  mt.  This implies 

for the renormalized self energies : 

,trW(Mw?) = 2.Tz(MZ2) = 2”(MHZ) = 2ym2 10 ) = 0. (4.1) 
- According to the residual U(l)em syinnietry i t  is possible to  renorinalize so that the 

properties of the photon and the electric charge are defined like in &ED: 
1 

li2 
-2T~(ii2)lkz=0 = 0 ,  ,&Yz(o) = 0 ,  P , y e e ( ~  = 0, p = = me) = iey,g). 

(4.2) 

- The residues of the propagators of fernlions with I 3  = -112 and of the physical 
Higgs particle are one: 

- Vanishing tadpole : 
P = O .  

- The poles in the unphysical sector are a t  MW2, MZ2,  0: 

&W(MW*) = 2zz(Mz2) = 2qNW2) = 2qNzz) = 2’rx(O) = 0, 

(4.3) 

(4.5) 

3, In the following equations only real parts of self energies enter. The imaginary parts are finite 
by themselves and we define the mass as the real part of t$e pole position in the propagator. 

’) This is a condition for the vector part of the photon vertex r p Y e e ,  only. For the axial vector part 
no separate condition has to be imposed since TEfA(k2 = 0) = 0 is automatically fulfilled. 
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-- The residue of the photon ghost propagator is one and the photon-ghost 2-ghost 
mixing propagator vanishes a t  k2 = 0 :  

The conditions (4.1)-(4.6) fix all the renormalization constants of eq. (2.17). 
We have chosen our scheme in such a way that the following properties hold : 

- We use as physical renormalized parameters e ,  Mw, Mz,  MH, rn,. The question from 
which processes an optimal determination of the standard niodel parameters should 
he performed depends on the experimental accuracy. At  present the best choice is the 
Josephson effect for the determination of m,  the PP collider experinients and the ,u 
decay for Mw and M, (resp. Mw and sw2), but with experimental progress this may 
change. Especially a more accurate measurement of the W ,  2 masses seems to be 
very desirable, leaving e.g. ,u decay and neutrino scattering as low energy tests for 
the standard model. 

- Eqs. (4.2) characterize our procedure as a natural extension of the &ED renorniali- 
zation. This nieans in practice that existing results on photonic corrections [18, 191 
can be taken over directly. Especially 1-loop calculations can be divided into real 
and virtual photonic corrections (the sum of their contributions in physical cross 
sections is infrared finite) and weak corrections (IR finite by themselves). We use 
e2/16n2 = a/4n = 1/(4n. 137.036) as the effective expansion parameter. 

- We work with only one field renormalization constant for a symmetry multiplet. 
Therefore renormalization conserves the gauge transformation properties of the 
fields and the Green functions. But as a consequence of the use of the minimal nuin- 
her of field renormalization constants not all the residues of the renormalized propa- 
gators are one. This is the case for the W ,  Z and the I3  = +1/2 fermions and wave 
function renormalization for their in- and outgoing particles is needed. These do not 
occur in the complete amplitudes for physical S matrix elements. 

- In Yfi, + YFP we have built in the renormalization constants 6& and fixed them in 
such a way that the simple pole structure of the 't Hooft-Feynman gauge survives 
renormalization. The Slavnov-Taylor identities (3.15) and (3.18) guarantee that with 
the conditions (4.5) also the poles in the other unphysical propagators A W 9 ; .  . . ; G";. . . 
are a t  the same positions. This simplifies considerably the evaluation of Feynman dia- 
grams. 

- We have checked that the Ward identities for the fermion gauge boson vertices (3.19) 
are compatible with our renormalization prescription. 

Finally we translate the conditions (4.1) - (4.6) into prescriptions for the singular and 
finite parts of the renormalization constants (2.17) resp. their combinations (app. A )  : 

= Mz2( 
6V Bt 

v t ,  
-2 - + 262," - 362,Z + 629  + 2 -) , (4.1') 
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he 3 
e 2 
- = 62,r - - dZ,Y; 

(4.4') 

(4.5') 

(4.8') 

5. 

The intention of this section is to provide the building blocks needed to compute radiative 
electroweak corrections to e+e- annihilation, deep inelastic scattering and other pro- 
cesses. We do tllis by evaluating the explicit 1-loop expressions for the renormalization 

Explicit Results in 1-Loop Approximation 
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constants, renormalized self energies and ferinion gauge boson vertices. The calculations 
are perforiiied analytically, thereby neglecting terms which are of the order of magnitude 
m;2/(Mw’,  s) in the final results. Theultraviolet divergences are treated with the method 
of dimensional regularization [25$ This is possible since the standard model is free of 
y5-anomalies. The 4-dimensional integration and the Dirac and tensor structures arr 
replaced by L)-dimensional ones : 

(5.1) 

( p  is introduced for dimensional reasons). 
In  order to explain our notation we give the results for the scalar tadpole integral: 

The IJV divergent part A M  contains the Euler-Mascheroni constant */ and has the foriil : 

M2 
y - l n -  A M = - -  2 

4 - - 0  4np2 * 
(8.3) 

The scalar 1-loop self energy integral defines the function B,(k2; MI, M 2 )  

i 
16n2 
- Bo(k2; M,, M 2 )  - - 

with : 

X’k2 - ~(k‘ + M I 2  - M,’) + MI2 - i& . (5.4) 
MIMZ 

- I d x  In 
0 

The function F ( k 2 ;  M1, N2) = F ( k Z ;  M,, M,) is finite and vanishes for k2 = 0. Its 
explicit form is written in app. B.l. 

5.1 The tadpole 

The vacuum expectation value v of the Higgs field, which in lowest order is given by 
v2 = p2/L gets 1-loop contributions from the diagrams of fig. 1. They lead in the ’t Hooft- 
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Feynman gauge to the expressions : 

The tadpole diagrams of fig. 1 give for example contributions to the self energies. These 
are absorbed by mass renormalization rending the 6Ei2 gauge independent. 

w ?. q,x, 4 U o L  i6 
,*-. 

' +  Q + <  '.y ; I 

I I 
I I I I 

Fig. 1. 1-loop tadpole diagrams 

5.2 

a) Gauge boson self energies 
The contributions of the diagrams of fig. 2 to the longitudinal and transverse unrenor- 
malized self energies have been computed by 191. We present them decoinposed into the 
singular parts (defined to be proportional to A )  and finite parts : 

Unrenormalized self energies and vertex functions 

Fig. 2. 1-loop gauge boson self energy diagrams*). 

The explicit expressions are (the index f denotes any fermion io ;  vf = via, af = a j a  are 
defined in app. A. We also omit in sects. 5 and 6 the index W a t  sw, cw) : 

zi,fi,, = a 4n 2 &I2 [ (k2 + 2m7) F ( k 2 ;  mf, m,) - - 
3 f 

1 

(5.7) 

*) I n  figs. 2-7 tadpole diagrams are omitted. 
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(5.5) 

- 2Mw2T/t, s, (5.10) 

1 (m:, - m:-)2 + F(k2  ; mi+, m ~ - )  - ---- F(k2;  mi+, m -) 
2k2 

5 ,  f = f for f i: vl and f = I for f = v l .  
fi) For lepton doublets with mi+ = 0 replace A ,  + Ai- and drop the log term in Zlp,fin. 

2 Fortschr. Phys. 34 (1986) 11 
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(5.13) 
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a c2 - 82  

4n 6282 
qsing = -- { - Mw2Aw\ - 2Mw2T/t ,  

705 

(5.14) 

b) Gauge boson Higgs boson mixing 
The diagrams of fig. 3 contribute to the gauge boson Higgs boson mixing energies defined 
in eq. (3.12). Their singular and finite parts are 

Fig. 3. Diagrams for gauge boson Higgs boson mixing 

(5.15) 

(5.17) 
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c) Higgs boson self energies 
The self energies of the Higgs bosom are needed to calculate the full set of renornializa- 
tion constants. The diagrams of fig. 4 give 

Fig. 4. 1-loop Higgs boson self energy diagrams 

cx 2c2 + 1 
k2A w 7 

Ziinp = -- - 
4n 2c2s2 

(5.20) 
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d) Ghost self energies 
The results of the diagrams of fig. 5 for the ghost self energies are : 

?,Z,O A+& ,--. 
Fig. 5. 1-loop ghost self energy diagrams 

(5.22) 
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e) Fermion self energies 
Because of Lorentz covariance we can decompose the self energies Ziu(k)  of the fermions: 

(5.26) Ziu(k) = kL'viu(k2) + &JAAiu(k2) + mimZsiu(k2). 

Y W 

6 d 6 6 6 ' 6  6 6 6 

Fig. 6. 1-loop fermion self energy diagrams 

The diagraiiis of fig. 6 give the following contributions to the invariant functions CgASs : 

OL 
&lo = -- IQ :u ( 2 w 2 ;  mzlrr 3.) + 1) + (go + 4,) ( 2 w 2 ;  m,,, M z )  + 1) 

1 

4n 
1 + 3 (2B1W; m,o, M,)  + I)] 7 

(5.27) 

1 zAag = - - a ~ v L U a l u ( 2 B d k 2 :  mzo, M,) + 1) - 3 (2B1P; m,,,, J f w )  + 1) > 

ZSmu = - - [Q:,(4BO(k2. m,,, 1.1 - 2) + (u:u - af,) (4B,(kz; mzo, M z )  - 2 ) ] .  

4;2 

a 
4n 

The photon contribution was calculated with a sniall photon mass 1. in order to  regularize 
possible infrared divergencies. The functions B, and B, are defined in eqs. (5.4) and (B.2).  
Instead of the vector and axial vector parts of the self energies Cv,, it niay be more con- 
venient to use the right- and left-handed parts: 

.& = Gr - 2'4). (5.27') 4f = (.& + ZA), 

f )  Fermion gauge boson vertex functions 
The vertex functions7) rUauu'(kz,p, q )  contain for ik2/ > mb. and p 2  = mu2, q2 = mu2, only 
vector and axial vector parts. The Feynnian diagrams of fig. 7 yield (diagrams con- 
taining Higgs exchanges can be neglected) : 

rpyoa(k2)  = -ieQuy, 

7 )  In the following we drop the fermion family index i since Cabbibo rotation is not involved. 
8,  In eqs. (5.28, 30) 0' denotes the isospin partner of the fermion u. 



Fortschr. Phys. 34 (1986) 11 709 

01 b l  6 )  
Fig. 7. 1-loop gauge boson fermion vertex diagrams 

(5.29) 

1 1 
47c 4s2 2 r y ( k 2 )  = iey,(l - y5 )  - - Ow - - + A2(k2, M w )  

1 
- iey,(l - y5)  - - 4n 4s2 

(5 .31)  

(5.32) 
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The invariant functions LI~,...,~ together with some of their properties are presenteg in 
app. B.3. 

For the renornialization of the electric charge we need the yee-vertex a t  k2 = 0, 
p2 = 4 2  = me?-. Its explicit form is: 

(5.33) 

(5.34) 

6.3 Renorinalization constants 

The prescriptions for the calculation of the renorinalization constants from the un- 
renormalized self energies and vertex functions have been defined in eq.s (4.1') to (4.6'). 
We find for the mass renornialization 6Zw2, 6zz2 of the heavy gauge bosons 

b Z w 2  = SZ&,sing + 6E$,fil, = ZlFsing(MW2) + Re Zlgrin(Mw2), (5.36) 

b z z 2  = hzi,sing + 6z2, r in  = ,Z$,sing(MZ2) + Re ,Z{fin(Mzz) (5.36) 

explicit expressions by using eq.s (5.9) and (5.10). Eq.s (4.1') tell us that' with 6zw2, 6zz2 
also the following combination of Se, 6ZIz, 62," is determined : 

(5.37) 

Eq.s (4.2') together with (5.7), (5.8), (5.33) give for the photon field renormalization 
const ant 

(9:,Jia) + 3dw + (5.38) 
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a combination of the (y ,  2) renormalization constants 

and the charge renormalization 

2 4323 Iy r 2 3 l l  
7 3 - dZ,Y - - 6 2  y = - - zi&;uAiu) - - Llw - - . 6C -- 

C 

A comparison of eq. (5.40) with (5.38) shows that 

(5.40) 

(5.41) 

This means that the familiar &ED relation is modified by the non-Abelian couplings of 
the gauge bosons. 

The four eq.s (5.37) to (5.40) allow the separate determination of 6 2 , ~ ,  6Z2y, SZlZ, rJZ2z : 

(5.42) 

Together with these eonstants also 6ZlW, 6Zzw, 6 2 ,  z, hZZyz are determined. Explicit 
expressions may be obtained with help of eq. (A.1). 

The mass and field renormalization of the leptons according to eq.s (4.1') and (4.3') 
treats the charged, massive leptons and the neutral, massless neutrinos in an unsymme- 
tric way. This is a consequence of spontaneous breaking of SU(2)  x U(1) and of chiral 
symmetry. As a result the neutrinos remain massless and left-handed after renormali- 
zation, whereas the charged leptons suffer mass renormaIization : 
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The residue of the electron propagator was put equal to one for both the L and R parts. 
This gives : 

(5.44) 

SAKAKIBARA [ 121 applies the condition Res = 1 to the v propagator which consequent- 
ly does not get an artificial IR  singularity. But in this scheme the electronfield is not 
treated like in &ED. 

In the case of quarks we have two right-handed singlets associated with one left- 
handed doublet. The two mass renormalization constants are determined by eq. (5.43). 
The doublet renornialization constant dZL(d,*) and the singlet renormalization constant 
dZRd for the I ,  = - 112 members are fixed as in the lepton case: L and R residues in the 
d-propagator are put equal to one. 

dZRw is determined such that the residues of the L and R parts in the u-propagator are 
still equal (but + 1). This yields: 

with 

Since the propagators of the u-type fermions have a residue different froin 1 a wave 
function renormalization factor 1 - " 1 4 ~ .  d(u, d) /2  has to be assigned to each external 
line. 

The Higgs mass MH and the Higgs field are renormalized using the prescriptions 
(4.1') and (4.3') for 8MH2and 6Zp together with the expression (5.18) for the unrenorinal- 
ized Higgs self energy. This gives: 

3 + 6 3  17 Mz2 + 2c2M$ 27 MH2 
8c2s2 4c292 MH2 

(5.47) 
MZ2 + 2c2MwZ 3 MH2 

MH2 8s2 Mw2 
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The renormalization of the gauge fixing parameters 8 follows from eq. (4.5') together 
with the expressions (5.11-14), (5.19,20) for the longitudinal parts of the gauge boson 
self energies and the self energies of the unphysical Higgs fields: 

S& = 6Z*Y, (5.49) 

(5.50) 

+ 2c2s2F(Mw2; 0, M,) + 2s'~' + 3c2 - 1 + F(MW2: Mw, M z )  
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With these expressions we have determined all the renormalization constants of our 
renormalization scheme of the standard model. They can be used together with the 
counterternis to  derive the finite renornialized Green functions of the model in 1-loop 
order. In the next section we present the results for the self energies of the gauge bosons 
and the ferniions as well as the ferinion gauge boson vertices and box diagrams. 

ti. 

6.1 Gauge boson self energies 

In  order to give an impression of the influence of the 1-loop contributions on the magni- 
tude of radiative corrections we present in this section the formulas for the renormalized 
self energies and vertex functions and numerical results for these quantities. From the 
expressions (5.7 - 14)  for the unrenornialized self energies and the renormalization con- 
stants (5.35-42) together with the prescriptions for the renormalization we obtain for 
the renormalized transverse parts of the gauge boson self energies the following for- 
niulas : 

Renornialized Self Energies and Vertex Functions 

1 
- k2- d,, 

6cs 
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i T z ( k 2 )  = (ZTZ(k2) - Re ZTZ(Mz2))(fi ,  

715 

a mt2 - mb2 mt2 1 
f- 4n 4s2MW2 In 2) / f i n  4- 3s2 ") ' 

with 

I I 1 1 

-200' -150' -100' -50' 0 50' 100' 150' 200' 
k ' / G e V z  

Fig. 8. Real and imaginary parts of the renormalized transverse photon self energy 
kT'(k2). The curve shows &?(kz)/k2 

The numerical results in figs. 8-11 for lk21 < (200 GeV)2 have been calculated with the 
following standard set of parameters (if ,possible taken from [26]) : 

a = (137.036)-', 

Mw = 82 GeV, MZ = 93 GeV, MH = 100 GeV, 

m ,  = 0.511 MeV, m, = 105.66 MeV, m, = 1784 MeV, (6.2) 
?n,l = 5 MeV, 

m, = 1.5 GeV, 

ind = 7 MeV, 

mb = 4.5 GeV, 

m, = 150MeV [27j, 

m, = 30 GeV. 

The real parts of the diagonal self energies t T y ,  kTz, f T w  are, compared to  the free in- 
verse propagators, not small but yield 10% as typical order of magnitude. The contri- 
hutions to  the imaginary parts from the fermion loops are positive hut those from the 
gauge loops are negative. Both the real and imaginary parts of the W and 2 self energy 
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- 

- 

- 
/ <  

depend strongly on the energy. The approximation using a constant imaginary part in 
the vicinity of the resonance leading to the usual Breit-Wigner type form of the modu- 
lus square of the propagator is thus not really justified. In  fig. 12,13 we show a compari- 
son between a Breit-Wigner distribution using M ,  and Im tTW(Mw2)  resp. M ,  and 
Im i T z ( M z 2 )  and the corresponding quantities resulting from (6.1). We find for the W 
and Z FWHM values whichare 10% bigger than Im f T ( M 2 ) / M  = r. This means that 
for thedetermination of the widthof the W and Z a careful analysis of the experimental 
distributions is necessary. 

In  the case of the W self energy we have contributions of loops containing photons. 
The physical channel W + W + y has its threshold a t  k2 = MW2. Consequently we 
observe in fig. 11 the peak in the real part and the structure in the imaginary part. The 
magnitudes of these effects depend on the details of the W W y  coupling. In  a model 

I I 

I 1 I I I I I I I 
-ZOO2 -150’ -100’ -502 0 50‘ 100‘ 150‘ 200’ 

k ‘ / G e V Z  

Fig. 10 
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I I I I I I I I I 
2002 1502 1002 502 0 SO2 loo2 1502 ZOO2 

k 2 / Ge I/ 2 

Fig. 11 

Fig. 10, 11. Renormalized W ,  2 self energy. The curves are Re &w~z(k2) / (k2  - N&,z) 
and Im&w*Z(k2)/Im , Z T ~ * ” ( N & , ~ )  (Read -0.06, -0.08, -0.10 instead of -0.07, -0.09, 
-0.11, resp.) 

where the W is coupled to the photon in the form of a minimal substitution i t  would be 
different from that of the standard model. 

The diagonal gauge boson self energies are very large compared to acjn and therefore 
will give the main contributions besides brenisstrahlung to the radiative corrections in 
e-e- annihilation. Compared to these the yZ mixing is much smaller and inourrenormal- 
ization scheme typically of the order of magnitude of 1%. In  our scheme we do not use 
the weak mixing angle Ow as a fundamental parameter but as a short hand for sin2 Ow 
= (1 - Mw2/Mz2) .  The results shown in fig. 9 might be interpreted as contributions to 
an effective running i.5. energy depending mixing angle. 

The residue of the renormalized Z propagator is different from 1. We obtain: 

For comparison with other renormalization schemes we present also t T w ( 0 )  and t T Z ( O )  : 

a - t T Y Z ( k 2 ) l p = 0  = nqo) = -0.021 
ak2 

tTW(0) /Mwz = -nw(0) = 0.069, 
(6.4) 

fTz(0) /Mz2 = -nZ(O) = 0.069. 

These values enter into the calculation of radiative corrections to low energy processes. 
The parameters (6.2) which we used for the numerical discussion of the self energies 

are only partly known from experiment. The Wand Z masses have been chosen in agree- 
ment with the PP-collider results [ l ]  but since they still have rather large errors we have 
investigated the dependence of the self energies on the masses Mw, M z  of the gauge bo- 
sons. We find that i t  is determined mainly through the ratio Mw/Mz.  Therefore wepres- 
ent as an example in Figs  14 and 15 n W ( O ) ,  nyZ(0)  as functionsof sw2 = 1 - M w 2 l M Z 2  
and Mw. 
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1 

0.20 1- 

Fig. 12 
12 

782 802 8Z2 842 862 
k 2 / GeV2 

Fig. 13 

Fig. 12, 13. Comparison between a Breit-Wigner distribution with M w , ~  and I m  ZTTw.z 
A (M&,,) as parameters (- - - - -) and the square of the modulus of the renormalized 
W ,  2 propagators (- ) 
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I 

0.0705 

0.0700 h 
82 GeV 

0.0690 t \ 

n n c n c  

I 0.0685 

I I I I I I I I I 

2 s* 

0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 

Fig. 14. The Wself energy -nw(0) = ,kTw(0)/Mw2 asfunctionofsw2, M ,  for the stand- 
ard set of parameters (6.2) 

0.030 

- 0.025 2 

7 

- 
L. 2. 

0.010 - 

0.01s - 

2- 
0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.C; 

2 
Jw 

Fig. 15. The yZ mixing nya(0) as function of sw2, M ,  (other parameters like in fig. 14) 

The masses for the u, d, s quarks used above correspond to the values obtained by 
GASSER and LEUTWYLER [27]. The evaluation of the hadronic contribution to the photon 
self energy using quark loops with these values of the quark masses leads for energies 
between 10 and 100 GeV to numerical results which are in agreement with a determina- 
tion [28] of these contribution using dispersion theory and experimental data from e+e-- 
annihilation. However, since the quark masses are not known very precisely and since in 

3 Fortschr. Phys. 34 (1986) 11 
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the literature calculations of radiative corrections using much bigger values for these 
masses can be found, we have studied the dependence of ITw, I I y Z ,  lTz on mi = {mu, md, 
n ~ , ~ } .  Defining Sq17 = f l (mi , )  - n(rn,*) we find : 

I ------- I 

300.300. OSO 

MH/GeV m,.md.m,/NeV mt /GeV 

Fig. 16 a 
018 019 020 0.21 022 023 024 925 

2 
5, 

- I 300,300.4SO\ \\ 

I I I I I I I I 

018 019 020 021 022 023 024 025 
2 

5w 

I Fig. 16b 

Fig. 16a, b. nW(O) (a), n y z ( O )  (b), as functions of 8~~ with M ,  = 82 GeV fixed. Shown 
are the variations with the Higgs mass, top quark mass and the masses of the light quarks 
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The extreme choice m, = md = 300 MeV, m, = 450 MeV leads to the curve for n w ( O ) ,  
n @ ( O )  shown in fig. 16a, b. lnw(0)l is lowered by N 0.011. In  figs. 16a, b we present also 
the variation of nw(0) and Ily”(0) with the mass of the top quark. A change from m, 
= 30 GeV to e.g. m, = 60 GeV increases IIlw(0)I for sw2 = 0.221 by 0.002. 

Finally we do not know the Higgs mass MH. Therefore we have displayed n w ( 0 ) , Z I y Z ( O )  
also for MH = 10 GeV and MH = 300 GeV in figs. 16. A light Higgs mass decreases 
I n w ( O ) / ,  a heavy one increases it. The conclusion of this discussion is that our ignorance 
of the mass parameters give uncertainties in the calculation of I l W ,  112 and the other 
self energies amounting to kO.01 which might be of the same order of magnitude as 2- 
loop effects. 

6.2 Fermion self energies 

We described the renormalization prescription for the lepton and quark self energies in 
sect. 5.3. Together wit,h the unrenormalized expressions (5.27) and the renormalization 
constants (5.43-46) we obtain the renormalized self energies from the equations : 

+ mi,Zsb(k2) - mi,(SZRia + SZJi)j2 - ami,. (6.6) 

We illustrate the results with help of the v, self energy and the electron self energy. The 
corresponding invariant functions are shown in figs. 17 and 18. For the neutrinos only 
left-handed contributions exist. They are in our renormalization scheme infrared diver- 
gent. Therefore in fig. 17 the IR finite quantity - i J V ( O )  is drawn for time- 
like momenta pz .  It depends only weakly on p 2 .  

The real and imaginary parts of the invariant functions iVe, ide, ise of the electron 
self energy are presented in figs. 18. In  the case of Re kve and Re ise we have subtracted 
the IR divergent part a/4z (2 In (m,2/A2) - 4). We find that kA and tv are small, only 
Re reaches a level of several percent. 

I 

I I I 

0 40 80 ;r?0 160 2[ 
p z /  G e V i  

- 0.005 
? 

Fig. 17. Real (-) and imaginary (- - - -) parts of the neutrino self energy subtracted 
nit p z  = 0 (Read 402, 802, . . . instead of 40, 80, . . . reap.) 

3* 
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0001 

0 

-0001 

-0 a02 

-0.004 

- 

- I m  i ; ( p 2 )  / I O  

I I Fig. 18 b 

-0.008 I 
-0.012 

-0.0161 I I I I i Fig. 18a 
0 402 802 1202 1602 2002 

p 2 / G e V 2  

0.004 

0.003 

0.002 

6.3 

The following list of the renormalized vertex functions contains vector and axial vector 
couplings only and is valid for on shell ferniions and lk2j > m,2. As in sect. 5.2 we write 
down the formulas only for the first lepton and quark multiplet. 
a) Electromagnetic current : 

Renormalized gauge boson fermion vertices 
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(6.8) 

aeA,(k2, me) + ae(3ve2 + a,,2) A2(kZ, ~ W Z )  

3c 

(6.10) 

(6.11) 

9) 6(u, d )  is defined in eq. (5.46). 



+ 2*ds2 A,(k2, M,) + 2 A3(k2, M,) , 1 - 
8s3c 

+ 2Qds2 A2(k2, M,)  + -g A3(k2, M,) . 1 - 
88% 

(6.13) 
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d)  Exaniples : The electron and v photon formfactors, the electron 2 boson formfactor, 

For illustration we present the weak contributions (the parts in eq.s (6.7-13)) 
to the vector and axialvector photonic formfactor of the electron in fig. 19 for lk21 
5 (150 GeV)2. The vector part F;:weak vanishes a t  k2 = 0 as a consequence of charge re- 
normalization, the axial vector part F~,w,,k(0) = 0 because of the Ward identity. For the 
k2 values given above the real and imaginary parts of these formfactors are typically of 
the order of magnitude if 10-3e. 

the Wev-formfactor 

I 

10-3 

0 -  

-1 

-2.- 

.10-3 

0 

-1 

- 2  

- FAyc 

I m  \\ . --- 

k 

The yv vertex vanishes in lowest order but gets contributions from 1-loop diagrams 
(b, c of fig. 7) containing the W exchange and the non-Abelian gauge boson coupling. 
The resulting formfactor FYv(k2) shown in fig. 20 grows for lk2j 5 (150 GeV)’ to  - 10-3e. 

The non-photonic contributions to  the eZ boson formfactors are shown in fig. 21a, b. 
They have the same characteristics as the other formfactors. Compared to  the self energy 

- 15-07 -707 0 702 1507 
k 2 / G e V 2  

Fig. 20. Real (-) and imaginary (- - - -) parts of the electromagnetic formfactor 
of the neutrino 
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- ?SO' - 702 0 70' l5-02 
k Z / G e V Z  

Fig. 21a, b. Real (-) and imagi- 
nary (- - - -) parts of the weak con- 
tributions to the vector (a) and axial 
vector (b) 2 boson electron forni- 
factor 

Fig. 22. Real and imaginary parts of 
the vertex integral A,(k2, M )  
for M = M,, M z  and A,(k2, &I,,,), 
A4(k'2, MZ, J f w )  
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effects of the weak bosons the weak contributions to  the vertex corrections give effects 
in ere- annihilation processes which are one order of magnitude smaller. 

The Wev- and the corresponding quark formfactors obtain a contribution from the 
WWy-coupling (see fig. 7c). This shows a pronounced structure around k2 = MW2 and 
reaches an order of magnitude of -40 . a/4n for the real and imaginary part (see fig. 23). 

-150’ -70’ 0 70’ 150’ 
k’/ G e Y 2  

Fig. 23. Real (-) and imaginary (- - - -) parts of the photonic invariant function 
A4m(k2, Xtb7, 0) for m = me 

Together with the corresponding contribution (the Wy-loop) to the W self energyit may 
lead to interesting effects in W exchange dominated reactions for timelike large 
momentum transfers. 

We conclude this section with some remarks on the box diagrams with two weak 
bosons. In contrast to the self energy and vertex diagrams they are both UV and IR 
finite and consequently in the 1-loop approximation not directly influenced by the 
renornialization scheme. Their contribution to 1-loop radiative corrections to S matrix 
elements is in the energy range considered of the same order of magnitude as those of the 
vertex corrections. Explicit expressions are given in the appendix B.4 and numerical 
results presented in fig. 24a, b. 

3 
4. 

In this section we apply these 1-loop results to purely leptonic reactions like p decay, 
vPe scattering and lepton pair production in e+e- annihilation [29]. Although the results 
from deep inelastic lepton scattering have now reached very good statistics, we have 
restricted our analysis to leptonic processes in this paper since these have smaller theo- 
retical uncertainties from the strong Interaction. Therefore these processes allow the 
cleanest tests of the electroweak interaction. 

According to the choice of Mw, M, as parameters in the renornialization scheme used, 
the most direct way to compare the predictions of the electroweak standard theory with 
experimental data is to start with the measured values for Mw, M, (or equivalently Mw, 
sw2 resp. M,,  sw2). 

Application to Purely Leptonic Reactions 

(-) 
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O t  

-2.01 , I I I 

0 0.2 0.4 0.6 08 f 
- t  / 5  

Fig. 24a. Real part of the 
s-channel box diagram form- 
factors 2 4 a .  I (-) and 
2n/a . I ,  (- - - -) for the 22 
and W W  box (fy = 93 GeV) 

.o 

- t O I  I I I , 
0 02 04 06 08 10 

- f / s  

Fig. 24 b. Real (-) and 
imaginary (- - - -) parts of the 
t-channel box 2 4 a  . IZZ(t, 9) 
and 2nloc. I,ZZ(t, 9) with two 
2 bosons for = 93 GeV 
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The UA 1 and UA 2 groups have determined 

M ,  = 82.2 & 1.1 GeV, M Z  = 92.7 & 1.0 GeV. (7.11 

A value for A N  = Mz - M ,  can be deduced from experiment with an error smaller 
than that resulting from (7.1) because of a partial cancellation of the systematic uncer- 
tainties. Together with the definition of sw2: 

this gives for the mixing angle [l]:  

8,' =z 0.218 & 0.023. (7.3) 

a) p decay: 
Neglecting terms of order (m,/rnJ3 and (m,/Mw)2 the lowest order expression for the 
decay width for p- + vP5,e- is given by : 

(7.4) 

Putting together the 1-loop corrections yields the following results : 

= r,y i + wp/rPo), (7.5) 

The first correction term is the familiar &ED correction in the Fermi model, the second 
the contribution of the transverse part of the W self energy, n w ( 0 )  of eq. (6.4), the last 
term the sum of the vertex and box diagrams together with the v,, v, w?ve function 
renorrnalization. 

The decay width r, = rpO + Sr, depends on both Mw and sw2. Using the mean 
values of (7.1) and (7.3) the expressions (7.4-5) give: 

r, = 2.96 . 10-l6 MeV, 

whereas the &ED corrected Fermi model result is : 

This has to be compared with the ineasuredvalue rpexp = 2.9958 . 10-lGMeV [26]. With 
a fixed value of M ,  = 82.2 GeV we obtain 2.42 5 r, 5 3.70 . 10-l6 MeV, cor- 
responding to  the variation of sw2 in (7.3). 

The present accuracy of the direct Mw, Mz measurements does not allow to predict 
r, with a precision that can compete with the accuracy of FpexQ. Instead, r p e X p  can be 
used as an input quantity from which for a given sw2 (resp. M,) the corresponding Mw 
and M z  (resp. sw2, M z )  is obtained. The result of this calculation is shown in figs. 25 and 
26 for various values of the other parameters. 
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016 018 020 022 024 026 028 
2 

SW 

Fig. 26. Same as fig.s 26a, b for several choices of >IH: 1: M H  = 300 GeV, 
2: M ,  = 100 GeV, 3: M ,  = 10 GeV. Quark masses as in eq. (6.2) 

( - )  

b) vpe scattering: 
The ratio 

is well-suited for our purpose since it is sensitive to the ratio Mw/Mz resp. sw2and less 
subject to systematic errors than the cross sections themselves; moreover i t  is free of 
electromagnetic higher order corrections. 

With the ratio 5 of the vector and axial vector coupling constants of the electron to 
the Z : l o )  

6 = via = 1 - 4sw2. (7.7) 

I, has in lowest order the simple form : 

The 1-loop corrected expression of A,” can be written in the following way: 

(7.9) 

lo) I n  this sect,ion we omit the index e of the coupling constants ve, a,. 
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It gets contributions from the y Z  mixing energy ZTyz (6.1), the derivative of the yuv 
f ormfactor 

M. BOH’M et al., On the 1-Loop Renormalization 

and of the box diagrams containing two massive gauge bosons 

(7.10) 

(7.11) 

The weak contributions to the renormalized yvv, Zvv and Zee vertex functions vanish in 
our scheme a t  zero momentum transfer, yielding the simple expressions above. 

The quantity R, resp. A,, eq. (7.6), depends on M w  and .Mz mainly via the combination 
Mw/Mz,  because the variation of the y Z  mixing energy with A f w  (whence sw2 fixed) is 
small (see fig. 15). Therefore the value of sw2 from (7.3) can directly be converted into t,he 
observable R, (see also fig. 27) : 

R,O = 1.293:;, R, = 1.282:::;. 

0.6 I I I 

0.15 a20 I 0.25 0. j 
5, 

0.6 
0.15 0.20 025 0. 30 

5, 

Fig. 27. R, as function of sw2 in lowest order (- - - -) and including radiative corrections (-) 
for several choices of 
a) M,; 1:  M H  = 300 GeV, 2: M H  = 100 GeV, 3: MH = 10 GeV and 
b) quark masses: 
I: (mu, md, m,) = (300, 300,450) MeV, 
2: (mu, md, m,) = (5, 7, 150) MeV, 
3: (mu, md, m,) = (5, 7, 150) MeV, 

mt = 30 GeV; 
mt = 60 GeV; 
mt = 30 GeV; other parameters from (6.2) 
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The actual experiniental value is [30] : 

The measurement of R, together with that of F, an be used to determine the gauge boson 
niasses by simultaneously solving the equations 

r ,exp = r theor 
p P w ,  MZ). &exP = R theor 

Y (Mw, MZ), 
This way to analyse the low energy dat,a has been - until the experimental discovery of 
the W and Z - the only possibility to get information on the values of the gauge boson 
masses from purely leptonic reactions [XI. The results of our calculation are presented in 
fig. 28, where we have plotted the W and Z mass as a function of R,exp. 

c )  Forward-backward asymmetry in e+e- 3 p+p- : 

The forward backward asyninietry A F B ( x )  in e+e- annihilation into p pairs is defined 
as (c = caos 0 ) :  

0 - x  

do/dQ reads in Born approxiniation 

4s d B  
b2 dQ 
- . - = 1 + cz + 2x(s) [v2( 1 + c)2 + 2u2c] 

(7.12) 

(7.13) 

(7.14) 

At PETRAjPEP energies one is allowed to neglect the imaginary part M Z r z  in the 
denominator of x since ( r z / M z ) 2  < 1. Also we know that v2 Q u2 and consequently may 
simplify (7.15) : 

(7.16) 

(7.17) 

The radiative corrections to dold.0 can be divided into electroinagnetic (real and virtual 
photonic corrections) and purely weak parts : 

(7.18) 
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The electromagnetic corrections C,, and their influence on APE have been treated in 
ref. [ 181 and especially in [ 191. Therefore we do not reproduce the expressions for C,, in 
this paper but take the formulas of [19] for the numerical evaluation of their contribution 
to A F B .  

self 
energy, the y Z  mixing energy, the weak contributions F ,  to the e and p photon and 2 
formfactors and the box graphs with two heavy bosons. For PETRAjPEP energies. 
neglecting terms of order 4 2 n  . (jtl/Mz2) these box contributions become independent of 
c = cos 0,  and therefore the weak corrections can be written in the following way : 

The purely weak part C, is built up from t h e 2  self energy, the gauge part of the 

duo 
dQ 
---c,= ( 1  + c ) [  2 CWY'+ + 2xC,yZ.+ + x'C,Z*+] + 2c[2xCwyZ*- + x 2 C , Z . - ] .  

(7.19) 

These terms modify the expression (7.16) for the forward-backward asymmetry APE to 
become : 

Now we write down the explicit form of the corrections C , :  
C,V.f = -217,~ f 4FY#e 

V,rC' 

C,YZ.+ = -v2(I7,y + 177') - 2vIlY" + 2vFte, + 2v(cF;tu + aF$,) 
+ 4v2a2Alzz f (2sw)-* V,WW, 

Cwyz*- = -a2(nwY + ITz) + 2uF:;, + 2a(vF2tw + UF;:~,)  
+ (.2 + ,2)2 A , Z Z  + (2sw)-4 v p w ,  (7.21) 

CWZ.f = -2 (v2 + IlZ - 2v(v2 + u2) - 217yz + 4(v2 + a2) ( vF2 ,  + aF2,) 
+ (v - 2va + a($ + ~ 3 ) ) ~  Alzz + (v + a)z  ( 2 ~ ~ ) - ~  VlWw, 

c,Z.- = -8 v 2 a 2 lIz - 8a2v17yz + 8 v a ( v F ~ ~ ,  + aFZ,;,) 

+ (v(v2 + u2) + a - 2va)z A,zz + (v + a12 (2sW)-4 V,WW. 

The quantities 17 are related to the renormalized transverse self energies iT(s) (6.1) : 

1 .  
17,y(s) == - Re Z$,,(s) (non-fermionic part), 

17yz(s) == - Re ZTyZ(s), 

s 

1 .  
(7.22) 

S 

The weak contributions FEW, . . ., F';l, to  the formfactors are built from the functions 
L I ~ . ~ ( s ,  M 2 )  and coupling constants (comp. 6.8, 11) and app. B.3) : 

(7.23) 

4 Fortsehr. Phys. 34 (1986) 11 
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(7 .23)  

These expressions vanish for s = 0 and are for energies is< 45 GeV smaller than 10-3, 
Finally the low energy approximations of the 22, W W  box diagrams have the simple 
form (coupling constants removed) : 

(7.24) 

yielding terms of the order of magnitude of less than 
If an accuracy of the relative corrections to AFB at  PETRAjPEP energies of 10-3 is 

desired, one is allowed to neglect in the contributions to C,  all terms but the self ener- 
gies. Then one gets for 04pp*Weak the following expression (uqing also v2 Q a 2 )  : 

(1  + 17,y - n z ) .  3 p2  
N _  

3 1 - n , y  - 172 &Borntweak - - - xaj2 - F B  1 - 2nWy + x2a4 - 2 1 + x2a4 
(7.25) 

x was defined in eq. (7.14) as the ratio of the free Z and y propagators. Therefore the 
result (7.25) has the simple interpretation : 

3 X(s)Borntweak 
ABorni weak a 2 ,  XBorn+ueak = 

F B  ($1 = - 
2 1 + ~ ( 8 ) ~  a4 s - Mz2 + ,fTZ(s) 

(7 .26)  

The lowest order expression for ~ ( s )  has to be replaced by the renormalized one, the 
radiative corrections to a2 can be neglected. 

The weak i.e. non-Abelian gauge contribution to 1 7 y ,  comes from vacuum polarization 
by W pairs, the corresponding ghosts and unphysical charged Higgses and results for 
small energies as can be seen from (6.1)) (5.7) in: 

(7 .27)  

Consequently this can also be neglected a t  the desired accuracy at PETRAjPEP ener- 
gies, leaving t,he simple result suited for the practical calculations : 

3 x(s) a2 &Born+weak - - - (1 - P ( s ) ) .  
F B  2 1 + x2a4 (7.28) 

We find - in agreement with [16] - that the weak radiative corrections to  AFB a t  low 
energies are determined by the transverse Z boson self energy only, with an accuracy of 
ni/lweakl&o < 10-3. 
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On the basis of the formulas (7.18-23) we present in table 1 the weak corrections to  
AFB for a large range of the Z mass and sw2. The a3 contribution to AFB which is of pure 
QED origin is not included because i t  is model independent and already respected in the 
experimental data. The sum of the &ED corrections to Z exchange and y Z  interference 
and the purely weak corrections turn out to be very small over the parameter range con- 
sidered for realistic cuts (5  0.001 in AFB). Fig. 29 shows the predictions for AFB( lcos 81 
5 0.8) for is= 34.5 GeV with an accolinearity cut of loo and an energy cut of 0.5E bea,,, 

Table 1 

Purely weak corrections t o  AFB(lcos 81 < 1) in percent for ds = 43 GeV 
( X ,  = 100 GeV, mt = 30 GeV). 

sw2 Hz(GeV) 

89 90 91 92 93 94 95 96 97 

0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 

-1.66 
-1.57 
-1.49 
-1.41 
-1.35 
- 1.29 
-1.24 
-1.19 
-1.15 
-1.12 
- 1.08 
-1.05 
-1.02 
-1.00 
-0.97 
- 0.95 

-1.62 
-1.53 
-1.45 
- 1.37 
-1.31 
-1.26 
-1.21 
-1.16 
-1.12 
-1.08 
-1.05 
-1.02 
-0.99 
-0.97 
-0.95 
-0.92 

-1.57 
-1.48 
-1.41 
-1.34 
-1.28 
-1.22 
-1.17 
-1.13 
-1.09 
-1.06 
-1.02 
-0.99 
-0.97 
-0.94 
-0.92 
-0.90 

-1.53 
- 1.44 
-1.37 
-1.30 
-1.24 
-1.19 
-1.14 
-1.10 
-1.06 
-1.03 
-1.00 
-0.97 
-0.94 
- 0.92 
-0.90 
-0.88 

-1.49 
-1.41 
-1.33 
- 1.27 
-1.21 
-1.16 
-1.11 
-1.07 
-1.03 
-1.00 
-0.97 
-0.94 
-0.92 
-0.89 
-0.87 
-0.85 

-1.45 
-1.37 
-1.30 
-1.23 
-1.18 
-1.13 
-1.08 
-1.04 
-1.01 
-0.97 
-0.94 
-0.92 
-0.89 
-0.87 
-0.85 
-0.83 

-1.42 
-1.34 
-1.27 
-1.20 
-1.15 
-1.10 
-1.06 
-1.02 
-0.98 
-0.95 
-0.92 
-0.89 
-0.87 
-0.85 
-0.83 
-0.81 

-1.38 
- 1.30 
-1.23 
-1.17 
-1.12 
-1.07 
-1.03 
-0.99 
-0.96 
-0.93 
-0.90 
-0.87 
-0.85 
-0.83 
-0.81 
-0.79 

-1.35 
-1.27 
-1.20 
-1.14 
-1.09 
- 1.05 
-1.00 
-0.97 
-0.93 
-0.90 
-0.88 
-0.85 
-0.83 
-0.81 
-0.79 
-0.77 

for the brenisstrahlung part. These results are scaled up to /cos 81 5 1 according to the 
lowest order formula (7.15) in order to be directly comparable with the PETRA results 
[4] that are shown in the figure, too. 

One can see from fig. 29 that the experimental result for A F B  a t  34.5 GeV favours 
values of sw2 which are slightly smaller than those following from the M w / M Z  ratio. 

d)  Tests of the st,andard model at the 1-loop level : 

The most important parameters of the electroweak st.andard model are the masses of the 
intermediate bosons. Therefore, we have expressed every observable quantity with help 
of Mw and M,. Consequently each measured value Rexp of a quantity R 

gives a relation between Mw and Mz. This depends if one includes radiative corrections 
slightly on the other parameters of the model i.e. the fermion masses and the Higgs 
mass. In  order to perform a test of the standard model using purely leptonic reactions we 

4* 
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present the experimental results in the (Mw, M,) plane. This is done in fig. 30 including 
l-loop corrections (for our previously specified standard set of parameters (6.2)) for : 
- p decay, which gives a curve in the (Mw, Mz)  plane; 
- v,e scattering, yielding relatively weak bounds on Mw, Mz due to the present ex- 

- the lepton pair forward-backward asymmetry aLl& = 34.5 GeV; 
- the direct measurement of Mw and M Z  in the PP collider [l]. 

This picture represents a comprehensive test of the electroweak standard theory at  
the l-loop level in the leptonic sector. 

Clearly the low energy data (from r,, R,, A F B )  and the high energy data (Mw, M z )  are 
conipatible with each other. The agreement would be worse if radiative corrections were 
not taken into account. R u t  in order to become really sensitive to these corrections im- 
provements in the experimental determination of Mw, M Z  and R, are necessary. 

(-) 

perimental errors [30] ; 

8. Conclusion and Outlook 

In this paper we have worked out a renormalization scheme for the standard electro- 
weak model characterized by the following properties: use of the electric charge e and 
particle masses as physical parameters ; minimal number of field renormalization con- 
stants respecting the SU(2)  x U(1) symmetry; the simple pole structure of the 't Hooft- 
Feynman gauge is maintained after renormalization in a way consistent with the Slav- 
nov-Taylor identities. We have calculated all the physical and unphysical self and mixing 
energies together with the complete set of renormalization constants, and the ferinion 
gauge boson vertices. We have presented also the renormalized results for the self ener- 
gies, vertices and box diagrams. These are the building blocks needed for the calculation 



Fortschr. Phys. 84 (1986) 11 739 
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H w / G e V  

Fig. 30. Comparison of the resulta for the boeon maeaes in the (Mw, Xz) plane. Shown 
are: the curve reeiilting from p decay (-), the 68% CL band determined from v/e 
ecatterina ( / / / / / I / )  and that from the forward-backward Repmetry in e"e- -+ p+p- 
(E). The blob with the error bars represents the combined UA 1 and UA 2 results 

of electroweak radiative corrections to e'e - annihilation, deep inelautie lepton scattering 
and PF annihilation at high energies. 

Finally we have pcrformed a comparison between experiment and the results of tht: 
Rtandard model including radiative corrections for p-decay, v,e-scattering and e-e-- 
annihilation into lepton pairs. We find good agreement between theory and experiment 
if radiative corrections are included. Rut the accuracy of the experiment haA not yet 
reached a level where radiative corrections can be conclusively tested. We expect this to 
he the c u e  in the near future, when results of the next generation of the e-e--machines 
and of the high precision experiments on lepton scattering areavailable. These then may 
also help to gather some information on the Higgs sector and finally will allow to  d i ~ -  
criminate between the minimal electroweak model and iiiore extended versions. 

I-) 
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Appendix A : Feynman rules and counter terms 

We present the Feyniiian rules of the standard model using e ,  M w ,  M Z ,  M,, m,, as 
paranit.ters and 

c = M w J i l l z ,  s z= (1  - Mw2//Mz2)'Iz, T~~ = (lib - ~ s ~ & ; , ) / ~ s c ,  a,, = I i 3 , / 2 ~ ~  

as abbreviations for writingout the couplings (again we suppress the ind%x W at cw, sw). 
We combine the renormalization constants 6Z,W, dZ,B,  6ti3, 6 t l B ,  bZW, 6 Z B  to those for  
the photon, Z boson and mixing terms: 

6Z,Y = S26Z,'V c C26ZIB, = s'bE,3 + C2bE1H, 

CS 
6t,YZ = cs(b6,3 - bt,B) = - (6tl" -- d t , Y ) ,  

siniilar for 62. 
C' - s2 

The renormalization constants 6MW2,  6Mz2, 6Mfj2 ,  am,,, 6t are defined in eq.s (4.1') and 
(4.4'). This gives the following list of Feynnian rules and counter terms (momenta and 
cxhargcs are understood as incoming) : 

i s  1 w; o ' x , q  lJa {?+ , +----a , , - 
A, "! ):.-.. - -- - ig , , [ -k~bZ2yZ + Mz2(6Zlyz - 6Z2yz)] -t ikpk,8t1YZ, 
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Bppendix B: 

1. The finite part of the scalar self energy F(k2;  M I ,  M2) :  

2 .  The junction B,(kz; M I ,  M, )  is defined by: 

ana relatea to &: 

This gives for equal inasses : 
\-*-I 

(B.2') 
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3. The vertex functions ~l~,...,~: 

The contributions of the photonic diagrams of fig. 7a to t,he vertex function r, (of 
sect. 5.2f) for lk2j > m2, p = = m have already been calculated [It(, 191. After 
splitting off the UV divergent parts and the coupling constants remains t~he funet,ion 
il ,(k2, m) : 

for - k 2 > m ? .  

The diagrams of fig. 7b describing the exchange of the heavy bosons Z and W lead to the 
following integral : 

and 
5 M2 
2 k2 . A2(k2, M )  = -- + In w + 2(1 + w ) ~  

The parameter integral 
1 1  

" ( ~ 1 )  = s dx s dyy In [ ~ ( l  - y) - y2x(l - x) - ie] 
0 0  

can be evaluated with help of the dilogarithm 
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and yields for A, the expression : 

7 
2 

il,(k", M) = -- - 2w - (2w + 3) In (-w) + 2(1 + w)2 

for L" < 0, 
(B.4) 

7 
2 

.l,(k", M)  = -- - 2w - (Zw + 3) In (w) + 2(1 + 1c)2 

3 + 2 ~ - 2 ( 1 + w ) ~ I n  

for k2 > 0 .  

In fig. 22 we show A,(k2,  M Z ) ,  A,(kg, M W ) ,  ' l3(kZ7 Mw), and A4(k2; M,, Mw). 

containing the triple boson vertex : 
In  a similar way we have obtained the invariant functions belonging to the diagram 7 c 

The remaining functions have the properties 

113(0, M )  = h ( 0 7  MI, J f z )  = 0, 

A4(k2, Ml, M , )  = JfZ, Ml) * 

They read for lk2/ > mf2 (w = M 2 / k 2 ) :  

for M ,  =+ M , .  
03.5) 

5 2w 2 w +  1 1/1 - 4w + 1 
6 3  3 1/1- 4w - 1 

A,(P,  M )  = - - - + ~ In ~ 

1 1  -4w+ 1 ) for k2 < 0, 
1 - 4 w - 1  

2 
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5 2w 2 1- 1 
A,(k2, M )  = - - - + - (2w + 1) P4w - 1 arctan ~ 

6 3 3  1/4w - 1 

for 0 < k2 < 4M2, 
8 
3 

_ -  

(B-6) 
5 2w 2 W f l -  1 +1/1- 4w 
6 3  3 1 -f1-  4w 

A,(k2, M )  = - - - + ~ fl - 4w In 

2 1 +I1 - 4w 
1 - f l  -1 - 4w 

1/1 - 4w + -w(w + 2) In 
3 

for k2 > 4M2 
and with w1 = M12/k2, w, = MZ2/k2:  

+ x2 In - 1 -x2 - x2 I w l + w z + l  [x,lnzli- 51 
+ 3  

2 2 1  - 5 2  - - (w, + wq + wlwz) In -In-, 
3 z,-1 1 - x ,  

1 - w z o , + w 2  1 

for k2 < ( M ,  - M,)2 and k2 > ( M ,  + M2)2,  

L V ( 1 -  w1 + w2)2 - 4w2 2 

x1,2 = I 
The imaginary part of A4 is obtained from (B.7). 

Im A4(k2;  M I ,  M 2 )  = -Z . o(k2 - (MI + J f , ) 2 )  

In  the case M 2  = 0, i.e. if one of the bosons is a photon, the inass m of the fermion coupled 
to the photon has to be respected. In  that special case we have to use the following 
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expression, valid for lk21 >> m2 (with w = M2/k2) : 

1 w 1 - W '  W - 1  2 M 2  
3 W 

3+-ln- + +--& Aom(k2; M ,  0)  = - - - 

+ 2 3 [In' ( M z ~  k2) - (In $r + 2 s p  ( & - ) ] .  ( ~ . 9 )  

For k2 M2 replace M 2  --f M2 - iMT.  
Pig. 23 shows Adm(k2; M ,  0 )  for m = me, M = Mw. 

4. The box diagrams: 
We write down the explicit expressions for the s-channel box diagrams. The matrix ele- 
ment can be writ'ten as : 

where the v8, ui are the vector and axial vector couplings of the i'th ferrnion to the inter- 
nal boson according to the labelling of fermion momenta in the above diagram. 

are the usual Mandelstam variables. 

reverse the sign of P i :  
In  order to  obtain the expression for the crossed box one should substitute t ++ u and 

P ( s ,  t )  + - P ( s ,  u)  and 15ii(s, t )  + 15ii(s, u) .  (B . l l )  

The following results [33], given in a form which is convenient for numerical evaluation, 
are valid for s, \ti, lui > m,*. Because of (B.11) we give for the neutral-current boxes 
only that part of I ,  which is antisymmetric under t ++ u: 
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MZ* 
In + 

s + 2t f Mz? 
s f t  

MZ2 
s - MZ2 s MZ2 - s 

-- t (Y s - Mz2 
I 5 Y Z ( S ,  t )  = - 

S -t 
+ P a -  

(B. 13) 

I y Z ( s ,  t )  - I y Z ( s ,  u) = 15yZ(s, t )  - I,@(s,  u) + 
2n 

1 t2 Mz2 
2 s2 M,2 - s 

+-ln-ln--ln 

I 5 Z Z ( S ,  t )  = - cx - s 2 t + s + 2 M z 2  [ s p ( I + & ) - g - ( 1 n 2 ) 2 ]  
2n s + 1 { 2(s + t )  

1 --t Y2 - Y1 -!I1 + -In---; + -1n- 
2 Jfz 2 YZ 

Xl x2 

SP *]} + s p  - - s p  - - Xl 

x bP- Xl - Yl -I1 - ?/2 x2 - Y2 

(B. 14) 

XI 5 2  

x1 - Y1 2 1  - Yz 2 2  - Y2 2 2  - Y1 
+ sp- - sp- - 

with 
1 
2 

1 
2 

XljZ = - (1 f li'l - 4Mz2/s (1 + M 2 / t ) )  
(B.15) 

y , i p  = - (1 f li'1 - 4Mz2/s). 

The expressions for the form factors Izz7 ISaz are valid for s 5 2 Re M 2 ;  those for the 
1YW-box are obtained froin (B.14, 15) by the subst,itiition Mz2 + MW2 (the gauge boson 
iiiasses include as imaginary part - iMT) .  

As an illustration we present for fi = 93 GeV the functions I and I ,  for the ZZ and 
IVW boxes in Figs. 24a, b. Only the t-channel expressions have an imaginary part coni- 
parable to the real part. In  the other cases Im I is of the order of magnitude n/2n 
or even smaller. 
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