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Abstraet

A renormalization scheme for the electroweak standard model is presented in which the electric
charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical para-
meters. The photon is treated such that quantum electrodynamics is contained as a simple sub-
structure. Field renormalization respecting the gauge symmetry gives finite propagators and vertex
functions. The Ward identities between the Green functions of the unphysical sector allow a re-
normalization that maintains the simple pole structureof the propagators in the t'Hooft-Feynman
gauge. We give a complete list of self energies and all renormalization constants also in the un-
physical Higgs and ghost sector. Explicit results aregiven for the renormalized self energies, vertex

functions and boxes that enter the evaluation of 1-loop radiative corrections to fermionic processes.
=)

We calculate the 1-loop radiative corrections to purely leptonic reactions like u decay, v, e
scattering and pu pair production in ete~annihilation. A test of the standard model is performed by
comparing these low energy data with the results of the PP collider experimerits for the W and Z

boson masses.

1. Introduetion

The recent discovery of the W and Z bosons at the PP collider at CERN [1] with values
for the masses of these particles very close to those predicted by the GLasHOW-SALAM-
WEINBERG model [2] was an important step in establishing this model as a good candi-
date for the gauge theory of the electroweak interaction. But also the experiments with
low momentum transfers (|¢?| <€ My?) [3] and at eTe~ storage rings [4] contribute to a
steady improvement of the determination of the structure and parameters of the electro-
magnetic and weak interaction. The accuracy of these experiments has reached a level
which requires the inclusion of radiative corrections for an adequate theoretical dis-
cussion. This will be even more the case when the ete~ machines with energies up to
100 GeV, which are dedicated for the investigation of the detailed properties of the elec-
troweak bosons, go into operation [5].

The standard model is a non-Abelian gauge theory of the electroweak interattion
where the masses of the particles are generated with help of the Higgs mechanism. The

1) supported by the Deutsche Forschungsgemeinschaft.
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renormalizability of quantum field theories of this class was proved already in 1971 by
v Hoo¥r [6]. This means that those parts occuring in the evaluation of Feynman dia-
grams of higher order which without regularization would become ultraviolet divergent
can be absorbed by renormalization of the fields and couplings. The importance of the
renormalization constants is not only to absorb divergences but also to complete the
definition of the quantized field theory. The finite parts of the renormalization constants
— fixed by the renormalization eonditions — influence the results of the calculation of
radiative corrections and therefore of physically observable effects.

Electroweak theories contain much more fields and parameters than quantum electro-
dynamics, moreover their structure is more complicated because of their non-Abelian,
non-simple, spontaneously broken gauge symmetry. The choice of the renormalized
parameters and their definition via measurable quantities as well as the definition of the
weak mixing angle is not unique beyond the tree level.

Consequently several different schemes have been proposed in the literature [7—17].
The greater part {10, 12—55] deals with processes where g% <€ My?, like p decay and v
scattering; refs. [9, 11, 16, 17] consider high ¢* e*e~ annihilation. An attempt for their
characterization can be made using the following criteria:

— Schemes with and without field renormalization; in the latter case S-matrix ele-
ments but not the Green functions such as self energies and 3-point vertex functions
are finite.

— Field renormalization respecting the original gauge symmetry or not; Green func-
tions are finite but have complicated properties under gauge transformations in the
latter case. “

— Determination of the parameters from low energy experiments like . decay and v,e
scattering or from high energy experiments i.e. measurements of the W, Z masses.

Of course, not all papers on electroweak radiative corrections fit simply into one of these
categories.

In this paper we present a renormalization scheme for the standard electroweak model
which is defined by the following conditions:

i) The physical parameters are the electric charge e, the masses of the W and Z bosons,
the Higgs mass and the fermion masses. This set was introduced by SirLIN [10] and
later used also by other authors [11, 15]. e is defined as the strength of the electro-
magnetic coupling in the Thomson limit, the masses as the position of the poles of
the renormalized propagators. These parameters are directly accessible to experi-
ment, since only the measurement of the fine structure constant « and of masses is
required. The determination of miasses in direct resonance production experiments
is only very little influenced by radiative corrections, Bare masses and couplings do
not occur; this avoids possible confusions in calculating cross sections in higher
orders. The weak mixing angle 6y, and the Fermi constant Gr are no fundamental
parameters. ¢y = cos Oy = My /My, sw = ]/1 — ¢p? are only shorthand notations
to simplify the formulas.

ii) Real photons couple to the electron without any admixture of Z° contributions. The-
refore the QED subpart of the model is realized in a simple way. Consequently pho-
tonic radiative corrections can be treated separately; especially for e*e~ — ff they
can be taken over from pure QED calculations [18, 19].

iii) Complete field renormalization respecting gauge invariance and the use of the
’t Hooft-Feynman gauge lead to UV finite renormalized Green functions reflecting
the gauge symmetry structure. We investigate the restrictions of the Slavnov-Taylor
identities for the renormalization of the unphysical Green functions. Especially we
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perform a renormalization of the gauge fixing parameters in such a way that their
poles are situated at M2 My2, 0.

We add some comments on the relation of this scheme to previous work by other
authors.

The on-shell scheme (i) with e and the particle masses as parameters has been widely
used for various applications in the last years [8—12, 15]. Counter terms in the physical
sector and amplitudes for scattering between spin 1/2 particles are presented in ref. [8]
in a unitary gauge calculation.

A vanishing renormalized photon-Z mixing for on-shell photons (ii), which allows to be
as close as possible to QED, has also been used by the authors of ref.s [8, 11, 12, 15]. The
treatment of field renormalization in [11, 15] differs from [8, 12] and ours, since more
renormalization constants than symmetry multiplets are introduced. For physical
S-matrix elements the results should be equivalent. This is also the case for the scheme
without field renormalization [10].

The method of SARKAKIBARA [12] to generate counter terms and his renormalization
conditions are nearly identical to ours in the physical sector; for the unphysical gauge
boson, Higgs and ghost parts ref. [12] contains less counter terms since the gauge fixing
part is not renormalized, according to Ross and Tavror [12]. One consequence of Sa-
kakibara’s procedure is that the relation sin? 6y = 1 — My? M ;2 is no longer valid in
higher order. This should not affect physical results if My, M, are rigorously used and
auxiliary quantities avoided in final results. Since the evaluation and renormalization
of all longitudinal gauge boson, Higgs and ghost self energies is not performed in [12] an
explicit check of the equivalence of the pole structure also in the unphysical sector is not
possible so far. However, Ross and TAYLOR [12] claim that in this scheme which has no
gauge parameter renormalization the poles of the individual unphysical propagators
are not the corresponding tree levels poles.

The intention of this paper is to give a self contained and elaborate discussion of the
standard model renormalization and to provide the basis for the calculations of radiative
corrections, in particular to e*e~ annihilation, deep inelastic scattering and PP anni-
hilation with |¢?] ~ My? The paper is organized as follows:

Sect. 2 of this paper contains the definition of the complete Lagrangian and its parame-
ters, sect. 3 the discussion of the Slavnov-Taylor resp. Ward identities, sect. 4 the re-
normalization conditions. The complete list of the Feynman rules including the counter
terms can be found in the appendix A. In sect. 5 we list the 1-loop formulas for the un-
renormalized self energies, the fermion gauge boson vertex functions and the renormali-
zation constants. We give also all the unphysical Higgs and ghost self energies together
with the renormalization constants which have not yet been presented so far. Sect. 6
contains the renormalized boson self and mixing energies and simple formulas for the
renormalized gauge boson fermion vertices for arbitrary momentum transfer. Numerical
results are shown for those self energies, vertices and box diagrams that enter the radia-

tive corrections to electroweak processes between fermions. In the last section 7 we
)

apply this renormalization scheme to the purely leptonic reactions . decay, v e scattering

and lepton pair production in e*e~-annihilation. A test of the standard model is perfor-

med using as input the experimental data for these processes together with the measu-

red values for My and M, [1].

1*
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2. The Renormalized Lagrangian and the Feynman Rules of the Standard
Electroweak Model
2.1 The classical Lagrangian, parameter and fields

Gauge theories of the electroweak interaction are constructed in such a way that at low
energies and in lowest order the experimentally successful Fermi model is recovered. In
the case of the standard model [2] the universality of the weak interaction is realized in
the form of the gauge group SU(2) x U(1). The gauge symmetry is spontaneously broken
with help of a minimal Higgs mechanism with a SU(2) doublet of scalar fields such that
the electromagnetic gauge invariance U(1)*™ is maintained. The standard model allows
to predict from low energy experiments the masses My, M, of the heavy gauge bosons
W=, Z. The existence and main properties of these particles have recently been con-
firmed by experiments at the PP collider [1].

The classical Lagrangian of the standard model ¥ is composed of the gauge, Higgs
and fermion part:

fo=5%ynw + Ly + Lr. (2.1)

According to the gauge group SU(2) X U(1) we have an isotriplet W ,%(x) and an isosing-
let B,(z) of gauge fields with gauge coupling constants g, and g, leading to the Yang-
Mills Lagrangian:

1 1
Ly = vy (0, W2 — oW % + gue® W IW,92 — T (6,B, — 0,B,)*. {2.2)

The complex Higgs doublet g(x)

(et ¢t () 3
o) = (w"(x)) B ((v + n(x) + z‘x<x>)/V2)

with hypercharge ¥ = 1 is coupled to the gauge bosons and has a self coupling:

T4 = D) (D) — 5 (92 + 12 g 23)
with the covariant derivative:

D, =09, — ig,I°W,* + 4g, —21/: B,. (2.4)

The left-handed fermion fields yf(x) are grouped into doublets (¢ = doublet index,
o = component of the doublet) of the weak isospin, the right-handed fields p&(x) into
singlets, the hypercharges respecting the Gell-Mann Nishijima relation ¢ = I® 4 Y/2.
The Lagrangian £, which describes the interaction between the fermions, the gauge
fields and the scalars then has the form?):

Zr =X Wi D viz + 050 D" vl

1
+ (—gdlf o — g 9F o™ vl + g f ol — gi9E o vl 4 hie)).
(2.5)

2) We do not write explicitly colour indices and the Cabbibo transformation of the quark fields i.e.
we agsume the coupling matrix g;; = g;0;; to be diagonal.
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This completes the construction of £ in terms of the fields W%, B,, ¢, y*, y®and the
parameters

g2 91, l: }u2> Gio- (26)

£¢ is invariant under local transformations of the group SU(2) x U(1):

g = exp [igzl“oa(x) —1 g2—‘ ¥ 0y(w)],

namely
6L
— = = Y. 2.7
Fo =0 x=wT) @7)

A formulation where the physical content of the theory is more — but the symmetry
less — transparent can be obtained by performing the following transformation of the
gauge fields:

Wt — (W, T W,2)/[)2,

My . M2 \12 _
= - .8
Z# JVZ Wﬂ + (1 M22 us (2 )
My2\12 . My
A, = ——(1——————MZ2) w, +EB"
and using the following parameters:
€, ‘MW; MZ; MH, Mg (2'9)
with
919> o —
€ = ——, My = A, M, — - + 2y1/2 / A’
(g% + g2 w 92/‘/]/_ z=(h 92%) H;V
My = Vé_ﬂ’ Mis = Giolh Véﬁ (2.10)

Each of the parameters (2.9) is directly accessible to experiments since for their deter-
nmination measurements of the Thomson scattering cross section (for the electric charge e)
and of the masses of the W boson, Z boson, Higgs boson and the fermions are required.
This is the reason why we prefer the set of more physical fields (2.8) and parameters (2.9)
as the basis for the formulation of the electroweak Lagrangian ... It may be that for
low energy processes the use of other parameters like the Fermi constant G and the
weak mixing angle 0y is more convenient [10, 12, 13). The relation between My, M,
and Gy, Oy to lowest order is:

GplV2 = 7o /2My*(1 — M2/ M2),
(2.11)
COSs GW = Mw/Mz.

Depending on the specific renormalization scheme some of the relations (2.8)—(2.11) get
corrections from higher order contributions.
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2.2 Gauge fixing and ghost fields

For the systematic treatment of the quantization of ¥ and higher order calculations it is
convenient to choose a renormalizable gauge. We introduce linear gauge fixings F*(W, B,
@) of the *t Hooft type:

Pa = (E7) 1 W2 T (M (M)
S = (537102 00,2 — My(&) 1, (2.12)
B — (§8)7102 048, — (My* — Mw?P (&5 7.

Then we add to £, the term
1
Liix = —3 2 (F=y? (2.13)

and introduce the Faddeev-Popov ghost fields u*(x) resp. w*(z), u?4(x), w(z) with the
Lagrangian [21]:

Lrp = W% (x) 6725%_) ub(x) = TKbub, (2.14)

A particular choice of the gauge parameters ¢ is:
EW =5V =3 =¢3=¢B=§B=1. (2.15)

This ’t Hooft-Feynman gauge has the advantage that at least to lowest order the poles
of the longitudinal parts of the gauge boson propagators, the unphysical Higgs fields
@+, x and the ghost fields are situated at Mp? or Mz* and that no gauge field — Higgs
field mixing occurs.

With £, and £rp we have completed the construction of a renormalizable Lagrangian

It =%c+ Fix + Lrp (2.16)

for the standard electroweak model.

2.3 Multiplicative Renormalization

The Lagrangian (2.16) is the starting point for the calculation of Green functions and S
matrix elements including radiative corrections. We renormalize not only the physical
parameters but also the fields in order to arrive at Green functions that are finite. For
S-matrix elements the results should of course be equivalent to those obtained without
field renormalization (see e.g. SIRLIN [10]). Since symmetry arguments were important
in the construction of ¥ we perform the multiplicative renormalization of £ in such a
way that the gauge symmetry is respected:

WS —>(ZY)e W2, B, —>(Z5'B,,
o — (Z7)\2 g,
vh = (Z" 2, R = (Ze)Pyl,

gs = LV (ZV) gy, gy — ZiBZE) O g (2.17)
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b ZHENT A, = o) (29,
v —> (Z7W2 (v — dv),

(2.17)
Jio = (Z%)712 Ziog,,,

&, =14 65,, w® > ZWys, uB — ZByB, A AR

These definitions of renormalized fields and parameters induce corresponding expressions
for the fields (2.8) i.e. W,*, Z,, 4, and the parameters (2.9). Writing

Z; =1+ 6Z, (2.18)

we obtain ¥ — ¥ 464 where the expression for ¥ in the renormalized quantities is
identical with the original one, but now contains the renormalized physical parameters
and fields. The quantities 6Z;, dv, du? 6&* occur in the counter term Lagrangian 6.7.
Their finite parts have to be fixed by the explicit renormalization conditions, Before
doing this we study the restrictions which are imposed on the renormalization procedure
by the Slavnov-Taylor identities of the theory.

The Feynman rules belonging to ¥ and the counter terms from 0.7 are listed in app. A.

3. Slavnov-Taylor Identities

3.1 The Becchi- Rouet-Stora transformation

The original gauge invariance of £ is lost after the introduction of £, and £pp but the
complete Lagrangian ¥ is invariant under gauge transformations involving also ghost
fields u*(z). In order to discuss this point we use the following condensed notation for the
fields and their transformations:

D, = (W,5(x), Bu(®), (x), pi(z), pi(x)}, (3.1)
0B, = (A -+ g*TD,) 66°. (3.2)

The inhomogeneous term 4, acts only on the gauge field part of @, 7 denotes the rep-
resentation matrices of the SU(2) x U(1) generators. The transformation under which
7 is invariant — the Becchi-Rouet-Stora transformation [22] — is constructed in such
a way that the parameters of the infinitesimal gauge transformation 36* contain the
ghost fields:

86°(x) = u(x) - 2. (3.3)

(% is independent of x and has ghost number — 1). Since (3.2) together with (3.3) defines
a gauge transformation 5 is still invariant. The transformation of the ghost fields u®, %=
is defined in such a way that £y + Lpp is also invariant :

Sur = Fe . 7, (3.4)

1 -
dut = — (K1) K Pryr = —3 Cebryfury, (3.5)

where F* ig the linear gauge fixing operator (2.12), K the Faddeev-Popov kernel (2.14)
and C*#” the structure constant of the gauge group.
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3.2 The Slavnov-Taylor identities

The BRS symmetry of ¥ induces symmetry relations between the Green functions of the
theory. They can be derived ina compact form with the help of the path integral for-
malism. The generating functional W of the Green functions 7, _, = (0| T®, --- @, |0):

oW
Toig, = LW 3.6
817+ +8p ()].Q, e 673,, 7_=0 ( )
is defined by :
W[4, o, @] = f DD, DaDu exp {zf dia[f + Dy, + Tw* + w“u“]}. (3.7)

Here we have introduced sources j; for the fields @, ans sources w®, @* for the (anti)-
ghost fields. From the invariance of £, D@, and DuDu under BRS transformations one
obtains for W the identity:

[0 5 5 o B
{lF [zéy] + 7 (At + g7T%, zéj,) W} Wlj, », @]lo=z=0 = 0. (3.8)

From this Slavnov-Taylor identity [23] follow the desired relations between the Green
functions 7 by taking suitable derivatives with respect to the sources j, and putting
afterwards all j, = 0.

A special class of relations, those which do not directly contain Green functions of
ghost fields, results if the gauge fixing operator F* is applied to eq. (3.8):

16 16
Fe [7 37JF [Z 67] Wjllj—o = 6 WTO]. (3.9)

This equation relates the gauge boson propagators A:4(k) to the gauge boson Higgs
mixing propagators 4,%(k) and the unphysical Higgs propagators A¥(k):

Kk AP (k) + 2MuwksA, Vo) + MyPAr(k) = —i,
Rl A2 (k) — 26M kA, Z2(k) + MP2AxE) = —
(3.10)
koA, (k) = —
kke A72 (k) — M ko A,72(k) = 0.

In order to get relations between self energies X we decompose the gauge field propaga-
tors into their transverse and longitudinal parts

520 = (=g + ") Ay — 52 a0, (311)

make use of the Lorentz covariance of the gange Higgs mixing propagators

A5ik) = dk, A% (k?) = 2«1(k2) (3.12)

"k2 M2 ®— MY

split off the free parts of the propagators

i 1
A7) = 35 Mz(é“" P18 13 Mz) (3.13)
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and end with:
B2 + 2Mp ZWey — Mp2e — 0,

R(E7 — 2iM,E%1) — M2Zr = 0,
(3.14)
BRIy =0,

k2(2L7Z -_ Z'MZZVZ) = 0.

As a consequence of U(1)e™ gauge invariance the longitudinal photon self energy vanishes
identically as is the case in pure QED.

By adding the appropriate counter terms (app. A) we arrive at identities for the
renormalized self energies £':

E(ELY + 2MpiWo) — Mp2Se = (k2 — My?) [k(0Z,Y — 8&,7)
— My2(0&," + 02%) — 6My?],

K217 — 2iM 5%y — MP250 = (k2 — M%) [KX(SZy7 — 0,7
— MP2(08,% + 0Z%) — 8M 2],

Ly = k¥6Zy — 8&y), (3.15)
(2L7Z — Z'leﬁyl)

1 1
= 02 — 50 - M (% — 8% 4 0% — 067,

As a consequence of these results the number of independent renormalization conditions
for the unphysical propagators A%, A,%, A% is reduced. But eq. (3.15) is compatible
with a renormalization where the poles of these propagators are located at My?2, M2, 0.
This means that the structure which is realized in lowest order in the Feynman gauge
can be maintained in all orders by a suitable renormalization of the gauge fixing para-
meters £ ,.

We do not work out the relations like (3.9) between the “unphysical” parts of higher
Green functions since we do not need them for the investigation of the restrictions on the
renormalization constants in the unphysical sector.

Let us have a look now at the ghost propagators. Differentiation of eq. (3.8) with re-
spect to the sources of the gauge fields yields:

(A58 (k) + EML AR + £,Go#()] 69k — k')

= 0" [ digGerd,(k, —k' + g, —q), (3.16)
kp""”OW"*fMocM‘O""*kv"TUOm:
CEECE 5 i o p
§
= - v‘ATDTé:'ﬂ;:‘;lV cvné
X Y

Here G*#(k) denotes the ghost propagator and G*#%, = (0| (T'ww’W ) |0) the gauge field
— ghost three point function. Eq. (3.18) is in lowest order the usual relation between the
longitudinal part of the gauge field propagator and the ghost propagators, in 1-loop
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order it allows to determine the ghost self energies from X;*#, X' and the diagram on the
r.h.s. An important consequence of eq. (3.16) is that renormalization in the ghost sector
can be performed in such a way that the poles of the ghost propagators remain at My?,
Mg, 0.

The identities (3.16) read in 1-loop order for the self energies:

Zy(k) — Sk = = RBo(k*; My, M),

& Cw

I 7% — S0 (k) = — = = (k* — M) Bo(k*; My, My),
476 Sw
() — (M En(E) — S = — = P RB (k2 My, My), (3.17)
4 Sw
X CW2

Zp2(k?) — M pZ5(k?) — Z2(k%) = (k* — Mz®) Bo(k*: My, My),

4 8W2

P () + My ZVe(k?) — EW (k)

— o — ) [ Btk i, )+ Ba: M0,

8W2

where the singular 1-loop integral B, is defined in eq. (5.4). Adding the appropriate
counter terms of app. A we obtain the identities for the renormalized self energies:

S — S =g (azgr — 877 — %aslr + :_7 By(k?: My, MW)),

A ~ 1 .
2LVZ — 2O = 2 (6Z272 — 8Zv% — %651‘”) + ) M2 (04,77 — 2674717)

x Cw

1 (12 — M) Bae: My, M),
(3.18)
’Av -~ 1.
1 . X Oy
+ = MA8Zy% — 0877) — — 2 I2Bo(k2, My, M),
2 4:7 Spr

217 —iME% — 52

[+.9 CW'2

= 1
= (k* — M) (6Z22 — 027 — ?6512 + L st By(k*: M, AMW)),
w

LV MpZW — Ew

~ 1 2
= (k* — My®) [BZZW — oz — 5651“] + 40; (%—:., Bo(k*; My, My)

+ By(k?; My, 0))] . (3.18")
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3.3 Generalized Ward identities

The identities (3.10) and (3.16) relate unphysical parts of Green functions. In analogy to
the QED-Ward identity [24] between the eey-vertex and the electron propagator we can
derive from eq. (3.8) by differentiating twice with respect to the sources of the fermion
fields identities relating fermion vertices to fermion propagators:

Pss
- iMy &~
a\G’
5"
= iy i
x gffT + w
bd 5 9 s 9 sug

koo, ook, p, @) — M (k, p, @) = WGP (k) [gPTE,S " (q) + S (p) 97T s ]
+ Tl [ @G (k7 — p, 7, 9)
+ 7 [ dGE (k, ¢ — 7, p, 1) gFT B
(3.19
with _
T = —yoTTy,.
The physical content of these identities can be seen by evaluating them in 1-loop approx-

imation and inserting the results (3.17). Neglecting terms of order o - mi,/ (]/EE, My, M Z)
the following generalizations of the ordinary QED-Ward identity are valid:

koA, p, @) + Ak, p, @) = [ Z(p) — Z°q)),
(3.20)

2 1
P ) = 440 . 0) = ¢ 3 (20) — 240) = 5 () — 2|

and similar relations for the other fermion generations. The vertex functions 4,7 are
the 1-loop contributions to the amputated 3-point Green functions 7,. The fermion
self energies Z* follow from the propagators:

WSl =g — my, + 2p) = p — mye + v + py:Z 0+ mp 2. (3.21)

As a result the QED identities for each separate charged fermion are replaced by similar
identities for the fermion doublets. In addition we have found analogous relations for the
vertices of the fermions and the heavy gauge boson Z (written for the first fermion
doublet):

AE ks p, ) + A2k, p, q)
1—7s

1
CwsSw _2_ 2

11
+ (—- trs Swﬁ) Ze(q)], (3.22)

+ Swz)

2 2
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k”(A/tZ'm(k’ s Q) - A#de(k, P Q))

__ |pup (L 1o 2 )_ LI+7 2 55
_MWWP()@ 2 EL B sw') 24(@)
L—y 1 1 1+y 1
d A _ 2 — . 2 d
r o (-3 g )+ (5 ) 240)|
4. Renormalization Conditions in the On-Shell Scheme

The study of the counter terms in the Lagrangian and of the detailed Slavnov-Taylor
identities allows us to formulate explicitly the renormalization conditions. Thereby not
only the ultraviolet divergencies occuring in the loop expansion are absorbed in the in-
finite parts of the renormalization constants but also the finite parts are fixed. These
lead to physically observable consequences. As already mentioned in the introduction
various more or less elaborate renormalizations for the standard model are used in the
literature. They differ in the choice of the physical parameters and the prescriptions for
the finite parts of the field renormalization constants. Although the results including
radiative corrections obtained with different consistent renormalizations formally devi-
ate from each other only on higher order terms it may be that the 1-loop corrections
itself calculated with a low energy renormalization scheme and applied to high energy
experiments differ from high energy renormalization calculations.

We present a renormalization scheme which is defined by the following conditions?):

— The poles of the renormalized propagators lie at My2, M2, 0, M2, m3,. This implies
for the renormalized self energies:

LV (My?) = L05(M2) = En(My?) = E¥(m) = 0. (4.1)

— According to the residual U(1)®™ symmetry it is possible to renormalize so that the
properties of the photon and the electric charge are defined like in QED:

—2T B)leoo =0, Ep20)=0, Iy(2 =0, p=q=m,)=iec,?.

(4.2)
— The residues of the propagators of fermions with I3 = —1/2 and of the physical
Higgs particle are one:
(———1— ﬁ-f(m) =0, (= Sg)| =0 (4.3)
P — M P op? prama
— Vanishing tadpole:

T =0. (4.4)

— The poles in the unphysical sector are at My?, Mz% 0:
EM(My?) = £2(MP) = En(My?) = Sx(M ) = Lv:(0) = 0, w5
3

1 .
= 2 p=o = 0.

3) In the following equations only real parts of self energies enter, The imaginary parts are finite
by themselves and we define the mass as the real part of the pole position in the propagator.
%) This is a condition for the vector part of the photon vertex Ir 7%, only. For the axial vector part
no separate condition has to be imposed since F“’ (k2 = 0) = 0 is automatically fulfilled.
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— The residue of the photon ghost propagator is one and the photon-ghost Z-ghost
mixing propagator vanishes at 2 = 0:

1 2 2
= 2 emo, 271(0) = 0. (4.6)

The conditions (4.1)—(4.6) fix all the renormalization constants of eq. (2.17).

We have chosen our scheme in such a way that the following properties hold :

We use as physical renormalized parameters e, My, M5, My, m,. The question from
which processes an optimal determination of the standard model parameters should
be performed depends on the experimental accuracy. At present the best choice is the
Josephson effect for the determination of «, the PP collider experiments and the u
decay for My and M, (resp. My and sy?), but with experimental progress this may
change. Especially a more accurate measurement of the W, Z masses seems to be
very desirable, leaving e.g. u decay and neutrino scattering as low energy tests for
the standard model.

Eqs. (4.2) characterize our procedure as a natural extension of the QED renormali-
zation. This means in practice that existing results on photonic corrections [18, 19]
can be taken over directly. Especially 1-loop calculations can be divided into real
and virtual photonic corrections (the sum of their contributions in physical cross
sections is infrared finite) and weak corrections (IR finite by themselves). We use
€2/167% = «/4n = 1/(4x - 137.036) as the effective expansion parameter.

We work with only one field renormalization constant for a symmetry multiplet.
Therefore renormalization conserves the gauge transformation properties of the
fields and the Green functions. But as a consequence of the use of the minimal num-
ber of field renormalization constants not all the residues of the renormalized propa-
gators are one. This is the case for the W, Z and the I®* = 41/2 fermions and wave
function renormalization for their in- and outgoing particles is needed. These do not
occur in the complete amplitudes for physical § matrix elements.

In #4x + Yrp we have built in the renormalization constants 6¢f, and fixed them in
such a way that the simple pole structure of the 't Hooft-Feynman gauge survives
renormalization. The Slavnov-Taylor identities (3.15) and (3.18) guarantee that with
the conditions (4.5) also the polesin the other unphysical propagators A%¢;...;G% ;...
are at the same positions. This simplifies considerably the evaluation of Feynman dia-
grams.

We have checked that the Ward identities for the fermion gauge boson vertices (3.19)
are compatible with our renormalization prescription.

Finally we translate the conditions (4.1)—(4.6) into prescriptions for the singular and

finite parts of the renormalization constants (2.17) resp. their combinations (app. A):

E¥(M ) = My = SMy? + 2My2 o

= MW2(—2% 1202, — 387,V 4 877 + 2 6_:)

M) = 02 = M2 + 2M 2

- MZ2(—26—: + 207,7 — 30Z,7 + 6Z7 + 2 6%) (4.1

i
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2’7(1”1.12) == 6M-H2 = (SMHZ + 3AMH2 ?ti

s 3 3
— M2 (—3 T" o0z — 627 - ‘;‘57’) + duz,

(4.1')
6mia (smw t

+-:azw—_-+

Mo Mm;s

Zyir(my,) + Zo(mi) =

(k)| k=0 = —0Zy",

Yr20) = —Mz0Zy? — 0Z,7), (.29
de 3
? == 6Z1‘/ —_ E (5Z27;
Zpm,) + mA(Z1f (mg) + Zpf(me) + 22,5 (m,)) = —6Z),
Zpt(me) + mAZ18 (m,) + Zpf(m,) + 28,5 (m,)) = —0Zg°, (4.3)
(M) = —0Z¢;
—-—-:%—————6Z‘, t:MWMHZ'_é—; (4.4)
V(M2 = OMy? + My?0&",
S5 (M ) = oM 2 + M 2087,
Do (My?) = oMy? + My?0&V,
ZH(MG?) = OM® + MzP05,%,

1 \
= Ly (k) .m0 = 08y — 0Zy7, (4.5")
1 .
Zr(0) = ) M4 (867 — 05y7%),

1 -
p—Z( o = — 04y +—6£1, (4.6")

E29(0) = My2 (azlvz — % 62,77 + aZrZ) .
5. Explicit Results in 1-Loop Approximation
The intention of this section is to provide the building blocks needed to compute radiative

electroweak corrections to e*e~ annihilation, deep inelastic scattering and other pro-
cesses. We do this by evaluating the explicit 1-loop expressions for the renormalization
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constants, renormalized self energies and fermion gauge boson vertices. The calculations
are performed analytically, thereby neglecting terms which are of the order of magnitude
xmg2 (M y?, s) in the final results. The ultraviolet divergences are treated with the method
of dimensional regularization {25}. This is possible since the standard model is free of
ys-anomalies. The 4-dimensional integration and the Dirac and tensor structures are
replaced by D-dimensional ones:

diq B dPq <
f a7 | -1

(¢ is introduced for dimensional reasons).
In order to explain our notation we give the results for the scalar tadpole integral:

q
dPq 1 —1
4-D o
O e f 2r)? ¢ — M? + 1 1672 A)

A(M) = —M2(dy + 1).

(5.2)

The UV divergent part 4, contains the Euler-Mascheroni constant y and has the form:

2 M2
Iy = =5 — 7 —

i (5.3)

R

n———
dmp

The scalar 1-loop self energy integral defines the function By(k%; My, M,):

dPq 1

4—-D

9 +kOq”’” f(zmv (@® — M2 + i) (g + B)F — Mp® + o)
o

T 1672

By(k?; My, M,)

with:

2 2
ME M 0 M| pae, )

1 1
2. —_— —_ — ———
By(k>; My, M) = 5 A, + 5 dor, + 1 — e n gy

2

1

1
= ng, +§AM,

1
2?2 __ (k2 2 __ 7.2 2 _
—fdxlnxk x(k® + M, M2+ M, e (5.4)
o

MM,

The function F(k?; M,, M,) = F(k*; M,, M,) is finite and vanishes for %% = 0. Its
explicit form is written in app. B.1.

5.1 The tadpole

The vacuum expectation value » of the Higgs field, which in lowest order is given by
v? = u?/A gets 1-loop contributions from the diagrams of fig. 1. They lead in the *t Hooft-
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Feynman gauge to the expressions:

1 e 1 1 3
T—W;‘;'m{—MH ( (MW)+"2“A(MZ) +§A(MH))
—GszA(Mw) — 4:MW4 — 3M22A(Mz) — 2MZ4 + 4 Z m?gA(mi,)}
= 6t = —28—W My M2 7 (5.5)

The tadpole diagrams of fig. 1 give for example contributions to the self energies. These
are absorbed by mass renormalization rending the 6} ;2 gauge independent.

W, 1 %, 9 u® i0

27N

/ Y

+ \ ;t +
e g
+
| 1 ' |
] | I |
Fig. 1. 1-loop tadpole diagrams
5.2 Unrenormalized self energies and vertex functions

a) Gauge boson self energies

The contributions of the diagrams of fig. 2 to the longitudinal and transverse unrenor-
malized self energies have been computed by [9]. We present them decomposed into the
singular parts (defined to be proportional to A) and finite parts:

Z(k?) = Zing(k?, A) + Zyn(k?). (5.6)
% é
w£:l~4£:ivaMmL.J::k~
/’"‘\
i \
\\ /l

~
+ o <

Fig. 2. 1-loop gauge boson self energy diagrams*).

The explicit expressions are (the index f denotes any fermion io; vy = v, ay = a;, are
defined in app. A. We also omit in sects. 5 and 6 the index W at sy, cy):

o 4
%M=EW%;@%—M%

5.7)
4 k2

— (3’C2+ 4 M w?) F(kz; My, MW)}’

*) In figs. 2—7 tadpole diagrams are omitted.



Fortschr. Phys. 34 (1986) 11 703

x 4 1 . 1
;%fsing = E {—E IZ‘ Qf’l}szél/ —{'- E [kz (36' + -é—) ‘+— 2MW2] AW][,
' (5.8)
x 4 k2
2 = E{_E %‘ [k~ + 2im?) F(k?; my, my) — 3J
—{——1- k2 362—{—— + Myt 4(:2—L4 F2, M M)—l—k—l
cs 6 i -3 W W 9¢ ]
4 X 4 . 37)?/,2 a1
27 cing = i {3‘ %‘ [(1’12 + af) k* — w] As
19 1 1 1 T
2 —_ R 2 P, _ 25
o[ (3 = g ) + (44 3 — )| v} -2 T
(5.9)
sz >[4 2+ a2 | (k2 22kam)—£2-
T = ?,"%1 (v + a®) | (K* + 2m?) F(k*; mj, mf 3
3 2 2 .
— §é2_s2mf F(k?; my, my)
2., 2 2 2
357 —3"70 + (10k* 4 20My?) F(k*; My, My)
1 1
+ 353 3522 [3MW2F(]C9 My, My) + T (10M 2 — 2Mg* + k?)
My* + M7 My  MyM, 2.
X (l—ml MZ n M,z + F(k*; My, My)
1 My L M2 R
- g Mot 3l — g M g
M — M2 P My, Mpyake| + E =50
+ ( H zZ > ( ’ V) H)/ + W
12 12
X [-g + (2MW2 + Z‘) Fk?; My, MW)]};
w o> 11 8,0 1, e
ZT,smg - 4z 52 {6 %j [L]+ (;C 2 m;} ) m;__
5 1 52\ 19 \
+Ai_(k2 — Emf_ ——-2—m,2+)] —_ [MWZ(I —'EE) —I— -gkz] AWI
— 2My2Tt, %) (5.10)
- 1 m2 -+ mg_ mé + m?_ m:
sw :i — 2 Yt i . i My
TIONT 4y {382 LZ‘ [(k 2 ) (1 me, — mi_ e
k? mi, — mi_)2
+ F(k%; m, m;_)) g ( I_2k_2 ) FkE; myy, m_)]

= fforf v and | =1forf =,
%) For lepton doublets with m;, = 0 replace 4;, — 4;_ and drop the log term in Z¥ ;.

2 Fortschr. Phys. 34 (1986) 11
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2 M2

_ v 2 2 2y (1 —
iy [(7MZ M+ 108 (1 M22 i

Mz

2
W

+ F(k*; My, MW))+4Mz°1n +— *—;(Mzz—sz)z

32 1
X F(k2; My, MW)] — —MW _ %— B — = (4My? + 108)

2 Myt
3 12

X F(k*; 0, My) + Fk?; 0, My)

52 M * 2
+ 5| - s s + B My, MW>]M
1 M2 My?
o U S g S M )|
1[5 1 1 1
- — M2 — 2 __ 2
+82[18k g Mw' — g Ms =5 M
1 P 1 1”22 MZ2
— 2 _ 2
+ 6(2MW ) k)MZZ—szlnsz
1 k
E(*MW + Mz? ——) F(k?; My, My)
+ (M2~ My? )2 F(k2; My, My)/1282
1 My® My?
2My? — ——k2 In
* b( v )M,,, — My My?

1
- E (Mw2 + My% — '];—) F(k2§ AMH9MW)

Lt — My FW M, M) 1207

Z'L sing = ZL tin ; (511)
Z x o~ 1 >
2 sing = ~in My 28_2 o 2 Ay — 2M 2T,
(5.12)
g _ x| M (s, M oy, Mz
ZL‘hn - 47 {0282 [MZ MH2 -— Mzz MH MW2 ln ‘/”WZ
M.2 — M2
—+ (l‘f{z2 — '(—H“W—Z)) Fk2, My, MZ)]
¢ s I 2
— 2 P MPAF(k?; My, My)t;
2?Z,Zsmg: % {2'Z—MZZAW},
(5.13)
2 X 1o oy erge; My, Myt
Lfm-‘4_n ;‘ 2Pk, ws Mw)e;
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x [c? — &2
ZWing = — v { oy My2A } — 2M 278,
) . L, e (5.14)
o f[c? — s
It = — 4n{ X My? + Mz2In Mw2
1 My?
8—2 W MH (k2; O’ ‘MW)
3¢ -1 c? Myp? — My 2)?
-+ [78—2— My? + (2;;2- + 4—82-) u’LTE—)'J F&*; My, My)
2 2)2
— _1_ Myp? — M Fe; My, Mp)t.
s2 4k

b) Gauge boson Higgs boson mixing
The diagrams of fig. 3 contribute to the gauge boson Higgs boson mixing energies defined

in eq. (3.12). Their singular and finite parts are
x ¢ Nx, b

v.W,1 u* .
..,Q ﬂ:;i 2N ' \
- POV SSNUUIY U UV SR YU

Fig. 3. Diagrams for gauge boson Higgs boson mixing

c
.= T {2? MZAW},
(5.15)
Y = T;xy—z {2 % MoF(R?; My, ﬂf[w)};
N 2+_1-+ 1 MaAyw — MyT)e,
sing 4 262 462 > Z5W zZ
(5.16)
o 3 1 My? Mz
_ %y _ 2 .
Zhn 47 2{40282 [1 MH2 — MZZ (MH ]n MW MZ Mw)
(M2 — M2 452 — 1
+(1___231?ATZ2H_ F(’CZ;MH,MZ) + 282 F(kz;MW!MW) ;
x 1 3
5= 1 W{2_32 46282} Aw + MwT}t,
(5.17)
1 3
Z:JV“@ = 1z MW{ 42 4eis?
3 xMH A/‘[H2
+ 4_82[1 e MW2 — MHZ ln MW2
(Mp? — My?)?
= (1= ) pos ot
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4c%s? + 5¢ — 3 M2 M2
4¢2s2 [MW2_MJ M 2 +F(k MW} MZ)
8¢c2 + 1 11[;1/2 — M22 sz .
- 4c2 k2 F(k25MW’MZ) + 2 L2 -1 F(kZ'O,MW) .

c) Higgs boson self energies

The self energies of the Higgs bosons are needed to calculate the full set of renormaliza-
tion constants. The diagrams of fig. 4 give

Y,W, 2 Y, W, 1 %9 u™
/ \
-- R TR SRR S R -+
v.W, 2 % 9
e N
( !
\ !
+ - = —_— % _:.\..-/__.<_

Fig. 4. 1-loop Higgs boson self energy diagrams

« (22 + 1 17 17 2c2 + 1
Eling = —'4;{ s ¢ g e T g T e M
1M
&F I3 2} Ay — 3MT}t,
7 2% 4 1 3 M, G189
. N 2 agfey 20t 1, 3 My
fin 1 |z M2+ 20Mw) — =g M — o 31 s
1 M2
+ [——2Ic2 + 1M + MH + J]n M22
21 Myt Mypr 9 M,, N
tEE My MW 4 W T W M Ma)
1 Mt
+1 [k — Ty sz] P2 My, My)
+ 5o [k — M sz] Pl M, MZ>};
x 2¢2 +1
Liing =  dn 2022 Bl
(5.19)
Z" . s 4 1 kz 1 1 2 MH2 Mzz
fin = 4_7I 2c%s? - MH2 — M22 MW2 ]l{u/2
(My® — MP)? ) 1 ) .
+(1—W F(k2; My, My) +§2"C2F(k2,ﬂfw, My)es
By = — 220y, (5.20)

T dm 222
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x (2¢2 +1 1+ ¢ — 4c%s2
P = — 2 k2
fin { 26282 k + 26282
M
X [MW Mz + B W JMZ)]
KM, M,,2 (8¢2 + 1) 2
282(Mw'2 — .MHE) n J[WZ 462

+ MPF (K My, Mz)

1 My? — My2?
g (e = ) s, )

+ 2(k* — Mw?) F(k*; 0, JWW)} .

d) Ghost self energies
The results of the diagrams of fig. 5 for the ghost self energies are:

¥, W, ne%, ¢

TS
/B@VH‘ [ N
s X LLATLr S1A

Fig. 5. 1-loop ghost self energy diagrams

x

= = X oy
Zg’ing = 1 kg, 27, = — BPFEE?; My, My);
2L —i{ (& + M) A }
“~sing 4 z
*
fo};x = ix { (k® + Mg%) F(k*; My, A'MW)};
x {c - X
She= 1 {— szW}, St = m{ KR My, MW>}
= x [e? ) 1 1] .1 -
Egng: ~—.—4;t—{8—2k“— (1 ~+-Zc—2-8—2'-—‘ﬁ)ﬂfzz};]w—lwz'1/t,
- ‘ M,2 1 My? M2
by M . iy —_(M,21 M
fin e { 40252[ M — M ( Wi gps = M In g
262 —
+ F(k?; My, MZ)] (k2 - 52(,. M2 )F(k21 My, MW)};
- x (1 2c2 —
= x (1 22 —1 ) 1 fe | 3Bc*— M2
fin = —z;;{s_z’“z “aw M ”(—’“ T ") My

1 MHzsz MH
42 1”}{2 — JMW A’MW
1

+ + k2F( ’ ‘MW, 0)

T Rt
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(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

1
) JMW ) (k2; xww, 1”2) - 1? MW2F(]C2; Mw, MH)} .
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e) Fermion self energies

Because of Lorentz covariance we can decompose the self energies 2%(k) of the fermions:

2¥(k) = KXyt o(k?) + KysZao(k2) + mi,Zst(k?). (5.26)

Y w 1

AR IS raa

¢ g 11 [ ¢’ ¢ [+ [ 4

Fig. 6. 1-loop fermion self energy diagrams

The diagrams of fig. 6 give the following contributions to the invariant functions X¥ , :

24

ZV':U = —4_7l [ 120(231(102; lmim ;") + 1) + (vzga + a’?a) (2B1(k2y mid; MZ) + l)

1
+ 18—2 (2B1(k2, Moy Mw) —-f'- 1)],

(5.27)

. & 1
= — o [2Uiuaia(231(k2; Mgy Mz) + 1) — vl (2B, (k2; i, Mw) + 1)} )

g0 = —%[ 2, (4By(k?;mig, 2) — 2) + (0}, — a2,) (4Bo(k?; miy, M) — 2)).

The photon contribution was calculated with a small photon mass 2 in order to regularize
possible infrared divergencies. The functions By and B, are defined in egs. (5.4) and (B.2).
Instead of the vector and axial vector parts of the self energies X ,it may be more con-
venient to use the right- and left-handed parts:

Ip=(Zv + 24, 2y =&y — &y). 5.27)

f) Fermion gauge boson vertex functions

The vertex functions?) I',**? (k2, p, ¢) contain for k2| > m2 . and p? = m,?, ¢ = m,?, only
vector and axial vector parts. The Feynman diagrams of fig. 7 yield (diagrams con-
taining Higgs exchanges can be neglected):

)

Lyroo(k?) = —ieQyy,
—_ ich[(qu + ay ) ‘\/ — 2%&07,‘?5] [AZ - —2— + A2(k2’ Mz)]

— ieQ,y, %, 0,2 [

. x 1
— eQyu(l — ¥s) v

2
3 1
— el y#(l—y)4 557 Aw — 6+A(k My)

[AW S MW>]

Y, (5.28)

7) In the following we drop the fermion family index ¢ since Cabbibo rotation is not involved.
8) In eqs. (5.28, 30) o’ denotes the isospin partner of the fermion o.
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g.p 6,p 6p
Y a w2 a
k X
6'.q 6'q 6.q
a) b) ¢)

Fig. 7. 1-loop gauge boson fermion vertex diagrams

. 1
F”VW(kz) — 287}“(1 — ‘)/ ) 47t 482 |:Aw “|" Ag(kQ’ Mw)J
. x 3 1
— (1 = ) g | A — 5+ Al ) (5.29)

T, FZaa(kZ) = ieVy(va—aaVS) + Z.eyu(i’a—aa“/s)
2.4
X I Q,* [Ao

(K3, m,,)] + te[vs(v,2 + 3a,3) vy

— a,(3v.> + %) vuys %ﬂ [Az —5 T Aq(k?, Mz)]

. Vs’ 2% 1 2
eyl — ) = S [AW — 5+ A MW>]
3c 1
+ael 3yl — )5 5 [ — &+ Ak, MW)], (5.30)

Zo( B2y — _ﬁ_ 1—'}/5 _0‘__ 1 __l 2 |
TR = i o, {”47,43202 Ay — L4 a2, 30y

a 282 —1
ET[AW*_+A2( W)]
3c? 1
g e | — e | 5:31)

. € 1— x 282 —1 1
I ek?) = ZV—EEV“ —2—7)5{1 +E—:L;2c—2_ [Az D) + Ax (R, MZ)]

5
+ 41 . 3[AW + = + Ak My, 0)]

o4 362

M Pa M y?
In
4n 82

— M2 Mg

[ W+ + 57 +/14(k2;Mz,Mw)]},

(5.32)

P#Wd"‘(kz)_—— ) {1 +——QuQ¢[Ad—2ln-——+4+‘3ln—

e
— y, (1l — yp
2]/28/#(

1 1
-+ l Ay (&2, my) -+ 3 A4(k2, ’mu)]
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1
+ (vu + ay) (vg + ag) [Az — 5 + Ay(k?, 11[2)]

X
4n
X ] b

+ = 3@y | dw + = + A"(k*; My, 0)

47 6

: 5
— = 3Qu|dw + 5 + Ame2, My, 0)]
7 L 6

x 3¢

X B¢t M2 . My?
in &2

ME— My " MUp

[ 5
Adw +E+ + A,(k?; Mz, MW)]}
The invariant functions A,
app. B.3.

For the renormalization of the electric charge we need the vyee-vertex at k2 = 0,
p? = ¢% = m3. Its explicit form is:

4 together with some of their properties are presented in

.....

2
10 = i i 3[4, 20 5]

2 1
+ ZeZn‘ [(’Ue2 + a.?) Ve — 2ve(LeV#75] [AZ - E:I

. o bt—w a3 1

For later use we give also the neutrino-photon vertex at k2 = 0:

11—y a1
2 4z

(5.34)

. .
Iy = —iey,

5.3 Renormalization constants

The prescriptions for the calculation of the renormalization constants from the un-
renormalized self energies and vertex functions have been defined in eq.s (4.1") to (4.6").
We find for the mass renormalization M y2, M ;2 of the heavy gauge bosons

éMWz - (ﬂva’ﬁing + 63712”,&'111 = Z‘7‘/“7,siug(]‘[W2) + R’e ZIH‘TK‘iD(MWz)’ (535)
’SIVTZZ = ()H%,sing + 6M%,fin = Zg,sing(‘MZz) + Re ZTZ',ﬁn(fMZz) (536)

explicit expressions by using eq.s (5.9) and (5.10). Eq.s (4.1') tell us that with M 2, 6 M ,*
also the following combination of de, 6Z,%, 6Z,% is determined :
51722 éﬂwz 82

de
Mz N My - & (2 e WL+ 36222). 537

Eq.s (4.2") together with (5.7), (5.8), (5.33) give for the photon field renormalization
constant

4 2
62y = o {—— 5 (@) + 3w + ;] (5.38)

3%
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a combination of the (y, Z) renormalization constants

8Ly — 6By = ——— (SZ* — OBy — Oyt + 02y) = —_:; A (5.39)
and the charge renormalization
%‘3 = 82,7 — %azzv - %n [% Zn @A) — -;- Ay — %} (5.40)
A comparison of eq. (5.40) with (5.38) shows that
é:_ - —%azgr - % - 2y (5.41)

This means that the familiar QED relation is modified by the non-Abelian couplings of
the gauge bosons.
The four eq.s (5.37) to (5.40) allow the separate determination of 62,7, 62,7,062,%, 8Z,% .

[0 8

6Z17 = 4—:7t

4 0 2

[—§§ (@%A4:) + Adw + —3'},
2 4 2

6Z27 = = [_"_3— 2 (Q%u"jiu) + 3AW + E]v

(5.42)
X 4 c? 2

aZlZ:7[ 'E;;(Qw 10) (7_ 6'_2')—]W +'§;|
, €2 — & (611[22 oM 2 )

e JIIZ2 - lez
X a c? 2
28 = |3 5 @ 4 (1= 15) v+ ]
Lo " 6MZ SM
=\, T M)

Together with these constants also 6Z,V, 6Z,%, 6Z,+%, 6Z,’% are determined. Explicit
expressions may be obtained with help of eq. (A.1).

The mass and field renormalization of the leptons according to eq.s (4.1") and (4.3")
treats the charged, massive leptons and the neutral, massless neutrinos in an unsymme-
tric way. This is a consequence of spontaneous breaking of SU(2) x U(1) and of chiral
symmetry. As a result the neutrinos remain massless and left-handed after renormali-
zation, whereas the charged leptons suffer mass renormalization:

6mig X 1 | 1 2 2 1
. dm {@ (JW - E) + 2 (v, + a},) (Az - E)

— 4%, — a},) (Az + %) - 3(41,-0 + %)} = ~§; 4 8Z,%. (5.43)




712 M. BSHM et al., On the 1-Loop Renormalization

The residue of the electron propagator was put equal to one for both the L and R parts.

This gives:
1 1 1
e — % I DT — =
62, 4n{" + a2 (42 5) + 35 (m 2)}
(5.44)
1
8t = — o= {A (ve — ac)? (Az - 5)}

SAKAKIBARA [12] applies the condition Res = 1 to the » propagator which consequent-
ly does not get an artificial IR singularity. But in this scheme the electronfield is not
treated like in QED.

In the case of quarks we have two right-handed singlets associated with one left-
handed doublet. The two mass renormalization constants are determined by eq. (5.43).
The doublet renormalization constant 6Z;%* and the singlet renormalization constant
0Zgt for the I; = —1/2 members are fixed as in the lepton case: L and R residues in the
d-propagator are put equal to one.

6Zz* is determined such that the residues of the L and R parts in the u-propagator are
still equal (but = 1). This yields:

2
07,0 — — 402 (e — 210 % 1 4) + (o + a2 (42 - )

2
1 1
+§52‘(“W—§)}’

2 1
0Zpd = — ;Ln {de (Ad — 2In ’% + 4) 1+ (vg — ag)? (AZ - -2—)} (5.45)
87t = — —1Q.2{4 "E L 8) 4 — a2{dy — ) — s, d)
R 47 u }'2 £’ 1’3 z 2 3 s
with
2 2
S, d) = Q.2 (ln Mz ) Qs ( nM— —2In @2—) + 3. (5.46)
m,? Mg i 2

Since the propagators of the u-type fermions have a residue different from 1 a wave
function renormalization factor 1 — «/4sm - d(u, d)/2 has to be assigned to each external
line.

The Higgs mass My and the Higgs field are renormalized using the prescriptions
(4.1) and (4.3') for M2 and 6Z° together with the expression (5.18) for the unrenormal-
ized Higgs self energy. This gives:

OM2 & 3462 17 Mp2+22My2 27 My
M2 |ine T A ( 8c2®  4c%s? My T 8s? W)’
(5.47)
SMy? o 2c2 + 1 7 Mz + 22 Myt 3 M2
M2 in T ix {— 8c2s? 4c2s? M2 T 8s® Myt

+

1 3 M2 | M@\, M7 2l M@ M
3 In
4c2s2( g P13+ MZ2) 2t s 3,2 ",
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2
1(1_7MW My

— —_ A 2.
+5 L ) Re F(Myt; My, My)

1 MZ2 MH 9 MH2I.
(73 i) e PO e M)~
x 22 4+ 1
Bins = g I e
(5.48)
x 1, Mz 1
A —-ERe{mln}—l{—z*s_z_F(MH2;MW’MW)
1 Myt
202 2F(MH ,Mz, MZ) + 7MW - M[I +2MW

, 1 My
X F'(My*; My, My) +T28§(7M22—_M”2+2M 2

)F(AIH Mz, Mz)
9 MA 7

+482M2

(MHE; My, MH)} .

The renormalization of the gauge fixing parameters & follows from eq. (4.5") together
with the expressions (5.11—14), (5.19, 20) for the longitudinal parts of the gauge boson
self energies and the self energies of the unphysical Higgs fields:

6517 - 6Z27, (5.49)
s _ o 1 902 _ 426 — —
&, i s Req(2¢ 4cs Hady — 1
1 o M M2
+ My* — M7 (MH o My? Mz MW2)
+ 2¢¥(c? — §%) F(M My, My)
My — M2 SM,2
- (1 - (—”4M—Z F(M 7% My, Mz)} - e (5.50)
SV = o L Re d(c2 — s2) (4 1
1 1 o eq(c® — &) (4w + 1)
2\ Mz . My My
(3= i+ G

d
1 222 F(My?; 0, My) + (28462 432 —1+ SZ) F(My?: My, M)

o (W

R OMy?
AM° _1) F(Mw*; My, MH)}_‘ s

i, (5.51)

867 =

cs « ¢
p (0§,% — 8&7) + el 4 ';'AW»

¢ —
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r_o_ % 1 2 _ M2 Uy
08, 1o 900 Re {(26 +1Hdy +1 J In 0,7
M22 JIIZ2 3
+ yI P In T,z + 262 F (M2, My, My)
(MH2 _ 1”22)2 . 61"22
+ (1 I T F(Mz?; My, Mz)p — T (5.52)
) 1 142 Mg
EW _* 2 2 o v Z
oL, T 205 Re {(20 + 1D dy + 22+ 1+ (4c po )ln 0,z
. My My? 1 , 1 _—
+ C MWZ—- Mﬂ2ln sz + E (5 — 9 —'8—2) F(l”w ,Mw, Mz)
(My® — My 5. M y* <
+ c? (1 — —2—M‘W—4_ F(Mw"‘, Afw, in) — —erz. (5.03)
Finally we have to renormalize the ghost fields. Eq.s (4.6') and (5.21, 22) give:
~ ~ ~ 1
81 = 0TV 4 20FB = = 8Zy 4 —— Ay, (5.54)
2 4
~ - . 3 x ¢ =
0277 — ¢s(02V — 8ZB) = —8Z% + — 02y7 — — — Ay (5.55)
2 in s

With these expressions we have determined all the renormalization constants of our
renormalization scheme of the standard model. They can be used together with the
counterterms to derive the finite renormalized Green functions of the model in 1-loop
order. In the next section we present the results for the self energies of the gauge bosons
and the fermions as well as the fermion gauge boson vertices and box diagrams.

6. Renormalized Self Energies and Vertex Funetions
6.1 Gauge hoson self energies

In order to give an impression of the influence of the 1-loop contributions on the magni-
tude of radiative corrections we present in this section the formulas for the renormalized
self energies and vertex functions and numerical results for these quantities. From the
expressions (5.7—14) for the unrenormalized self energies and the renormalization con-
stants (5.35—42) together with the prescriptions for the renormalization we obtain for
the renormalized transverse parts of the gauge boson self energies the following for-
mulas:

() = Zp () — B oo SR emo,

f_‘T>'Z(iC2) — ZT}’Z(kz)lfin

— 2L Re 2P (M%) IV (My?) X me — my? me?
8§ AMZZ JMWZ 4x 482‘MW2 mbz

fin

1
X 1
k Bos Oy, (6.1)
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L7 (k?) = (Zr%(k?) — Re Zp?(M%))siy
ez — §? R 22 M) . o ( My
€ M2 M2

+ (k* Mz)(&l—i-

2

_+._

o myE— mp? | mg?
—_—— In——
dn 48P My? my?

1
fin + _'1_5‘—2 6‘1) ’
SV (k?) = (27 (k) — Re Zp¥ (My?)|nin
2 7012 W( M2

(k2 — sz)(f_‘__*_ z—zR’e(ZT (Mz*) 2% (My?)

67
o m2— mp? . m? 1
" ) W3

4 42 My2 W my 2

& m,2 m
— = l 11 l t
% dn ( "o n + my2 )

Jf'

with

00z} ——
- T ImE kY k2
0
-0021

004 .y
Re 2, (k%) /k?

-0.06

-008}

1 [l 1 J. 1 1
-2007 -1502 1002 -507 ¢ 507 1007 1507 2007
k2/6Gev?
Fig. 8. Real and imaginary parts of the renormalized transverse photon self energy
Zp7(k?). The curve shows Zpv(k2)/k?

The numerical results in figs. 8—11 for |k? << (200 GeV)? have been calculated with the
following standard set of parameters (if, possible taken from [26]):

= (137.036)!
My = 82 GeV, Mz = 93 GeV, My = 100 GeV,
m, = 0.511 MeV, m, = 105.66 MeV, m, = 1784 MeV, (6.2)
m, = 5 MeV, mg = T MeV, m, = 150 MeV [27],
m, = 1.5 GeV, my, = 4.5 GeV, my; = 30 GeV.

The real parts of the diagonal self energies S, .2, 5.7 are, compared to the free in-
verse propagators, not small but yield 10%, as typical order of magnitude. The contri-
butions to the imaginary parts from the fermion loops are positive but those from the
gauge loops are negative. Both the real and imaginary parts of the W and Z self energy
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0.016 T T T T T

0.012 1 Re 5Y2 (k21742
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1m Y2 k27K

-0.008 -
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k21 Gev?

Fig. 9. Photon Z boson mixing. Presented is ﬁ'TVZ (k®)/k?

depend strongly on the energy. The approximation using a constant imaginary part in
the vicinity of the resonance leading to the usual Breit-Wigner type form of the modu-
Ius square of the propagator is thus not really justified. Infig. 12, 13 we show a compari-
son between a Breit-Wigner distribution using My and Im S (My?) resp. M, and
Im £%4(M;?) and the corresponding quantities resulting from (6.1). We find for the W
and Z FWHM values which are 10%, bigger than Tm £7(M?)/M = I'. This means that
for the determination of the width of the W and Z a careful analysis of the experimental
distributions is necessary.

In the case of the W self energy we have contributions of loops containing photons.
The physical channel W — W + y has its threshold at k> = Myp? Consequently we
observe in fig. 11 the peak in the real part and the structure in the imaginary part. The
magnitudes of these effects depend on the details of the WWy coupling. In a model

Im SHk)/Im 32 (M])

-007 /\ Re 371k /(k%-M7)

-009r1

-0.11

L

1 L i 1 1 i
-2002 -1502 -1002 -502 0 502 1002 1502 2002
k2/Gev2

Fig. 10
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4
3k Lm 3k /im MM )
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1F 1

007} T pesWut)iine-u2

007/\ Re Z71K2) /K- M)

-009F i

o 1
1

1 1 1 1 1
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k2/GeV?

Fig. 11

Fig. 10, 11. Renormalized W, Z self energy. The curves are Re ZA‘L,“""Z(I{;Z)/(IC2 — My 2)
and Tm ;% 2(k2)/Im Z,%-2( M3, ;) (Read —0.06, —0.08, —0.10 instead of —0.07, —0.09,
—0.11, resp.)

where the W is coupled to the photon in the form of a minimal substitution it would be
different from that of the standard model.

The diagonal gauge boson self energies are very large compared to «/z and therefore
will give the main contributions besides bremsstrahlung to the radiative corrections in
e*e” annihilation. Compared to these the yZ mixing is much smaller and in our renormal-
ization scheme typically of the order of magnitude of 19;. In our scheme we do not use
the weak mixing angle 0y as a fundamental parameter but as a short hand for sin? fy
= (1 — My? Mz*). The results shown in fig. 9 might be interpreted as contributions to
an effective running i.e. energy depending mixing angle.

The residue of the renormalized Z propagator is different from 1. We obtain:

2T (k)| e prr = —0.080 + 70.029. 6.3)
ok?

For comparison with other renormalization schemes we present also £,%(0) and £,(0):

% 22 e = ITY2(0) = —0.021

(6.4)
SoP(0)/My? = —IT7(0) = 0.069,  £.2(0)/ M = —IT%0) = 0.069.

These values enter into the calculation of radiative corrections to low energy processes.

The parameters (6.2) which we used for the numerical discussion of the self energies
are only partly known from experiment. The W and Z masses have been chosen in agree-
ment with the PP-collider results [1] but since they still have rather large errors we have
investigated the dependence of the self energies on the masses My, M, of the gauge bo-
sons. We find that it is determined mainly through the ratio M /M ;. Therefore we pres-
ent as an example in Fig.s 14 and 15 [I%(0), I774(0) as functionsof sp? = 1 — My?/ M2
and M w-
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Fig. 12, 13. Comparison between a Breit-Wigner distribution with My, ; and Im ﬁ'TW'»Z
# (M, ;) as parameters (——— — — ) and the square of the modulus of the renormalized
W, Z propagators ( )
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Fig. 14. The W self energy —IT7(0) = Zp7(0)] My as function of sy2, My, for the stand-
ard set of parameters (6.2)
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Fig. 15. The yZ mixing I7¥%4(0} as function of sy? My, (other parameters like in fig. 14)

The masses for the u, d, s quarks used above correspond to the values obtained by
(GassER and LEUTWYLER [27]. The evaluation of the hadronic contribution to the photon
self energy using quark loops with these values of the quark masses leads for energies
between 10 and 100 GeV to numerical results which are in agreement with a determina-
tion [28] of these contribution using dispersion theory and experimental data from e*e-
annihilation. However, since the quark masses are not known very precisely and since in

3 Fortschr. Phys. 34 (1986) 11
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the literature calculations of radiative corrections using much bigger values for these
masses can be found, we have studied the dependence of IT%, I17%, I1% on m; = {m,, my,

m,}. Defining 6,01 = H(m,) — II(m;,) we find:

2 m;
8 JTV = 8,017 = — =2 ¥ Q2 1n i,
q g - %: Ql m;,
(6.5)
& - m;
Y 2 p—— I3 —2Q,)In—2.
I = e X QU — 2Q) T
0.070
100 57,150 30
S 10 5.7,150 30
x oos- M =
0.060
100 300,300,450 30
My /GeV my Mgq.ms / MeV me / GeV
. L i 1 ' 1 ! 1 L Flg 16 a
018 019 020 021 022 023 026 025
s
My /GeV  my.mg.m;/MeV  m, /GeV
0.024
S
~
-
T
0016
300,300,450
30
1 I L 1 I "l 1 Flg 16b
0.18 019 020 021 022 023 024 0.25
2
s
w

Fig. 16a,b. II™(0) (a), IT*%(0) (b), as functions of sy? with My, = 82 GeV fixed. Shown
are the variations with the Higgs mass, top quark mass and the masses of the light quarks
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The extreme choice m, = my = 300 MeV, m, = 450 MeV leads to the curve for IT7(0),
117%(0) shown in fig. 16a, b. |[I"(0)] is lowered by ~ 0.011. In figs. 16a, b we present also
the variation of I/%(0) and I77%(0) with the mass of the top quark. A change from m,
= 30 GeV to e.g. m; = 60 GeV increases [I1W(0)| for sp? = 0.221 by 0.002.

Finally we do not know the Higgs mass M. Therefore we have displayed I1%(0), I17#(0)
also for My = 10 GeV and My = 300 GeV in figs. 16. A light Higgs mass decreases
[II%(0)], a heavy one increases it. The conclusion of this discussion is that our ignorance
of the mass parameters give uncertainties in the calculation of I7%, IIZ and the other
self energies amounting to +0.01 which might be of the same order of magnitude as 2-
loop effects.

6.2 Fermion self energies

We described the renormalization prescription for the lepton and quark self energies in
sect. 5.3. Together with the unrenormalized expressions (5.27) and the renormalization
constants (5.43—46) we obtain the renormalized self energies from the equations:

1+ 95
2
-+ miaZ'S""(kz) — miU(BZRiO + 6ZL’)/2 — 67)1,',,.

Sy = k2T (S0 + 02,8) + BT (Sdo) + 02,)

(6.6)

We illustrate the results with help of the , self energy and the electron self energy. The
corresponding invariant functions are shown in figs. 17 and 18. For the neutrinos only
left-handed contributions exist. They are in our renormalization scheme infrared diver-
gent. Therefore in fig. 17 the IR finite quantity Xz (p?) — £2(0) is drawn for time-
like momenta p?. It depends only weakly on p2. . ..

The real and imaginary parts of the invariant functions 27¢, 2%, Z's® of the electron
self energy are presented in figs. 18. In the case of Re 2,* and Re Xs¢ we have subtracted
the IR divergent part o/4m (2 In (m2/A%) — 4). We find that 2, and 2, are small, only

Re X °(p?) reaches a level of several percent.
]
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Fig. 17. Real (—) and imaginary (- — — ) parts of the neutrino self energy subtracted
at p? = 0 (Read 402, 802, ... instead of 40, 80, ... resp.)
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Fig. 18a, b. Real (a) and imaginary (b) parts of the electron self energy. Presented are
the infrared finite parts of the invariant functions ZA.'S“, b 4% ﬁ’Ve

6.3 Renormalized gauge boson fermion vertices

The following list of the renormalized vertex functions contains vector and axial vector
couplings only and is valid for on shell fermions and |k? > m2. As in sect. 5.2 we write
down the formulas only for the first lepton and quark multiplet.

a) Electromagnetic current :
1) = tey,(Fyr* — ysF7),
I“u""(kz) = dey (1 — y5) F7, 6
I'%(k?) = —ieQuay,(Fv® — v F %),
P (k) = —eQuy (Fy?™ — ysF™).
The form factors contain the functions 4,,,..,4 given in Appendix B.3:

X

F;-E'e:1+-4—n

3
[/11(](72, ”20) + (vez + aez) AZ(k2) J[Z) + 4_82. A3(]C2, MW)] H
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& 3

Fyre = e [2%%/12(702’ Mz) + 12 As(k?, MW)], (6.8)
x 1

Fr = — = [ 4, My) — 34,5(k%, Mw)];

Pt = 1 o | Q0 ma) + (0 + o) A, M)

1 9
— 95 Ay(R2, My) + vl Ag(k2, MW)] >
P — [wwmz(k My) — gos Ak, M) + o Aalk? Mw>]
(6.9)
Py =142 [QfAlaaz, my) + (02 + a2 4,08, M)
1 %)
82 Ay(RE, M) + /13(’0 My) + o(u, d)| ’,
Fovt = % {2”uauA2(k2, Mz — — Az(k2 My) + As(k MW)]
b) Weak neutral current.:
ﬁyzae(kZ) = ie?#(FVZG — 7 F %),
127 (k2) = dey, (1 — y5) F?,
Au (k) Yl Vs) (6.10)
Fpde(kz) = ie)’,u(FVZd - ‘y5FAZd)’
fwﬂz“(kz) — Z'eyu( F 2 — Vs FAZu)
with the form factors:
Fp2e — v, + Z"‘; [ueAl(kz, my) + v + 3a.2) Ay(k2, M)
1 36
+ g A, M) — 25 A, M),
F 2 = q, + Zo;' [aeAl(kZ: m,) + ae(gve2 + a’ez) Az(kz’ Myz)
LA, My — 28 Ay, My) (6.11)
8830 2 3 w 4.5‘3 3 > Wijs .
1 X M22 1
Zy — . _ — —_— e — l _— & Al
F 4sc {1 + 47 [ In me2 + 2 AZ + 4522 A2, M)
2s2 — 1 3c?
o A, M) + 2 A, 2 |

9) 8(u, d) is defined in eq. (5.46).
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Fp2t — g, + .‘%; [de42A1(k2, Mmg) + vg(ve® + 3ag®) A k2, My)

1 — 2Q,s?

. 3c
+ 8% Ay(R%, My) — o Ak, MW)] )

F 20— qu + ﬁ. [ade2A1(k2, my) + a4(3v? + as) Ay (k% M)

—2&—/12(% M) - 25 a0k, MW)}

+ 8s%c

(6.12)
FVZh = Uy + %ﬂ l:'”uQuzAl(k25 mu) + ’Uu(’vu2 + Sauz) A2(k2’ MZ) + Uua(u, d)

2
_ 1 4 2Qs A

3c
8s%c 2(K?, Mw) + i Ag(k?, MW):' )

FA = Gy + 1 [ uQuzAl(kza mu) ‘+‘ a’u(gvu2 + au2) A2(k2: MZ) + aué(u’ d)

14 20,8

S Al M) + g A, M|

¢) Weak charged current:

_f"“Wev(k2) — e_ ;,#(1 — vg) FWer
(6.13)

D) = § e (1 — ) VO,

with the formfactors

e k3 3(3c® — 1) m 2sr — 1 3(: MW
F 1+4~;{ 5 T Moz 252 In 357
252 — 3c? N
+ 45202 A2(k ’ ‘MZ) + ‘3/14’”‘(":2 MW> 0) + $2 A4(k ; I‘IZ’ MW) ’

(6.14)
Fwae — 1 4 2 {Qqu {‘3 In —~ e -I— /1 (K2, my) + = /11(]0 my,)

282 — 1

i Ay(k?, Mz) + 3Q,A™(k?, My, 0)

+ 5 A Mz>] +

3c? .
— 3QuA,ma(k2, My, 0) + - Ay(k%, Mz, My)

my

1 MZ 2 302 MZZ
“§( mE 2T T )+ +(282—'8T)1“MW2}-
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d) Examples: The electron and » photon formfactors, the electron Z boson formfactor,
the Wev-formfactor

For illustration we present the weak contributions (the parts with A, 3 in eq.s (6.7—13))
to the vector and axialvector photonic formfactor of the electron in fig. 19 for |k?|
= (150 GeV)2. The vector part F}’ ... vanishesat k* = O asa consequence of charge re-
normalization, the axial vector part F*¢ ., (0) = 0 because of the Ward identity. For the
k? values given above the real and imaginary parts of these formfactors are typically of
the order of magnitude if 10-3.

7 1
r Ye - Ye
10-3+ FV, weak e 103 Fa
L Im * L
x _-” L ‘_I_m,_
0 L . 0 - . =
i Re i Re
-1 - _1 -
2 2r
L L 1 1 1 L § I P | L I o i 1 1 L L 1 1 Ll 3 1 1 1 1 1
1502 -701 0 702 1507 -1502 -707 9 702 1502
k%/Gev? k2/Gev?
Fig. 19a, b. Real ( )} and imaginary (- -~ — -) parts of the weak corrections to the

vector (a) and axial vector (b) photon formfactor of the electron

The v vertex vanishes in lowest order but gets contributions from 1-loop diagrams
(b, ¢ of fig. 7) containing the W exchange and the non-Abelian gauge boson coupling.
The resulting formfactor F7(k*) shown in fig. 20 grows for [k%] < (150 GeV)? to ~ 107 %.

The non-photonic contributions to the eZ boson formfactors are shown in fig. 21a, b.
They have the same characteristics as the other formfactors. Compared to the self energy

5
. 10-3 [ F‘yV
ot S il
: — Re
=== 1Im
'5 ] ] L i L L Loyt 1 1 1 1 1 i
- 1502 -70? 0 702 1502
k2/Gev?
Fig. 20. Real ( ) and imaginary (- - — -) parts of the electromagnetic formfactor

of the neutrino
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Fig. 21a, b. Real ( ) and imagi-
nary (— - —-) parts of the weak con-
tributions to the vector (a) and axial
vector (b) Z boson electron form-
factor
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effects of the weak bosons the weak contributions to the vertex corrections give effects
in ete” annihilation processes which are one order of magnitude smaller.

The Wev- and the corresponding quark formfactors obtain a contribution from the
W Wy-coupling (see fig. 7c¢). This shows a pronounced structure around k® = My? and
reaches an order of magnitude of —40 - «/4x for the real and imaginary part (see fig. 23).

0r AZ* (k2 My, 0)

-20

-40
1 1 Il 1 ] 1 14 | 1 L 1 1 |
-1502 -70? 0 702 1502
k2/Gev?
Fig. 23. Real ( ) and imaginary (- - - -) parts of the photonic invariant function

A4m(k2, JIW, 0) for m = m,

Together with the corresponding contribution (the Wy-loop) to the W self energy it may
lead to interesting effects in W exchange dominated reactions for timelike large
momentum transfers.

We conclude this section with some remarks on the box diagrams with two weak
bosons. In contrast to the self energy and vertex diagrams they are both UV and IR
finite and consequently in the 1-loop approximation not directly influenced by the
renormalization scheme. Their contribution to 1-loop radiative corrections to S matrix
elements is in the energy range considered of the same order of magnitude as those of the
vertex corrections. Explicit expressions are given in the appendix B.4 and numerical
results presented in fig. 24a, b.

7. Applieation to Purely Leptonic Reactions

In this section we apply these 1-loop results to purely leptonic reactions like u decay,
(v;e scattering and lepton pair production in ete™ annihilation [29]. Although the results
from deep inelastic lepton scattering have now reached very good statistics, we have
restricted our analysis to leptonic processes in this paper since these have smaller theo-
retical uncertainties from the strong interaction. Therefore these processes allow the
cleanest tests of the electroweak interaction.

According to the choice of My, M, as parameters in the renormalization scheme used,
the most direct way to compare the predictions of the electroweak standard theory with
experimental data is to start with the measured values for My, M, (or equivalently My,
sw? resp. My, sy?).
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Fig. 24a. Real part of the
s-channel box diagram form-
factors 2z/x - I ( ) and
2nfx - I (— -~ -) for the ZZ

and WW box (Vs = 93 GeV)

Fig. 24b. Real ( ) and
imaginary (——--) parts of the
¢-channel box 2/ - I24(t, s)
and 2x/x - I;%Z(t, s) with two
Z bosons for s = 93 GeV
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The UA 1 and UA 2 groups have determined
My = 822 4 1.1 GeV, M, =927+ 1.0GeV. (7.1)
A value for AM = M, — My can be deduced from experiment with an error smaller

than that resulting from (7.1) because of a partial cancellation of the systematic uncer-
tainties. Together with the definition of sy?:

My?  AM aM
2 .1 — —_ _ .
sy =1 i, T, (2 Mz) (7.2)
this gives for the mixing angle [1]:
sw? = 0.218 4+ 0.023. (7.3)

a) w decay:

Neglecting . terms of order (m,/m,)® and (m,/My)? the lowest order expression for the
decay width for u~ — v,v.e” is given by:

2 m2\ m,t 1
0 .. __— 1 — ¢ fad
T = sgqz ™ ( 8 m,;) Mot (1 — My M2
0‘2 m 2 m 4
= —— 1— g £ . 4
Ty n, ( 8 muz) (MWSW) (7.4)

Pusting together the i-loop corrections yields the following results:

v (25 7 — dsp?
I,=Typ {1 +o= (Z — ﬂz) — 2IT%(0) + 2an2 [6 + 1 cwz]}

= I')%(1 + 6T, /T.9). (7.5)

The first correction term is the familiar QED correction in the Fermi model, the second
the contribution of the transverse part of the W self energy, I7%(0) of eq. (6.4), the last
term the sum of the vertex and box diagrams together with the v,, v, wave function
renormalization.

The decay width I', = I',0 4 6I', depends on both My and sp® Using the mean
values of (7.1) and (7.3) the expressions (7.4—5) give:

I, = 2.96 10716 MeV,

whereas the QED corrected Fermi model result is:

re [1 + o (—4— — n2)} — 2,56+ 10-16 MeV.

This has to be compared with the measured value I',%*® = 2.9958 - 1016 MeV [26]. With
a fixed value of My = 82.2 GeV we obtain 2,42 - 10718 < I', < 3.70 - 1071 MeV, cor-
responding to the variation of sp? in (7.3).

The present accuracy of the direct My, M, measurements does not allow to predict
I, with a precision that can compete with the accuracy of I,6*P. Instead, I,°*® can be
used as an input quantity from which for a given s;? (resp. My) the corresponding M,
and M (resp. sy?, M) is obtained. The result of this calculation is shown in figs. 25 and
26 for various values of the other parameters.
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70 I PR SO N S | TR N ! 1 ! \\1
016 018 020 022 026 026 028
55
Fig. 26. Same as fig.s 25a, b for several choices of My: 1: Mg = 300 GeV,
2: My = 100 GeV, 3: My = 10 GeV. Quark masses as in eq. (6.2)

b) (;Le scattering :
The ratio
= o(vee) — o{9.e) _ o(v.e)o(v,e) — 1 _ R -1 (7.6)
o(vee) + o(vue)  o(ve)fo(Fe) +1 R, +1
is well-suited for our purpose since it is sensitive to the ratio My/M, resp. sy and less

subject to systematic errors than the cross sections themselves; moreover it is free of

electromagnetic higher order corrections.
With the ratio & of the vector and axial vector coupling constants of the electron to

the Z:10)
E=vja =1 — 4sp2. (7.7)

A, has in lowest order the simple form:

I ltete
49 = g or R0= 1 T (7.8)

The 1-loop corrected expression of 4, can be written in the following way:

E4 A7 — V424

= — 0
A Y vy Rt (7.9)

10) In this section we omit the index e of the coupling constants v,, a,.
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It gets contributions from the yZ mixing energy PR (6.1), the derivative of the yry
formfactor
+ 1)

E 2 Myt x 2
+3yz(3+2cw + 21n m;‘z) 3 In

A 2
2% = doty < £ omo + 4 (0 2 ey (“h

OSMy?
M,2

My

mtz
+ In m)
(4

fin

o« ¢ mie | m?

el 7Ry (7.10)
and of the box diagrams containing two massive gauge bosons:
xf 1 x| 1 3
— = = ——|—4 = (v? 1. 11
- - P ] (1.11)

The weak contributions to the renormalized y»v, Zvv and Zee vertex functions vanish in
our scheme at zero momentum transfer, yielding the simple expressions above.

The quantity R, resp. 4,, eq. (7.6), depends on My and M, mainly via the combination
My Mz, because the variation of the yZ mixing energy with My (whence sy? fixed) is
small (see fig. 15). Therefore the value of sy? from (7.3) can directly be converted into the
observable R, (see also fig. 27):

RO = 12993, R, = 12803,

\\ 1 1
\ ?
1.8-?3 \\ My = 82 Gev 18F 3 My=82 GeV
16 161
14F 14F
o 2
12 12¢
101 101
08+ N\ 08}
N
N
061 _ 1 1 06 ) ) j
015 020 025 015 020 5 025 030
SW
Fig. 27. R, as function of sy? in lowest order (- - —~ ) and including radiative corrections ( )

for several choices of

a) My; 1: My = 300 GeV, 2: My = 100 GeV, 3: My = 10 GeV and

b) quark masses:
1: (my, mg, mg) =
2: (my, my, mg) =
3: (my, mg, mg) =

(300,
(5,7,
(5,1,

300, 450) MeV, m; = 30 GeV;
150) MeV, m; = 60 GeV;
150) MeV, m; = 30 GeV; other parameters from (6.2)
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The actual experimental value is {30]:
R, = 1.387031.

The measurement of B, together with that of I", an be used to determine the gauge boson
masses by simultaneously solving the equations

Ryexp — Rytheor(MW, MZ) s ]’FEXD _ I‘lltheor(MW, MZ) .

This way to analyse the low energy data has been — until the experimental discovery of
the W and Z — the only possibility to get information on the values of the gauge boson
masses from purely leptonic reactions [31]. The results of our calculation are presented in
fig. 28, where we have plotted the W and Z mass as a function of R,°*».

¢) Forward-backward asymmetry in ete™ — ptp=:

The forward backward asymmetry App(x) in e*e~ annihilation into x4 pairs is defined

as (¢ = cos 0):
z 0
do do
[dcd“ﬁ—fd”d—g

1%

App() = 2 = : (7.12)
do do
fdc 0 + fdcd_!)
0 -z
do/dQ reads in Born approximation
ds do® _ 2 2 2 2
ﬁ-dQ—l + ¢ + 2x(s) [+3(1 + ¢)? + 2aZc]
P+ @ (A ) + Pa? - 2] (7.13)
where :
8
2(s) = Py 7R (7.14)
This gives:
0 . x oz 1 + 20%y(s)
AYp(z, s) = Tr 23 2a’x(s) T3 F 0 + AP L0 (7.15)

At PETRA/PEP energies one is allowed to neglect the imaginary part M,I'; in the
denominator of y since (I'z/M;)? << 1. Also we know that v? < a2 and consequently may
simplify (7.15):

Ay = A%yl 5) = o a¥7](1 + atz?) (7.16)
with
s M2

a’y = — .
16MW2(1 — MW2/M22) MZZ — &

(7.17)

The radiative corrections to da/d£2 can be divided into electromagnetic (real and virtual
photonic corrections) and purely weak parts:
do

do 9% 4 4 O+ C 7.18
dQ—dQ( em W)' (' )



M. BénM et al., On the 1-Loop Renormalization

734

A2H 00T = Hpp fA%D 09 = 'w ‘APW (06T ‘L ‘¢) = (“w Pus "w) :7g

fAPD 08 = 'w ‘AR (08% ‘00€ ‘008) = ("w Pue Tw) :¢ fA°D 08 = 'w ‘ASW (08T ‘L ‘¢) = ("w P ) 17
110§ ( ) SUOI3991100 9ATIRIPEI Surpnjoul

pue (~ — — ~) I0pJIO J89MO[ UI “ JO Uolounj s® Bul1833808 9”4 puw £eoep 7 uroxy paurwaesp (q) Zpy pue (v) 4y q “egg ‘Sig

ay Y
91 7 Zi o0l 80 91 bl A 0t 80

— T T T T T T

8

98

88

06

4]

76

96

86

~00t

204




Fortschr. Phys. 34 (1986) 11 735

The electromagnetic corrections C., and their influence on App have been treated in
ref. [18] and especially in [19]. Therefore we do not reproduce the expressions for C.p, in
this paper but take the formulas of [19] for the numerical evaluation of their contribution
to %FB'

The purely weak part C,, is built up from the Z self energy, the gauge part of the y self
energy, the yZ mixing energy, the weak contributions F, to the e and p. photon and Z
formfactors and the box graphs with two heavy bosons. For PETRA/PEP energies,
neglecting terms of order «/2x - (|t|/M ;%) these box contributions become independent of
¢ = cos 8, and therefore the weak corrections can be written in the following way :

0
B Cy= (1) (O + 20" + 2205 + 2020w + £O).

(7.19)

These terms modify the expression (7.16) for the forward-backward asymmetry «4pp to
become:
3 2x(a® + Cp%~) + y¥(4v%a® + Cp% ")
041;'5 _— . (7.20)
41+ Gt + 20 + C™) + (@ + 0 + O

Now we write down the explicit form of the corrections C,:

O = —20T,7 + 4F%

V.aw?

C%+ = —(ILy + IT"?) — 201177 + 2uFZ%, + 20(eFy 4 aF%,)
+ 422,75 | (234)0 VI,
CuP = —aHITy + IT%) + 2P, + 2a(oFs, + aFf,
(@ + AR AT 4 (26) VIV, (7:21)
C o+ = —2(v? + a®? I17 — 20(v% + a?) - 2[1"% 4+ 4(v? 4 a?) (vF,Z,‘fw + aFZe,)
+ (v - 2va + a(e® + a¥))? 4,77 + (v + a)? (2s5) 74 VPV,
C7~ = —8v2a21? — 8a*vII'? + 8va(vF%, + aF%°,)
+ (0(0* + @a?) + a - 2va)? 4,77 + (v + a)? (2s9)"* V7.

The quantities I7 are related to the renormalized transverse self energies ﬁ‘T(s) (6.1):

1 A
IT,(s) = " Re 2%  (s) (non-fermionic part),

1 A
1172 (s) == ~ Re Xpr%(s), (7.22)
ZW(e) — ' ZW
I71%2:%(s) pa— 7 Re Xp7-W(s).

The weak contributions FZ,, ..., F7?, to the formfactors are built from the functions
Ay 3(s, M?) and coupling constants (comp. 6.8, 11) and app. B.3):

Fitn(s) = o= [v(zﬂ + a*) Re Ay(s, M)

1 3
4 ——=— Re Ay(s, My?) — % Ayls, MW2)] ) (7.23)
%

SSWBCW 4,

4 Fortschr. Phys. 34 (1986) 1t
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Fﬁ‘fw(&f) = Z(xy; [a(3v2 + a2) Re Ay(s, M,?)
1 3CW
—_ 2y 2
o Re Aals, Myt) — o5 Aol My )],
« ‘,‘
Fy () = o [(vz + a%) Re dy(s, M) + 73 Aol MW~)], (1.23)

& 3
Ffﬁw(s) = E [21}@ -Re AZ(S, MZ2) + 1_8;;_2 AS(S, IWW2):| .
These expressions vanish for s = 0 and are for energies s < 45 GeV smaller than 103,
Finally the low energy approximations of the ZZ, WW box diagrams have the simple

form (coupling constants removed):

x o
A2z . g~ cww o
1 3 o’ Vi i (7.24)

yielding terms of the order of magnitude of less than 1073,

If an accuracy of the relative corrections to «4pgat PETRA/PEP energies of 10-3 is
desired, one is allowed to neglect in the contributions to C,, all terms but the self ener-
gies. Then one gets for 425" ¥k the following expression (using also v? <€ a?):

, 1—1IIy —11% - 3 za?
2 T oIy %% = 2 1+ yat

Born+weak
Arp =

(1 + I,y — I1%).
(7.25)

7 was defined in eq. (7.14) as the ratio of the free Z and y propagators. Therefore the
result (7.26) has the simple interpretation:

c"4];‘0“1Hvem('s) = '§‘ _—X(S)B""”Weak a? xBorn+weak — s+ Z;‘.w(s) .
B 21 + X(s)z a4 s — M22 + ZTZ(S)

(7.26)

The lowest order expression for y(s) has to be replaced by the renormalized one, the
radiative corrections to a® can be neglected.

The weak i.e. non-Abelian gauge contribution to II?, comes from vacuum polarization
by W pairs, the corresponding ghosts and unphysical charged Higgses and results for
small energies as can be seen from (6.1), (5.7) in:

x 8 & s \? -
HWV(S):—T”-W—*—O(Z;(M;Z')). (1.27)

Consequently this can also be neglected at the desired accuracy at PETRA/PEP ener-
gies, leaving the simple result suited for the practical calculations:

3 x{s) a®
2 1+ z%at

Born+weak __
"41“ B

(1 — m%(s)). (7.28)

We find — in agreement with [16] — that the weak radiative corrections to App at low
energies are determined by the transverse Z boson self energy only, with an accuracy of
6%weak/%0 < 10—-3.



Fortschr. Phys. 34 (1986) 11 737

On the basis of the formulas (7.18—23) we present in table 1 the weak corrections to
App for a large range of the Z mass and sp? The a® contribution to Ay which is of pure
QED origin is not included because it is model independent and already respected in the
experimental data. The sum of the QED corrections to Z exchange and yZ interference
and the purely weak corrections turn out to be very small over the parameter range con-
sidered for realistic cuts (=< 0.001 in Agp). Fig. 29 shows the predictions for App(|cos 6]

= 0.8) for ]/s—: 34.5 GeV with an accolinearity cut of 10°and anenergy cut of 0.5E yean

Table 1

Purely weak corrections to Apg(|cos 8] < 1) in percent for Vs = 43 GeV
(Mg = 100 GeV, m; = 30 GeV).

sw?  Mz(GeV)

89 90 91 92 93 94 95 96 97

0.15 —1.66 —162 —1.57 —1.53 —1.49 -—-145 —142 —1.38 —1.35
016 —157 —153 —148 —144 —141 —-137 —1.3¢4 —1.30 —1.27
017 —149 —145 —141 —137 —1.33 —130 —1.27 —1.23 —1.20
0.18 —141 —1.37 —-134 —1.30 —1.27 —123 —1.20 —1.17 —1.14
0.19 —135 —131 -—1.28 —1.2¢4 —121 —-1.18 —1.15 —1.12 —1.09
020 -—1.29 —1.26 —1.22 —-1.19 —116 —1.13 —1.10 —1.07 —1.05
021 —1.24 —-121 —1.17 —1.14 '—111 -—1.08 —1.06 —1.03 —1.00
022 —1.19 —-116 —1.13 —1.10 —1.07 —1.04 —1.02 —0.99 —0.97
023 —115 -—-112 —1.09 —1.06 —1.03 -1.01 —0.98 --0.96 —0.93
024 —112 —1.08 —1.06 —1.03 —1.00 —097 —0.95 -—0.93 —0.90
025 —1.08 —1.05 —1.02 —100 —-097 —094 —0.92 —090 -—0.88
026 —1.06 —1.02 —099 —0.97 -—-0.94 —0.92 —0.89 —0.87 -—-0.85
027 —1.02 —-099 —-097 —094 —092 089 —0.87 —0.85 —0.83
028 —1.00 —097 -—-094 —-092 —0.89 -—-087 —085 -—-0.83 —0.81
029 —097 -—-095 —0.92 —0.90 —0.87 -—-0.85 —0.83 —0.8t1 —0.79
030 —0.95 —092 —-090 —0.88 —-0.85 083 —081 —-0.79 —0.77

for the bremsstrahlung part. These results are scaled up to [cos 6] < 1 according to the
lowest order formula (7.15) in order to be directly comparable with the PETRA results
[4] that are shown in the figure, too.

One can see from fig. 29 that the experimental result for Az at 34.5 GeV favours
values of sy* which are slightly smaller than those following from the My /M, ratio.

d) Tests of the standard model at the 1-loop level:

The most important parameters of the electroweak standard model are the masses of the
intermediate bosons. Therefore, we have expressed every observable quantity with help
of My and M. Consequently each measured value Ry, of a quantity R

Rexo — Rtweor(M o M) (7.29)

gives a relation between My and M ,. This depends if one includes radiative corrections
slightly on the other parameters of the model i.e. the fermion masses and the Higgs
mass. In order to perform a test of the standard model using purely leptonic reactions we

4%
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5=(345 GeV})?

1 L 1 L L !

1
0.18 0.20 0.22 0.24
s

1
0.16
w
Fig. 29. App (0.8) scaled up to |cos §] < 1 according to eq. (7.15) at Vs = 34.5 GeV as
function of sp? including complete electroweak radiative corrections. Shown are the
curves resulting from the upper (93.7) and lower (91.7) bounds on M, from the PP
collider experiment together with the upper and lower bounds on sy2 (dashed lines) from

the same experiment. The cross marks the point corresponding to the mean values
M, = 92.7 GeV, sy® = 0.218. The dashed-dotted lines mark the PETRA results

present the experimental results in the (M, M ;) plane. This is done in fig. 30 including
1-loop corrections (for our previously specified standard set of parameters (6.2)) for:

— w decay, which gives a curve in the (M, M) plane;
(-

— v.e scattering, yielding relatively weak bounds on My, M, due to the present ex-
perimental errors [30]; _

— the lepton pair forward-backward asymmetry at Vs = 34.5 GeV;

— the direct measurement of My and M, in the PP collider [1].

This picture represents a comprehensive test of the electroweak standard theory at
the 1-loop level in the leptonic sector.

Clearly the low energy data (from I',, R,, Arg) and the high energy data (M, M ;) are
compatible with each other. The agreement would be worse if radiative corrections were
not taken into account. But in order to become really sensitive to these corrections im-
provements in the experimental determination of My, M, and R, are necessary.

8. Conclusion and Outlook

In this paper we have worked out a renormalization scheme for the standard electro-
weak model characterized by the following properties: use of the electric charge ¢ and
particle masses as physical parameters; minimal number of field renormalization con-
stants respecting the SU(2) x U(1) symmetry; the simple pole structure of the ’t Hooft-
Feynman gauge is maintained after renormalization in a way consistent with the Slav-
nov-Taylor identities. We have calculated all the physical and unphysical self and mixing
energies together with the complete set of renormalization constants, and the fermion
gauge boson vertices. We have presented also the renormalized results for the self ener-
gies, vertices and box diagrams. These are the building blocks needed for the calculation
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105

100

My /Gev

95

90

1 1 . 1

80 84 88 92
My 7 GeV

Fig. 30. Comparison of the results for the boson masses in the (My,, M) plane. Shown
are: the curve resuiting from p decay ( ), the 689, CL band determined from v/e
scattering (///////) and that from the forward-backward asymmetry in ete” — putp-
(=). The blob with the error bars represents the combined UA 1 and UA 2 results

of electroweak radiative corrections to e*e~ annihilation, deep inelastic lepton scattering
and PP annihilation at high energies.
Finally we have performed a comparison between experiment and the results of the

standard model including radiative corrections for p-decay, (vLe-scattering and e"e -
annihilation into lepton pairs. We find good agreement between theory and experiment
if radiative corrections are included. But the accuracy of the experiment has not yet
reached a level where radiative corrections can be conclusively tested. We expect this to
be the case in the near future, when results of the next generation of the e~e~-machines
and of the high precision experiments on lepton scattering are available. These then may
also help to gather some information on the Higgs sector and finally will allow to dis-
criminate between the minimal electroweak model and more extended versions.
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Appendix A: Feynman rules and counter terms

We present the Feynman rules of the standard model using ¢, My, M, My, m; as
parameters and

c=Mwy/M;, s=(1— Mp¥ M2, v, = (I3 — 252Q;,)/28¢, a;p = I3[25c

as abbreviations for writingout the couplings (again we suppress the index W at ¢y, sw).

We combine the renormalization constants 6Z,%, 67,8, 6&3, 6&8, 6Z%, Z® to those for
the photon, Z boson and mixing terms:

0Ty = SOZM + ROZE, Oy = S2OED + LD,

OZ7 = 2ZY + $0Z8, 087 = &S + 0P,
(A1)

BZT = cs(3ZY — 8ZB) = ——— (3Z7 — 8Zy7),

8E77 = cs(6&3 — 6&B) = g a e (887 — 8&7),

similar for 6Z.

The renormalization constants 6 M2, 0M 52, M2, dm,,, 6t are defined in eq.s (4.1") and

(4.4"). This gives the following list of Feynman rules and counter terms (momenta and
charges are understood as incoming):

7 2s ot
/— il = ’i—l”WXMH ad
€
w; w; O!,X,r]_ ue it
{N\/\/\A,O—-————-’,W,.——’——.}
k

=kT——MZ-l —Gu; 11k +m},

W, W,

X e = —1g,, [(k2 — M) 0Z,° — OM?] — ikk,08,%; a = 7,V

z A. .

BN . —z'g,,,[—kzézzﬂ + MPABZ% — 8Z,7%)] -+ ik,‘k,éflrz,

LIS b Mg (GO — 857); — 087 - 087+ 8807 — 0807,
¥

n n

e W — =S Z[(]C2 - M”2) 6ZW - 6MH2]’

Ll NaL] — [<k2 — M3) 625 — 6M3 5 — Ml 19677 + My ‘57‘]
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v a° T (s 1 oM 2 1

VEVEXPXTT — 1 [kl (62“ -3 6;1") — M2 (62“ + M:2 + 5652“)];
a=%,2%,7,

uY u?

TIIRTIITTE = — 1 [k" (62” — %66172) + M2 ((5Z1’z — %—622” + (527')].

u? ¥

rex T — —z‘[kz (aZrz - %as,ﬂ) + M2 (az,rz — %az,ﬂ +%a§,r2)],

LA z'[lt (oz;‘l —Ys L 6Zgk 1—i2/—5)

1 . 1
;o (E- 6ZL' + —2- 6ZR‘") — 6m,~,,j| »

—ie=Zi1higuter — ), + gt — k),
+ ge“(ko - k_)-] (1 + 6Z1W),

w,' Wy )
= 7¢ ;; [2g,.,gvg = Gules — g#ogw] ° (l + 2(521W - azzw),
v woy
Wy 12,5 493 45} \
I3
= —e¢? {8'—2, ——" 1} [29;»990 FJueJre — g;wg'e]
- (2,5 2g: Ay}
Wy X (1 + 20Z,% — 6Z,%),
,{q,-x.o'}
n e . e 1'””2 ov 1)
————— = — 7= M 1 1 ] — — (SZ )
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\ . s = 1:1;3;1;3
1'(\ /:(\ ! ,’(\ 32 M M2 {2
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8
w 2P .
NCSP =%( @ (T4 1) (1 + 82¢ + 82,7 — 8Z,7),
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252, 5v) (1 - 9-: + 8Z% + 20Z,% — 36Z,% + 627 + -;- aszz),
M 8Z % 3 82,7 — 6772
2028 My . —0Zy"% + "2— ' T s
1
{utu¥ut} (—62172 + %5Z272 -3 55272) .
Appendix B:

1. The finite part of the scalar self energy F(k?; M,, M,):

2 _ M.2 2 2
F(k*s My, M,) = 1+<M1 12 it - Vi 2 )lan

— M2 E

1
+ 3 (M + M2 — 1) (M — M) — R

VL, + M2 — 2 V(M — M2 &
VI, + M2 — % — V(M — M2 — k2
kB < (M, — M,)?

X In

2 LM, + D) — BB R — (O, — My
Ve — (M, — M,

Vot + My — B

(My — M2 < k> < (M, + M,)?

+ X arctan

— R (O MR [ — (M, — My

{ Vi2 — (M, + M, + Vi — (M, — M, | }

X 9ln — T,
VEE — (M, — M2 — VR — (M, + M,)?

k2> (M, + M,)2. (B.1)

2. The function By(k*; M,, M;) is defined by:

dPq G
@r)? (2 — M2 + ie) (g + k%) — M? + 2e

o b Bulk®: My, M) = b= f

and related to B,:

2128, (k*; M, My) = A(M,) — A(M,y) + (M2 — M2 — k) Bo(k?; M,, M,).
(B.2)

This gives for equal masses:

By(k2; M, M) — —-;- B2, M, M). (B.2")
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3. The vertex functions A, ,:

The contributions of the photonic diagrams of fig. 7a to the vertex function I', (of
sect. 5.2f) for |k2|>> m?, p = ¢ = m have already been calculated [18, 19]. After
splitting off the UV divergent parts and the coupling constants remains the function
Ay(k2, m):

AI(O, m) = 0,

2 k2 % k2
Ay(k2, m) = —21n '12 (m'm' )+1 ' '+12’m'

(B.3)

47-f 1 +2zln 3 for k%> m?
3 ” 1_2—2 i

2
4 (-i—-2— — 1) for —E> m.

The diagrams of fig. 7b describing the exchange of the heavy bosons Z and W lead to the
following integral:

— D dPl ylgv’ — gd'ys) (—=¢ — 1+ my) y(V — Ays) (g =1 +m) y(gy — gavs)
(27)P (2 — M2 ((p — 2 + m?)((g + 1) — m,"?)

[AM - —;—] for k2 =0,

7
= 1622 Yuldy — 2ays) - 1
! [AM - E + Az(kZ, M):' fOl‘ k2 > ml 25 ml 2

with
Ay = Vigygy + 9494") + Algvgs + 9v'94)»
s = Algvgv’ + 9ag4’) + Vigvgd + 9v'94),
and
5 d { Jw) JE
Ag(k2, M) = — — 2 — = .
o(k%, M) 5 + Inw 4 2(1 4+ w) dw(l—{—w)’ w 7

The parameter integral
1 1
J(w) = [de [ dyyIn[w(l —y) — y*x(l — z) — %]
0 0

can be evaluated with help of the dilogarithm

1

Sp(z):_fdtw

0
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and yields for A, the expression:

Ay(k?, M) = —% — 2w — (2w + 3) In (—w) + 2(1 + w)? |:Sp (1 +%) — %2}
for &2 <0,

(B.4)
A%, M) = — - — 2w~ @+ 3) In () + 21+ wP [m () In (“’I 1)

—$p (—i)} —in [3 4 2w —2(1 + wpln (I—ﬂ)]
w w
for k2 > 0.

In fig. 22 we show A,(k2, M), Ay(k%, My), As(k2, My), and A k2; My, My).
Ina similar way we have obtained the invariant functions belonging to the diagram 7¢
containing the triple boson vertex:

i
= Tgaz Pl — hays) - A(k?; My, M)

with

= (gvgv" + 9494") G, ko = (gvg4 + gugv’) G
and

A(kE; My, M,)

3 [AM _% 4+ AR, M)] for M,=M,= M,

S[AM,‘}'AMZJFE_ M2+ Mp? n Ml

5 6 m + A (k% My, Ma)]

fOI‘ M1=%:M2.

(B.5)
The remaining functions have the properties

/13(0, M) = Ad(O: Ml) M2) - O’
/14(’52: Ml, Mz) - Aa(kz, Mz’ Ml)-

They read for k% > m? (w = M?%/k?%):

YR T T 2 I LR TR

6 3 ]/ 1 —4w—1
2 V1 —4w+1 \
+§w(w—f—2)( l/l— w—l) for k2 <O,
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5 2w 2 —_— 1
1.0k2. M) = — — 1+ = 1) 4w — 1 arctan ———=——
Ag(k?, M) 6 3—i—?)(2w—{— ) V4w arcan‘/4w—l
8 1 2
— — w(w + 2){arctan ~————= for 0 < k? < 4M2,
3 ]/4w—1
(B.6)
5 2w 2w+1 14+ Y1 — 4w
Ag(k2, M) = — — — 1—4wln ———m——
(8, M) = = — = + 11— 4w Py
+Ew(w+2) [ln2 (Hl/l—__——iu_;——yﬁ)]
3 1—)1 = 4w
1— 4
—in 2w+11/1—4w—|———w(w—|—2)l l—ﬂ/——_:%_”
1— Y1 — 4w
for k® > 4M?
and with w, = M2/k?, w, = M,%/k?:
A (k25 My, My)
1 wy +wy, M, wy — wy M, wy +wy + 1 M,
=42 Fp L1 P4+ 22 iln—-—1
6w —w, "I, 3 gt 3 1,
wy + Wy + Lo
+ 3 [xllnx1~— +x2ln1_x2]
2 (0, wy 4 wyany) In — T In (B.7)
TR T ) R T T :
1—w w, 1
————21—_‘_—2—:}:?]/(1-—11}1—}—102)2—4102
for k2 < (M, — M,?> and k%> (M, + M,)?,
T1,2 = .
-wtw | o T A, T wy)
2 2
for (M, — M,)? < k? < (M, + M,)>.
The imaginary part of /A, is obtained from (B.7).
Im A (k*; My, My) = —a - 6(k2 — (M, + My)?)
w, + wy + 1
X{‘L_?f‘_"‘/(l—wl + wp)® — 4w,
+2 + ) {In i In —2
3(w1+w2 w Wy 1—x1+ T/
(B.8)

Inthe case M, = 0, i.e. if one of the bosons is a photon, the mass m of the fermion coupled
to the photon has to be respected. In that special case we have to use the following
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expression, valid for [£%| > m? (with w = M?2/%?):

1 1— w? 2
APES M0 = 5 — 5+ =P 2D

M2 — ke M 1
+ % [m2 (T) (ln ) +2sp( w)] (B.9)

For k? ~ M? replace M? -~ M? — ¢MT.
Fig. 23 shows A,™k*; M, 0) for m = m,, M = My.

4. The box diagrams:

We write down the explicit expressions for the s-channel box diagrams. The matrix ele-
ment can be written as:

Py

17— Atys) w(pe) - W) (A — Aatys) v(ps) - TH(s, t)

+ B(pe) yuvs(h” — Artys) w(py) - Wps) vysda’ — Aays) v(ps) - L5(s, 8)}
(B.10)
with
A = vy + aya,, WA = viay + vay,

AV = vyuq + agy, Aot = vy, + v4ay,

where the v;, a; are the vector and axial vector couplings of the ¢’th fermion to the inter-
nal boson according to the labelling of fermion momenta in the above diagram.

s = (p1 + p2)% t = (ps — m)%, u = (p; — p3)*

are the usual Mandelstam variables.
In order to obtain the expression for the crossed box one should substitute ¢ <> u and
reverse the sign of I/:

T¥(s, t) — —TI¥(s, u) and I (s, £) — I;H(s, u). (B.11)
The following results [33], given in a form which is convenient for numerical evaluation,

are valid for s, {t|, [ui > m,. Because of (B.11) we give for the neutral-current boxes
only that part of I, which is antisymmetric under ¢ < u:

" I s t s(s + 28 t
s, 0) = 2 {2(8 + 8 In s+ 4s 1) [lnz (s + ie) + ﬂz}} (B.12)

Irr(s, ty — Irr(s, u) = o { 21n —:wl (—:-g — ze)} -+ I (s, t) — I5r7(s, u);

A2
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& S—Mzz t M22 M22 s+2l+M22
1.vZ2 — e 1 n—
572(s, B) o 2(s+t){ns-——M22 s lnMZ2——8 s+t
s — —1 MZ2'_S
— _— I In -
X [SpMzz SpM22+ nM32 In M2 ‘f‘t]}’
(B.13)
2
Ir%(s,t) — Ir%(s, u) = Iy7%(s, 1) — I5%(s, u) 4 QL (SP - :+ t
7
1 2 M2 — . M
—In=ln——%— —In{— +1 .
+2 ns21nMZ2—s ln(s +zs)ln 22)
N8 (254 2M t\_ = —un’
[.22(g ) — —~ a2l T -
(s, 1) 2n8+l{ 2(s + 1) [Sp(1+Mz2) 6 (ln 3/2)
1 —t Yo — Y1, —Y1
—In—— + =—LIn-—2=
tyghgat =y,

s+ 2 — MM 2s + 2M At — 2M s

- s + 1) (& + @)
x X X e ot
% 18 1 S 1 -8 2 _8 2 }}’
{pxl—?{1+ pxl—yz pxz‘?fz sz_yl
(B.14)
17%(s, ) = I,7%(s, 1) + —%;{2 (ln —;:‘ ) + - 2 -
1 W
x X X X
X |8 L+ 8 ! __ 8§ 2 _ 8 2 J}
[pxl“yl pxl-?lz pxz“yz px2—yl
with
1
mye = 5 (L £ VT =4 (T + M)
(B.15)

1 U —
Y = K} (1 + Vl - 4M22/S)'

The expressions for the form factors 74, I,2Z are valid for s = 2 Re M?; those for the
W W-box are obtained from (B.14, 15) by the substitution M ,? — My? (the gauge boson
masses include as imaginary part —:MT).

As an illustration we present for Vs = 93 GeV the functions I and I for the ZZ and
WW boxes in Figs. 24a, b. Only the f-channel expressions have an imaginary part com-
parable to the real part. In the other cases Im I is of the order of magnitude /27 - 10~2
or even smaller,
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