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DUE: TUESDAY, MAY 5, 2020

1. Consider a quantum field theory of interacting real scalar and Dirac fermion of mass mR

and M respectively. The interaction Lagrangian is given by,

Lint = −gψ̄ψφ− λ

4!
φ4 .

(a) Compute the wave function renormalization constant of the scalar field using MS
renormalization, in the one loop approximation.

(b) The renormalized spectral function is defined by σR(m
2) ≡ Z−1

φ σ(m2). Then, the
Källén-Lehmann representation for the renormalized two-point function reads:

G
(2)
R (p2) =

i

p2 −m2
R + iǫ

+

∫

∞

4M2

dm2 σR(m
2)

i

p2 −m2 + iǫ
. (1)

Assuming that mR < 2M , compute the contribution to the spectral function, σR, of the scalar
two-point function due to a fermion loop in the one-loop approximation. Note that in this
approximation, the lower limit of integration of 4M2 is appropriate (why?). What is the
behavior of σR(m

2) as m2 → ∞?

HINT: First, evaluate the renormalized 1PI two-point Green function, Γ
(2)
R (p2) and then obtain

the corresponding two-point Green function, G
(2)
R (p2), due to a fermion loop in the one-loop

approximation. Perform this computation in the on-shell scheme, where G
(2)
R (p2) has a pole at

the square of the physical mass m2
R with unit residue. Comparing the result of this calculation

with eq. (1), determine σR(m
2) by considering the imaginary part of the O(g2R) contribution

to G
(2)
R (p2). You should recall the identity:

1

z + iǫ
= P

1

z
− iπδ(z) ,

where ǫ is a real positive infinitesimal quantity.

2. Consider the function of a real parameter z

F (z) ≡
∫ 1

0

dx ln
[

1− zx(1 − x)− iǫ
]

, (2)

where ǫ is a positive infinitesimal quantity. The function F (z) appears in the computation of
the one-loop correction to the 4-point Green function in scalar field theory.

(a) Evaluate ImF (z). For what values of z does ImF vanish?

HINT: First, determine the imaginary part of the integrand. Note that ln
[

1− zx(1− x)− iǫ
]

should be interpreted as the principal value of the complex-valued logarithm, with the branch
cut along the negative real axis.

(b) Evaluate ReF (z). Consider separately the cases of 0 < z < 4 and z > 4.



(c) Consider the unrenormalized 1PI 4-point Green function, Γ(4)(p1, . . . p4), where all
four-momenta pi are on mass shell, in a field theory of a real scalar field with mass m and
an interaction Lagrangian density, LI = −λφ4/4!. Using the Feynman rules for this theory,
write down an integral expression for the full O(λ2) contribution to Γ(4). From the integral
expression, evaluate ImΓ(4), up to order λ2 by making use of the Cutkosky cutting rules.1

(d) An explicit one-loop computation of Γ(4) yields

Γ(4)(p1, p2, p3, p4) = −λ− λ2

32π2

[

F
( s

m2

)

+ F

(

t

m2

)

+ F
( u

m2

)

+G(m2)

]

, (3)

where all momenta point into the vertex, s ≡ (p1 + p2)
2, t ≡ (p1 + p3)

2, u ≡ (p1 + p4)
2 are

Lorentz-invariant kinematic variables, the function F is defined in part (a), and the function
G is a real function.2 Using eq. (3) and the results of part (a), compute ImΓ(4) and check
that your calculation in part (b) is correct.

3. The photon vacuum polarization function is defined to be:

Πµν(q) = (qµqν − gµνq2)Π(q2) .

In class, we evaluated this function at one-loop in the MS scheme. Consider a second scheme,
called the on-shell scheme, in which we define Π(q2 = 0) ≡ 0.

(a) Evaluate Z3 in this scheme.

(b) Obtain asymptotic forms for Π(q2) in two limiting cases: (i) q2 → 0, and (ii) q2 → ∞.

(c) Using the q2 → 0 limit of part (b), compute the O(α) correction to the Coulomb
potential. OPTIONAL: Compute the O(α) correction to the Coulomb potential without
making the approximation of small q2. Examine explicitly the limiting cases mer ≫ 1 and
mer ≪ 1.

(d) Show that the quantity:

αeff(q
2) ≡ α

1 + Π(q2)

is independent of whether you evaluate this expression using bare or renormalized quantities.
As a result, argue that αeff(q

2) is independent of renormalization scheme. Outline how you
would relate the coupling constants defined in the MS and on-shell schemes. Sketch a graph
of αeff(−q2) at one-loop, in the on-shell scheme, i.e. for negative values of the argument].

NOTE: In the on-shell scheme, αeff(0) is the fine structure constant, which is approximately
equal to 1/137.

(e) Calculate the numerical value of the momentum scale (in GeV units) where αeff(−q2)
diverges.

1See,e.g. Section 24.1.2 [pp. 456–459] of Matthew Schwartz, Quantum Field Theory and the Standard Model

(Cambridge University Press, 2014).
2In fact, the function G is infinite, but this infinity can be removed by renormalization. Since we are only

interested here in ImΓ(4), we can safely ignore any details associated with the renormalization procedure.



4. Consider QED coupled to a neutral scalar field:

L = LQED + 1
2
∂µφ∂

µφ− 1
2
m2φ2 − λ

4!
φ4 − gψψφ .

(a) Compute the amplitude for the decay φ → γγ, as a function of me, m, g, and
α ≡ e2/(4π), using perturbation theory at one-loop. Simplify your answer by invoking the
kinematics of the problem, i.e. momentum conservation and the on-shell conditions for the
external particles. Take care to consider two diagrams which differ only in the direction of
flow of electric charge in the loop. Do you need to add a counterterm in order to remove an
infinity? Explain.

(b) Denote the amplitude for the scalar decay by Mµν , where µ and ν are the photon
Lorentz indices. Gauge invariance implies that kµ1Mµν = kν2Mµν = 0, where k1 and k2 are
the respective photon momenta. Does your amplitude of part (a) respect this requirement?

(c) Work out all integrals explicitly and evaluate the imaginary part of Mµν . For what
range of me/m is the amplitude purely real? Explain the physical significance of the non-zero
imaginary part.

HINT: You may find the following integral useful:

∫ 1

0

dy

y
log

[

1− 4Ay(1− y)
]

= −2
(

sin−1
√
A
)2

, (4)

for 0 ≤ A ≤ 1. For values of A outside this region, you may analytically continue the above
result. The imaginary part of this integral is easily computed once the iǫ factor is restored in
the argument of the logarithm.

EXTRA CREDIT: Derive eq. (4).

(d) Evaluate the leading behavior of Mµν in the limit of me → ∞.


