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1. One way of defining Λ
QCD

(which does not depend on QCD perturbation theory) is as

follows. The running coupling constant, g(Q), is the solution to the equation

dg

dt
= β(g) , (1)

with boundary condition g(0) = g, where t ≡ ln(Q/µ), and µ is an arbitrary parameter with
dimensions of mass introduced by the renormalization procedure. To solve eq. (1), introduce
the indefinite integral

y(z) ≡

∫ z dz′

β(z′)
.

Then, the solution to eq. (1) is
t = y(g)− y(g) .

Note that y(g) is just the integration constant that is fixed by the boundary condition for the
differential equation. We now define Λ

QCD
through the following equation:

y(g) ≡ −1
2
ln

(

Λ2

QCD

µ2

)

. (2)

(a) Working to lowest nontrivial order in QCD perturbation theory, show that Λ
QCD

defined

in eq. (2) coincides with the definition given in class.

(b) Show that Λ
QCD

defined in eq. (2) is independent of the arbitrary mass parameter µ.

HINT: Show that dΛ
QCD

/dµ = 0.

2. Consider an extension of QCD (called supersymmetric QCD), where we add to QCD a
color octet neutral Majorana fermion called the gluino (g̃), and color triplet scalar particles,
called squarks (q̃), which possess the same electroweak quantum numbers as the corresponding
quarks. Take all particles of this model to be massless. The squarks and gluinos possess the
following interactions and corresponding Feynman rules:

gq̃q̃ −igs(p1 + p2)µ T
a

ggq̃q̃ ig2s gµν(T
a
T

b + T
b
T

a)

g̃q̃q −igs

√

1
2
(1± γ5)T

a

gg̃g̃ −gsf
abcγµ

where in the gq̃q̃ vertex, a q̃ enters the vertex with momentum p1 and leaves with momen-
tum p2. In the rule for the gg̃g̃ vertex, a is the adjoint color index of the gluon and b (c) is the
adjoint color index of the gluino that leaves (enters) the vertex. In the rule for the g̃q̃q vertex,
use the positive (negative) sign if the outgoing q̃ is the partner of a right (left) handed quark,



and vice versa for an incoming q̃. In particular, for every quark flavor, there are two corre-
sponding squark partners (called q̃

R
and q̃

L
). The gq̃q̃ Feynman rule applies to both gq̃Lq̃L

and to gq̃Rq̃R. However, there is no gq̃Lq̃R interaction since the gluon couples diagonally to
pairs of scalars or fermions. In your calculation, take the gauge group to be SU(N) with struc-
ture constants fabc and denote the generators in the defining (fundamental) representation of
SU(N) by T

a. (Of course, for QCD, one should take N = 3.)

(a) Using dimensional regularization and the MS renormalization scheme, compute the
lowest order contribution to the QCD β-function in a non-abelian gauge theory based on
SU(N) color coupled to nf quark flavors, 2nf squark partners and a gluino. This requires a
number of steps:

(i) Start with the result for Zg = Z1FZ
−1
2 Z

−1/2
3 derived in class for ordinary QCD. Draw

Feynman diagrams corresponding to the new supersymmetric contributions to Z1F , Z2

and Z3.

(ii) Argue that the one-loop supersymmetric contributions to Z1FZ
−1
2 cancel exactly. (Recall

that in QED, Z1FZ
−1
2 = 1.) As a result, one need only consider the supersymmetric

contributions to Z3.

(iii) Using the result for Z3 in ordinary QCD obtained in class, the gluino contribution to
Z3 can be obtained by inspection. Keep in mind that the gluino transforms under the
adjoint representation of SU(N) color. Moreover, the gluino is a Majorana fermion which
possesses half the number of degrees of freedom of a Dirac fermion. This yields an extra
factor of 1/2.

(iv) Thus, the only new computation required is the squark loop contribution to Z3. Compute
this contribution, and then combining this with the result of (iii), obtain the supersym-
metric QCD one-loop β-function.

(b) Does the QCD running coupling constant run faster or slower at large momentum
scales in a supersymmetric theory as compared to the non-supersymmetric one?

(c) Compute the one-loopO(αs) relation between the MS running top-quark mass, mt(mt),
and the “pole mass” (denoted by Mt) in ordinary QCD. Ignore all electroweak contributions.

(d) Repeat part (c) for supersymmetric QCD. Which new Feynman graphs contribute?
How is the one-loop relation of part (c) modified? For simplicity, you may take the gluino to
be massless and the top-squarks to be degenerate in mass with the top-quark.

3. Consider a theory of a single massless scalar real field:

L = ∂µφ ∂µφ−
λ

4!
φ4 .

In class, we computed the effective potential (Veff) in the one-loop approximation. The renor-
malized Veff depends on the parameter µ (which is either the mass scale of dimensional regu-
larization or the off-shell subtraction point used in the definition of λ). The unrenormalized
Veff is independent of µ.



(a) Deduce the renormalization group equation (RGE) satisfied by the renormalized Veff .
Your equation should involve the beta-function β(λR) and the anomalous dimension γd(λR),
where λR is the renormalized coupling.

(b) By dimensional analysis, the renormalized Veff can be written as:

Veff(φR) =
Y (λR, t)φ

4
R

4!
,

where t = log(φR/µ) and φR is the renormalized scalar field. Assume that Veff is defined in
the physical scheme where,

d2Veff

dφ2
R

∣

∣

∣

∣

φR=0

= 0,
d4Veff

dφ4
R

∣

∣

∣

∣

φR=µ

= λR . (3)

Rewrite the RGE of part (a) as an equation for Y (λR, t). Solve the resulting equation for Y
as a function of a suitably defined running coupling constant λ(t).

(c) Assuming that β is constant (independent of λR) and γd = 0, use the result of part (b)
to obtain a formula for the renormalized Veff . Compare this result to the one-loop effective
potential computed in class.

(d) Repeat part (c), but now use the one-loop approximations for β and γd. (HINT:
γd is still zero in this approximation. Why?) The resulting Veff is now the renormalization
group improved effective potential. Recall that Veff in the one-loop approximation had a local
maximum at φR = 0 and a local minimum for a nonzero value of φR. Is the extremum of the
renormalization group improved Veff at φR = 0 a minimum or a maximum? Is the discrete
φR → −φR symmetry spontaneously broken?

4. Consider scalar electrodynamics where the bare tree-level scalar mass parameter is zero,

L = (Dµφ)(D
µφ)∗ − λ(φφ∗)2 − 1

4
FµνF

µν −
1

2ξ
(∂µA

µ)2 , (4)

where Dµ ≡ ∂µ + ieAµ.

(a) Compute the one-loop effective potential in the Landau gauge (ξ = 0) in two different
schemes: the MS scheme and the physical scheme analogous to the one defined in eq. (3).
Assume that the renormalized couplings have the property that λR is of O(e4R), and keep only
terms of the same order in Veff .

(b) Show that the U(1) gauge symmetry is spontaneously broken and compute the mass
of the resulting Higgs boson (mH) in terms of the mass of the vector boson (mV ). Show that
in the one-loop approximation considered here, the Higgs boson mass is scheme independent
by showing that you get the same result in both schemes of part (a).

(c) [EXTRA CREDIT]: Consider the dependence of the one-loop effective potential on the
gauge parameter ξ. If one employs the gauge fixing term exhibited in eq. (4), the calculation
of the effective potential using the tadpole method is unwieldy due to the mixing of the



photon field and the derivative of the scalar field in the shifted Lagrangian. This problem is
ameliorated by employing the alternative gauge fixing term,

LGF = −
1

2ξ
(∂µA

µ − ξeφ1φ2)
2 . (5)

Employing this new gauge fixing term, repeat the computations of part (a). Show that in the
one-loop approximation considered here, the Higgs boson mass is independent of ξ.

HINT: In the computation of Veff in the case of ξ 6= 0, show that one cannot neglect the
contributions of the Faddeev-Popov ghosts (which contribute in the case of ξ 6= 0 even in the
abelian gauge theory).


