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1. (a) Derive the result:
∫

d4z
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
= −δ 4(x− y) ,

and interpret diagrammatically in terms of momentum space Green functions, under the assump-
tion that the quantum field φ(x) has no vacuum expectation value. Here, W [J ] is the generating
functional for the connected Green functions, Φ(x) is the classical field, and Γ[Φ] is the generating
functional for the one particle irreducible (1PI) Green functions.

We begin with the definition of the effective action,

Γ[Φ] = W [J ]−
∫

d4x J(x)Φ(x) , (1)

where

Φ(x) ≡ δW [J ]

δJ(x)
(2)

defines the classical field. From eq. (1), it follows that

δΓ[Φ]

δΦ(x)
= −J(x) . (3)

Taking a second functional derivative yields,

δ2W [J ]

δJ(x)δJ(y)
=

δΦ(x)

δJ(y)
,

δ2Γ[Φ]

δΦ(x)δΦ(y)
= −δJ(x)

δΦ(y)
.

Hence,
∫

d4z
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
= −

∫
d4z

δΦ(x)

δJ(z)

δJ(z)

δΦ(y)
= −δΦ(x)

δΦ(y)
= −δ4(x− y) , (4)

where we have used the chain rule for functional derivatives at the second step above.
Recall that the two-point 1PI Green function, Γ(2)(x1, x2), and the two-point connected Green

function G
(2)
c (x1, x2), are defined as

Γ(2)(x1, x2) =

(
δ2Γ[Φ]

δΦ(x)δΦ(y)

) ∣∣∣∣∣
Φ=0

, G(2)(x1, x2) = −i

(
δ2W [J ]

δJ(x)δJ(y)

) ∣∣∣∣∣
J=0

,

Under the assumption that the quantum field φ(x) has no vacuum expectation value,1

G(1)
c (x) ≡ 〈Ω|φ(x)|Ω〉 = δW [J ]

δJ(x)

∣∣∣∣
J=0

= Φ(x)
∣∣
J=0

= 0 . (5)

That is, setting J = 0 implies that Φ = 0 and vice versa.
1If 〈Ω|φ(x)|Ω〉 = v0 6= 0, then one can redefine a new the quantum field, φ → φ+v0, whose vacuum expectation

value is zero.
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Using the above results, eq. (4) implies that
∫

d4z Γ(2)(x, z)G(2)
c (z, y) = iδ4(x− y) , (6)

In momentum space,

Γ(2)(p1, p2)(2π)
4δ4(p1 + p2) =

∫
d4x d4z ei(p1x+p2z)Γ(2)(x, z) , (7)

G(2)
c (p1, p2)(2π)

4δ4(p1 + p2) =

∫
d4y d4z ei(p1z+p2y)G(2)

c (z, y) , (8)

where px ≡ p1 ·x is the dot product of two four-vectors. Inverting the Fourier transforms yields

Γ(2)(x, z) =

∫
d4p1
(2π)4

d4p2
(2π)4

e−i(p1x+p2z)Γ(2)(p1, p2)(2π)
4δ4(p1 + p2) =

∫
d4p

(2π)4
e−ip(x−z)Γ(2)(p,−p),

(9)

G(2)
c (z, y) =

∫
d4p1
(2π)4

d4p2
(2π)4

e−i(p1z+p2y)G(2)
c (p1, p2)(2π)

4δ4(p1 + p2) =

∫
d4p′

(2π)4
e−ip′(z−y)G(2)

c (p′,−p′).

(10)

It follows that
∫

d4z Γ(2)(x, z)G(2)
c (z, y) =

∫
d4z

d4p

(2π)4
d4p′

(2π)4
eiz(p−p′)e−ipxeipy Γ(2)(p,−p)G(2)

c (p′,−p′)

=

∫
d4p

(2π)4
d4p′

(2π)4
(2π)4δ4(p− p′)e−ipxeip

′y Γ(2)(p,−p)G(2)
c (p′,−p′)

=

∫
d4p

(2π)4
e−ip(x−y)Γ(2)(p,−p)G(2)

c (p,−p) (11)

Employing the integral representation of the delta function, eq. (6) yields
∫

d4p

(2π)4
e−ip(x−y)

[
Γ(2)(p,−p)G(2)

c (p,−p)− i
]
= 0 . (12)

Hence, it follows that
Γ(2)(p,−p)G(2)

c (p,−p) = i . (13)

Since G
(2)
c (p,−p) is the momentum space propagator, we conclude that iΓ(2)(p,−p) is the negative

of the inverse propagator in momentum space.

(b) By taking one further functional derivative, show that Γ generates the amputated con-
nected three-point function.

We shall take a functional derivative of eq. (4). On the right hand side of eq. (4), we have

δ

δJ(w)
δ4(x− y) = 0 ,
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since δ4(x−y) is the analog of the Kronecker delta, δij , for an infinite dimensional function space.
On the left hand side of eq. (4),

δ

δJ(w)

[
δ2W [J ]

δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)

]
=

δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
+

δ2W [J ]

δJ(x)δJ(z)

δ

δJ(w)

δ2Γ[Φ]

δΦ(z)δΦ(y)
.

In the second term on the right hand side above, we use the chain rule,

δ

δJ(w)
=

∫
d4v

δΦ(v)

δJ(w)

δ

δΦ(v)
=

∫
d4v

δ2W [J ]

δJ(w)δJ(v)

δ

δΦ(v)
,

after using the definition of the classical field Φ(v) given in eq. (2). Hence, eq. (4) yields

∫
d4z

δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)
+

∫
d4z d4v

δ2W [J ]

δJ(x)δJ(z)

δ2W [J ]

δJ(w)δJ(v)

δ3Γ[Φ]

δΦ(v)δΦ(z)δΦ(y)
= 0 .

(14)
We now multiply eq. (14) by

δ2W [J ]

δJ(y)δJ(u)
,

and integrate over d4y. Using the result of eq. (4), we obtain

∫
d4z d4y

δ3W [J ]

δJ(w)δJ(x)δJ(z)

δ2Γ[Φ]

δΦ(z)δΦ(y)

δ2W [J ]

δJ(y)δJ(u)

= −
∫

d4z
δ3W [J ]

δJ(w)δJ(x)δJ(z)
δ4(z − u)

= − δ3W [J ]

δJ(w)δJ(x)δJ(u)
.

Applying this result to eq. (14) yields

δ3W [J ]

δJ(w)δJ(x)δJ(u)
=

∫
d4v d4y d4z

δ3Γ[Φ]

δΦ(v)δΦ(z)δΦ(y)

δ2W [J ]

δJ(x)δJ(z)

δ2W [J ]

δJ(w)δJ(v)

δ2W [J ]

δJ(y)δJ(u)
. (15)

Recall the definition of the connected n-point Green function,

G(n)
c (x1, x2, . . . , xn) = i1−n δnW [J ]

δJ(x1)δJ(x2) · · · δJ(xn)

∣∣∣∣
J=0

, (16)

and the n-point 1PI Green function,

Γ(n)(x1, x2, . . . , xn) =
δnΓ[φ]

δφ(x1)δφ(x2) · · · δφ(xn)

∣∣∣∣
φ=0

. (17)

In light of eq. (5), we can set J = Φ = 0 in eq. (15). Using eqs. (16) and (17), it then follows that

G(3)
c (w, x, u) = i

∫
d4v d4y d4z Γ(3)(v, z, y)G(2)

c (v, w)G(2)
c (z, x)G(2)

c (y, u) . (18)
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To invert this equation, we make use of the inverse propagator, which satisfies
∫

d4z G(2)
c (x, z)G(2)−1

c (z, y) = δ4(x− y) .

Then, we can rewrite eq. (18) as

iΓ(3)(v, z, y) =

∫
d4w d4x d4uG(2)−1

c (w, v)G(2)−1
c (x, z)G(2)−1

c (u, y)G(3)
c (w, x, u) .

The effect of the factors of G
(2)−1
c is to remove the explicit propagators that appear on the external

legs of the three-point Green function. That is, iΓ(3) is obtained from G
(3)
c by amputating the full

propagators on the three external legs.

2. Consider a quantum field theory of a real scalar field governed by the Lagrangian density,

L = 1
2
∂µφ ∂µφ− 1

2
m2φ2 − λ

4!
φ4 . (19)

(a) Evaluate perturbatively the generating functional for the connected Green functions, W [J ],
keeping all terms up to and including terms of O(λ) as follows. First, show that the generating
functional for the full Green functions, Z[J ] ≡ exp

{
iW [J ]

}
, can be written in the following form,

Z[J ] = N
[
1− iλ

4!

∫
d4y

(
1

i

δ

δJ(y)

)4

+O(λ2)

]
exp

{
− i

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2)

}
,

(20)
where N is the J-independent constant. Then, carry out the functional derivatives with respect
to J , keeping all terms up to and including terms of O(λ). Using the result just obtained for
Z[J ], obtain an expression for W [J ] keeping all terms up to and including terms of O(λ).

The generating functional for the connected Green functions, W [J ], is determined by

Z[J ] = exp
{
iW [J ]

}
, (21)

where

Z[J ] = N
∫

Dφ exp

{
i

∫
d4x

[
1
2
(∂µφ)

2 − 1
2
m2φ2 − λ

4!
φ4 + Jφ

]}
, (22)

where N is a normalization factor that is determined by Z[J = 0] = 1. Expanding the functional
integral given in eq. (22) to O(λ),

∫
Dφ exp

{
i

∫
d4x

[
1
2
(∂µφ)

2 − 1
2
m2φ2 + Jφ

]}[
1− i

∫
d4y

λ

4!
φ4(y)

]

=

[
1− iλ

4!

∫
d4y

(
1

i

δ

δJ(y)

)4
]∫

Dφ exp

{
i

∫
d4x

[
1
2
(∂µφ)

2 − 1
2
m2φ2 + Jφ

]}
,

since each i−1δ/δJ(x) operator brings down a factor of φ(x).
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The free field value of Z[J ] obtained by setting λ = 0 was given in class,

Z0[J ] = exp

{
− i

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2)

}
, (23)

where i∆F (x) ≡ −i(�x +m2 − iǫ)−1 is the free-field propagator. It then follows that

Z[J ] = N
[
1− iλ

4!

∫
d4y

(
1

i

δ

δJ(y)

)4
]
exp

{
− i

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2)

}
. (24)

There is no need to separately evaluateN since it can be determined at the end of our computation
using Z[J = 0] = 1.

To evaluate eq. (24), we first compute

1

i

δ

δJ(y)
exp

{
− i

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2)

}

= −
∫

d4x∆F (x− y)J(x) exp

{
− i

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2)

}
,

where we have used ∆F (x − y) = ∆F (y − x) to combine two equivalent terms resulting from
the functional derivative of −1

2

∫
d4x1 d

4x2 J(x1)∆F (x1 − x2)J(x2). Taking a second functional
derivative yields
(
1

i

δ

δJ(y)

)2

exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{
i∆F (0) +

[∫
d4x∆F (x− y)J(x)

]2}
exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}
.

Taking a third functional derivative yields
(
1

i

δ

δJ(y)

)3

exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{
−3i∆F (0)

∫
d4x∆F (x− y)J(x)−

[∫
d4x∆F (x− y)J(x)

]3}

× exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}
.

Finally, taking a fourth functional derivative yields
(
1

i

δ

δJ(y)

)4

exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}

=

{
−3[∆F (0)]

2 + 6i∆F (0)

[∫
d4x∆F (x− y)J(x)

]2
+

[∫
d4x∆F (x− y)J(x)

]4}

× exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}
.
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The end result is

Z[J ] = N
{
1 +

iλ

8

[∫
d4y[∆F (0)]

2 − 2i∆F (0)

∫
d4y d4x1 d

4x2∆F (x1 − y)∆F (x2 − y)J(x1)J(x2)

−1

3

∫
d4y d4x1 d

4x2 d
4x3 d

4x4∆F (x1 − y) · · ·∆F (x4 − y)J(x1) · · ·J(x4)

]}

× exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}
.

Using Z[0] = 1, it follows that to O(λ),

N = 1− iλ

8

∫
d4y[∆F (0)]

2 .

Thus,

Z[J ] =

{
1− iλ

4!

[
6i∆F (0)

∫
d4y d4x1 d

4x2∆F (x1 − y)∆F (x2 − y)J(x1)J(x2)

+

∫
d4y d4x1 d

4x2 d
4x3 d

4x4∆F (x1 − y) · · ·∆F (x4 − y)J(x1) · · ·J(x4)

]}

× exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

}
.

Since we are only keeping terms of O(λ), we can also rewrite Z[J ] in the following form,

Z[J ] = exp

{
− i

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2)

−iλ

4!

[
6i∆F (0)

∫
d4y d4x1 d

4x2∆F (x1 − y)∆F (x2 − y)J(x1)J(x2)

+

∫
d4y d4x1 d

4x2 d
4x3 d

4x4 ∆F (x1 − y) · · ·∆F (x4 − y)J(x1) · · ·J(x4)

]}
.

Hence, using eq. (21) it follows that

W [J ] = −1

2

∫
d4x1 d

4x2 J(x)∆F (x1 − x2)J(x2) (25)

−iλ

4
∆F (0)

∫
d4y d4x1 d

4x2 ∆F (x1 − y)∆F (x2 − y)J(x1)J(x2)

− λ

4!

∫
d4y d4x1 d

4x2 d
4x3 d

4x4∆F (x1 − y) · · ·∆F (x4 − y)J(x1) · · ·J(x4) .
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(b) Using the result of part (a) for W [J ], compute the four-point connected Green function.
By taking the appropriate Fourier transform, derive the momentum space Feynman rule for the
four-point scalar interaction.

Using eqs. (16) and (25), it immediately follows that

G(4)
c (x1, x2, x3, x4) = −iλ

∫
d4y∆F (x1 − y)∆F (x2 − y)∆F (x3 − y)∆F (x4 − y) . (26)

In particular, note that the coefficient of 1/4! is canceled due to the fact that there are 4! ways
to take the functional derivatives in eq. (16).

The connected Green function in momentum space is obtained by taking the following Fourier
transform,

G(4)
c (p1, p2, p3, p4)(2π)

4δ4(p1 + p2 + p3 + p4)

=

∫
d4x1 d

4x2 d
4x3 d

4x4 e
i(p1x1+···+p4x4)G(4)

c (x1, x2, x3, x4)

= −iλ

∫
d4y d4x1 d

4x2 d
4x3 d

4x4 e
i(p1x1+···+p4x4)∆F (x1 − y) · · ·∆F (x4 − y)

= −iλ

∫
d4y d4x1 d

4x2 d
4x3 d

4x4 e
iy(p1+···+p4)eip1(x1−y)∆F (x1 − y) · · ·eip4(x4−y)∆F (x4 − y) .

We can now perform the integration over x1, . . . , x4 using the expression for the free-field propa-
gator in momentum space,

1

p2 −m2 + iǫ
=

∫
d4x eipx∆F (x) , (27)

where m is the mass of the scalar field. Employing the integral representation of the momentum
conserving delta function,

∫
d4y eiy(p1+···+p4) = (2π)4δ4(p1 + p2 + p3 + p4) , (28)

the end result is

G(4)
c (p1, p2, p3, p4) = −iλ

i

p21 −m2 + iǫ
· · · i

p24 −m2 + iǫ
. (29)

If we now amputate the four external propagators, we arrive at the Feynman rule for the four-point
scalar interaction shown below.

−iλ

REMARK : In the class handout entitled Wick Expansion in the functional integration formalism,
eq. (26) is derived by employing an alternative version of the Wick expansion based on Coleman’s
lemma.
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(c) Evaluate perturbatively the classical field Φ(x) and the generating functional for the 1PI
Green functions, Γ[Φ], keeping all terms up to and including terms of O(λ). Then, repeat part
(b) for the four-point 1PI Green function.

The effective action is given by eq. (1), where the classical field is defined by eq. (2). Using
eq. (25), it follows that

Φ(x) = −
∫

d4x1∆F (x− x1)J(x1)− 1
2
iλ∆F (0)

∫
d4y d4x1∆F (x− y)∆F (x1 − y)J(x1)

−λ

6

∫
d4y d4x1 d

4x2 d
4x3 ∆F (x− y)∆F (x1 − y)∆F (x2 − y)∆F (x3 − y)J(x1)J(x2)J(x3) .

(30)

We must invert this equation and solve for J(x). This can be done using an iterative process.
Operate on eq. (30) with the operator �x +m2 − iǫ. Using

(�x +m2 − iǫ)∆F (x− y) = −δ4(x− y) , (31)

it follows that

(�x +m2 − iǫ)Φ(x) = J(x) + 1
2
iλ∆F (0)

∫
d4x1 ∆F (x1 − x)J(x1)

+
λ

6

∫
d4x1 d

4x2 d
4x3∆F (x1 − x)∆F (x2 − x)∆F (x3 − x)J(x1)J(x2)J(x3) .

(32)

At O(λ0), we have J(x) = (�x+m2− iǫ)Φ(x). Thus, in the O(λ) term in eq. (32), we can replace
J(xk) with (�xk

+m2− iǫ)Φ(xk), for k = 1, 2, 3. We can then move the operators (�xk
+m2− iǫ)

so that they operate on the ∆F (xk − x) by two successive integrations by parts. Using eq. (31),
we produce three delta functions, after which the integrals over x1, x2 and x3 are trivially done.
The end result is

(�x +m2 − iǫ)Φ(x) = J(x)− 1
2
iλ∆F (0)Φ(x)− 1

6
λ
[
Φ(x)

]3
.

Hence, to O(λ),

J(x) = (�x +m2 − iǫ)Φ(x) + 1
2
iλ∆F (0)Φ(x) +

1
6
λ
[
Φ(x)

]3
. (33)

We can use the same procedure to rewrite W [J ] in terms of the classical field Φ(x). We simply
insert eq. (33) into eq. (25), and keep only terms up to O(λ). This yields

W [J ] = 1
2

∫
d4xΦ(x)

{
(�x +m2)Φ(x) + 1

2
iλ∆F (0)Φ(x) +

1
6
[Φ(x)]3

}

−1
4
iλ∆F (0)

∫
d4x

[
Φ(x)

]2 − λ

4!

∫
d4x

[
Φ(x)

]4
,
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after taking the ǫ → 0 limit. Using eq. (1) to obtain the effective action, we note that

∫
d4x J(x)Φ(x) =

∫
d4xΦ(x)

{
(�x +m2)Φ(x) + 1

2
iλ∆F (0)Φ(x) +

1
6
λ[Φ(x)]3

}
,

where we have again used eq. (33) and have kept only terms up to O(λ). Hence, we end up with

Γ[Φ] = −1
2

∫
d4xΦ(x)(�x +m2)Φ(x)− 1

4
iλ∆F (0)

∫
d4x

[
Φ(x)

]2 − λ

4!

∫
d4x

[
Φ(x)

]4
. (34)

Finally, we make use of eq. (17) to compute the 1PI four-point function,

Γ(4)(x1, . . . , x4) =
δnΓ[Φ]

δΦ(x1) · · · δΦ(x4)

∣∣∣∣
Φ=0

.

Using eq. (34),

Γ(4)(x1, . . . , x4) = −λ

∫
d4x δ4(x− x1)δ

4(x− x2)δ
4(x− x3)δ

4(x− x4) .

In momentum space,

Γ(4)(p1, p2, p3, p4)(2π)
4δ4(p1 + p2 + p3 + p4)

=

∫
d4x1 d

4x2 d
4x3 d

4x4 e
i(p1x1+···+p4x4)Γ(4)(x1, x2, x3, x4)

= −λ

∫
d4x eix(p1+···+p4)

= −(2π)4λ δ4(p1 + p2 + p3 + p4) .

That is,
Γ(4)(p1, p2, p3, p4) = −λ .

The momentum space Feynman rule for the four-point scalar interaction corresponds to the
leading order contribution to iΓ(4)(p1, p2, p3, p4).

3. Consider a quantum field theory of a real scalar field governed by the Lagrangian density,

L = 1
2
∂µφ ∂µφ− V (φ) , (35)

and the corresponding equation of motion,

�φ(x) + V ′(φ) = 0 ,

where � ≡ ∂µ∂µ and V ′ ≡ dV/dφ. The goal of this exercise is to derive the equation of motion
for the Green function 〈Ω|T

{
φ(x)φ(y)

}
|Ω〉,

�x〈Ω|T
{
φ(x)φ(y)

}
|Ω〉 = −〈Ω|T

{
V ′(φ(x))φ(y)

}
|Ω〉 − iδ 4(x− y) . (36)
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In order to obtain eq. (36), we shall employ the following technique. Start from the path
integral definition of the generating functional,

Z[J ] = N
∫

Dφ exp

{
i

∫
d4x

[
L + J(x)φ(x)

]}
, (37)

where N is chosen such that Z[J = 0] = 1. That is,

N−1 =

∫
Dφ exp

{
i

∫
d4xL

}
. (38)

Consider a change of variables in the path integral, φ(x) → φ(x) + ε(x), where ε(x) is an
arbitrary infinitesimal function of x. Note that a change of variables does not change the value
of of Z[J ].2 The Jacobian corresponding to the change of field variables, φ(x) → φ(x) + ε(x) is
unity.

Applying this change of variables to eq. (37) yields

Z[J ] = N
∫

Dφ exp

{
i

∫
d4x

[
L + J(x)φ(x)

]}
exp

{
i

∫
d4x

[
∂µφ∂µǫ− ǫ(x)V ′(φ) + ǫ(x)J(x)

]}
,

where we have used V (φ+ ǫ) = V (φ) + ǫV ′(φ) +O(ǫ2), and we have dropped all terms of O(ǫ2).
We can further expand the second exponential above, keeping only those terms up to of O(ǫ).
Subtracting the resulting expression from eq. (37) yields

iN
∫

Dφ exp

{
i

∫
d4x

[
L + J(x)φ(x)

]} ∫
d4x ǫ(x)

[
−�xΦ− V ′(φ) + J(x)

]
= 0 ,

after an integration by parts. Since this expression is valid for any infinitesimal function ǫ(x), we
may choose ǫ(x) = ǫ δ4(x − y), where ǫ is an infinitesimal constant. We can then carry out the
second integration above to obtain,

N
∫

Dφ exp

{
i

∫
d4x

[
L + J(x)φ(x)

]} [
−�yΦ− V ′(φ) + J(y)

]
= 0 . (39)

We now take the functional derivative of eq. (39) with respect to J(x) and employ

δJ(x)

δJ(y)
= δ4(x− y) . (40)

Setting J = 0 at the end of the calculation, we end up with

−iN
∫

Dφ
[
φ(x)�yφ(y) + φ(x)V ′

(
φ(y)

)]
exp {iS[φ]}+N

∫
Dφ δ4(x− y) exp {iS[φ]} = 0 , (41)

where

S[φ] =

∫
d4xL , (42)

is the action functional. Note that one can pull the �y outside of the path integral in eq. (41)
since it is independent of the field configurations that are being integrated over. Thus,

�y N
∫

Dφ φ(x)φ(y) exp{iS[φ]} = −N
∫

Dφ exp {iS[φ]}
[
φ(x)V ′

(
φ(y)

)
+ iδ4(x− y)

]
. (43)

2Just as in the case of ordinary integration, a change of integration variables does not change the value of the
functional integral.
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Employing eq. (38), it follows that

�y N
∫

Dφ φ(x)φ(y) exp{iS[φ]} = −iδ4(x− y) −N
∫

Dφ φ(x)V ′
(
φ(y)

)
exp {iS[φ]} . (44)

In order to interpret eq. (44), note that the n-point Green functions are given by

〈Ω|T
[
φ(x1)φ(x2) · · ·φ(xn)

]
|Ω〉 = i−n δnZ[J ]

δJ(x1)δJ(x2) · · ·J(xn)

∣∣∣∣
J=0

.

Using eq. (37), it follows that

〈Ω|T
[
φ(x1)φ(x2) · · ·φ(xn)

]
|Ω〉 = N

∫
Dφ φ(x1)φ(x2) · · ·φ(xn) exp

{
iS[φ]

}
. (45)

Hence, eq. (44) can be rewritten as

� y〈Ω|T
{
φ(x)φ(y)

}
|Ω〉 = −〈Ω|T

{
φ(x)V ′(φ(y))

}
|Ω〉 − iδ 4(x− y) . (46)

We now redefine the the variables x and y by interchanging x ↔ y in eq. (46). Because the
ordering of the fields that appear inside a time ordered product is irrelevant (since it is the time
ordering prescription that dictates the order of the fields in a time-ordered product), and using
the fact that δ4(x− y) is an even function of its argument, we obtain eq. (36) as desired.

An alternative method for obtaining eq. (36)

One can also derive eq. (46) from the Schwinger-Dyson differential equation, which is given in
eq. (14.122) on p. 276 of Matthew D. Schwartz, Quantum Filed Theory and the Standard Model

(Cambridge University Press, Cambridge, UK, 2014),3

−i�x
δZ[J ]

δJ(x)
=

{
L

′
int

[
−i

δ

δJ(x)

]
+ J(x)

}
Z[J ] . (47)

Taking a functional derivative of eq. (47) with respect to J(y),

−i�x
δ2Z[J ]

δJ(x)δJ(y)
=

{
L

′
int

[
−i

δ

δJ(x)

]
+ J(x)

}
δZ[J ]

δJ(y)
+ δ4(x− y)Z[J ] , (48)

after using the product rule for differentiating and

δJ(x)

δJ(y)
= δ4(x− y) . (49)

We now make use of the definition of the generating functional,

Z[J ] =

∫
Dφ exp

{
iS[φ] + i

∫
d4x J(x)φ(x)

}

∫
Dφ exp

{
iS[φ]

} , (50)

3More accurately, one should employ functional derivatives in eq. (47) rather than the partial derivatives used
by Schwartz.
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where

S[φ] =

∫
d4xL [φ] =

∫
d4x

{
−1

2
φ(x)�xφ(x) + Lint[φ]

}
, (51)

and Lint = −V (φ). It follows that

(
1

i

)2
δ2Z[J ]

δJ(x)δJ(y)
=

∫
Dφ φ(x)φ(y) exp

{
iS[φ] + i

∫
d4x J(x)φ(x)

}

∫
Dφ exp

{
iS[φ]

} , (52)

and

L
′
int

[
−i

δ

δJ(y)

]
Z[J ] =

∫
DφL

′
int

(
φ(x)

)
exp

{
iS[φ] + i

∫
d4x J(x)φ(x)

}

∫
Dφ exp

{
iS[φ]

} .

Taking another functional derivative with respect to J(y) then yields,

L
′
int

[
−i

δ

δJ(y)

]
1

i

δZ[J ]

δJ(x)
=

∫
DφL

′
int

(
φ(x)

)
φ(y) exp

{
iS[φ] + i

∫
d4x J(x)φ(x)

}

∫
Dφ exp

{
iS[φ]

} . (53)

Employing eqs. (52) and (53) in eq. (48) and then setting J = 0 at the end of the computation,
we end up with

�x

∫
Dφ φ(x)φ(y) exp

{
iS[φ]

}

∫
Dφ exp

{
iS[φ]

} =

∫
DφL

′
int

(
φ(x)

)
φ(y) exp

{
iS[φ]

}

∫
Dφ exp

{
iS[φ]

} − iδ4(x− y) , (54)

where we have used Z[0] = 1.
The n-point Green functions are given by

〈Ω|T
[
φ(x1)φ(x2) · · ·φ(xn)

]
|Ω〉 = i−n δnZ[J ]

δJ(x1)δJ(x2) · · ·J(xn)

∣∣∣∣
J=0

.

Using eq. (50), it follows that

〈Ω|T
[
φ(x1)φ(x2) · · ·φ(xn)

]
|Ω〉 =

∫
Dφ φ(x1)φ(x2) · · ·φ(xn) exp

{
iS[φ]

}

∫
Dφ exp

{
iS[φ]

} . (55)

Since Lint = −V (φ), we see that for a potential that is polynomial in φ (or more generally, by
expanding V (φ) as a functional Taylor series in φ), eq. (54) is equivalent to,

�x〈Ω|T
{
φ(x)φ(y)

}
|Ω〉 = −〈Ω|T

{
V ′(φ(x))φ(y)

}
|Ω〉 − iδ 4(x− y) .

That is, eq. (36) is proven.
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4. Consider a theory of a real scalar field governed by eq. (35) with V (φ) = 1
2
m2φ2.

(a) Compute exactly the free-field Feynman propagator, ∆F (x), in coordinate space.

This is an exercise in Bessel functions, so get out your copy of Table of Integrals, Series, and

Products Eighth Edition by I. S. Gradshteyn and I. M. Ryzhik, edited by Daniel Zwillinger and
Victor Moll (Academic Press, Waltham, MA, 2015), henceforth denoted as G&R. We begin with
the integral representation of the free-field Feynman propagator [cf. eq. (27)],

∆F (x) =

∫
d4p

(2π)4
e−ipx 1

p2 −m2 + iǫ

=
1

(2π)4

∫
d3p

∫ ∞

−∞

dp0 e
−ip

0
x
0
+i~p·~x 1

p20 − ~p 2 −m2 + iǫ
. (56)

where ǫ is a real positive infinitesimal quantity.
Consider the integral

I = lim
ǫ→0+

∫ ∞

−∞

dp0
e−ip

0
x
0

p20 − ~p 2 −m2 + iǫ
. (57)

First, we consider the case of x0 > 0. In the limit of ǫ → 0, the integrand has poles at p0 = p±,
where

p± ≡ ±
√

~p 2 +m2 .

To evaluate I, we shall close the contour in the lower half of the complex p0-plane since e−ip0x0 is
exponentially small along the semicircle at infinity when x0 > 0. Only the pole p+ lies inside the
closed contour. Hence by the residue theorem,

I = −πi exp
{
−ix0

√
~p 2 +m2

}
√

~p 2 +m2
, for x0 > 0, (58)

where the minus sign is due to the fact that the closed contour is clockwise.
Second, we consider the case of x0 < 0. In this case, we shall evaluate I by closing the contour

in the upper half of the complex p0-plane so that e
−ip

0
x
0 is exponentially small along the semicircle

at infinity when x0 < 0. Only the pole p− lies inside the closed contour. Hence by the residue
theorem,

I = −πi exp
{
ix0

√
~p 2 +m2

}
√

~p 2 +m2
, for x0 < 0. (59)

In this case, the closed contour is counterclockwise and the minus sign arises due to the fact that
p− − p+ is negative.

Without loss of generality, we may choose the z-axis to lie along the vector ~x, in which case
ei~p·~x = eipr cos θ, where p ≡ |~p| and r ≡ |~x|. Hence, it follows that

∫
d cos θ dφ eipr cos θ =

2π

ipr

(
eipr − e−ipr

)
=

4π sin(pr)

pr
. (60)
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Collecting all of our results above, if follows that

i∆F (x0;~x) =
1

4π2r

∫ ∞

0

p sin(pr) exp
{
−i|x0|

√
p2 +m2

}
√

p2 +m2
dp . (61)

Note that the integral above is not convergent due to the oscillatory behavior of the integrand
as p → ∞. This is not surprising since ∆F (x) is not an ordinary function. In fact, ∆F (x) is a
tempered distribution, which is an example of a generalized function. Thus, one must regard the
integral representation given in eq. (61) in the same way as the integral representation of a delta
function given in eq. (28).

To perform the integral exhibited in eq. (61), we observe the following formula 3.914 no. 9 on
p. 495 of G&R which states that4

1

r

∫ ∞

0

p exp(−z
√

p2 +m2 )√
p2 +m2

sin(pr) dp =
m√

r2 + z2
K1

(
m
√
r2 + z2

)
, for Rem > 0 and Re z > 0.

(62)
Since z = i|x0| in eq. (61), one cannot immediately employ eq. (62) to evaluate the integral
of interest. However, one can define a generalized function that is represented by eq. (61) by
replacing |x0| → |x0| − iǫ, where ǫ is a positive infinitesimal quantity [which is unrelated to the ǫ
that appears in eqs. (56) and (57)]. Hence we set z = i(|x0| − iǫ) in eq. (62), which satisfies the
condition that Re z > 0. Indeed, this ensures the necessary damping of the integrand as p → ∞
in order to guarantee that eq. (62) is convergent. Thus, we shall assign the following result to the
otherwise divergent integral,

1

r

∫ ∞

0

y exp(−i|x0|
√

p2 +m2 )√
p2 +m2

sin(py) dp = lim
ǫ→0+

m√
r2 − x2

0 + iǫ
K1

(
a
√

r2 − x2
0 + iǫ

)
. (63)

We can identify r2 − x2
0 = −xµxµ = −x2. Hence, it follows that

1

r

∫ ∞

0

y exp(−i|x0|
√
p2 +m2 )√

p2 +m2
sin(pr) dp =

m√
−x2 + iǫ

K1

(
m
√
−x2 + iǫ

)
, (64)

where the ǫ → 0+ limit is henceforth implicitly assumed. Consequently, eq. (61) yields,

i∆F (x) =
m

4π2

K1

(
m
√
−x2 + iǫ

)
√
−x2 + iǫ

. (65)

Note that in the case of x2 > 0, one must be careful in interpreting both the square root and the
Bessel function K1 of an imaginary argument. Here, I shall employ eq. (5.7.6) of N.N. Lebedev,
Special Functions and Their Applications (Dover Publications, Mineola, New York, 1972),

Kν(z) = −1
2
iπe−iπν/2H(2)

ν (ze−iπ/2) , for −1
2
π < arg z < π. (66)

One can apply eq. (66) to eq. (65) with z ≡ m
√
−x2 + iǫ in the cases of x2 > 0 and x2 < 0,

respectively, since in either case the condition on arg z is satisfied.
4The constraints on the parameters m and z were omitted by G&R, but they can be found in the corresponding

reference cited by G&R. See formula (36) on p. 75 of Table of Integral Transforms, Volume 1, edited by A. Erdélyi
(McGraw-Hill, New York, 1954).
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We now compute,
√
−x2 + iǫ =

√
x2 eiπ + iǫ =

√
(x2 − iǫ)eiπ = eiπ/2

√
x2 − iǫ . (67)

In the case of x2 < 0, note that x2− iǫ lies just below the branch cut that runs along the negative
real axis, which implies that arg

√
x2 − iǫ ≃ −1

2
π. In contrast, −x2+ iǫ lies just above the branch

cut in the case of x2 > 0, which implies that arg
√
−x2 + iǫ ≃ 1

2
π. Thus, in both cases, it follows

that the last step of eq. (67) is valid.
Hence, independently of the sign of x2,

K1

(
m
√
−x2 + iǫ

)
√
−x2 + iǫ

=
−1

2
iπe−iπ/2H

(2)
1 (m

√
x2 − iǫ)

eiπ/2
√
x2 − iǫ

= 1
2
iπ

H
(2)
1 (m

√
x2 − iǫ)√

x2 − iǫ
. (68)

It then follows that an equivalent form of eq. (65) is given by,

i∆F (x) =
im

8π

H
(2)
1 (m

√
x2 − iǫ)√

x2 − iǫ
. (69)

Admittedly, eq. (65) is more convenient in the case of x2 < 0, whereas eq. (69) is more
convenient in the case of x2 > 0. Hence, one can replace eqs. (65) and (69) with the more
convenient expression,5

i∆F (x) =
m

4π2

[
K1

(
m
√
−x2 + iǫ

)
√
−x2 + iǫ

Θ(−x2) +
iπH

(2)
1

(
m
√
x2 − iǫ

)

2
√
x2 − iǫ

Θ(x2)

]
, (70)

where we have employed the step function, Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0, subject to
the condition that Θ(x)+Θ(−x) = 1.6 Indeed, the form of ∆F (x) is consistent with our previous
assertion that ∆F (x) is a generalized function.

An alternative derivation of eq. (70) is provided in Appendix A.

(b) Evaluate the leading singularities of ∆F (x) near the light cone, x2 = 0.

In order to examine the leading singularities near the light cone, we shall employ the expansions
for H

(2)
1 (z) ≡ J1(z)− iY1(z) and for K1(z) given on pp. 927–928 of G&R,

1
2
iπH

(2)
1 (z) = −1

z
+

z

2

[
ln
(z
2

)
+ γ − 1

2
+

iπ

2

]
+O(z3) , (71)

K1(z) =
1

z
+

z

2

[
ln
(z
2

)
+ γ − 1

2

]
+O(z3) . (72)

Since H
(2)
1 (z) and K1(z) possess branch cuts along the negative real axis, eqs. (71) and (72) are

valid for | arg z| < π.
5A different technique for evaluating the integrals of this section is presented in H.-H. Zhang, K.-X. Feng,

S.-W. Qiu, A. Zhao and X.-S. Li, Chinese Physics C 34, 1576 (2010). In this work, the authors also demonstrate
that both eqs. (65) and (69) are separately valid, independently of the sign of x2.

6One need not specify the values of Θ(0+) and Θ(0−). Indeed, when Θ(x) is regarded as a generalized function,
the specification of the value of Θ(x) at the origin has no significance [e.g., see p. 63 of D.S. Jones, The theory of

generalised functions (Cambridge University Press, Cambridge, UK, 1982)].
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To obtain the leading singularities of i∆F (x), one can either insert the expansion given in
eq. (72) into eq. (65) or the expansion given in eq. (71) into eq. (69) to obtain,

i∆F (x) ∼





1

4π2(−x2 + iǫ)
+

m2

8π2

[
ln
(
1
2
m
√
−x2 + iǫ

)
+ γ − 1

2

]
, as x2 → 0−,

− 1

4π2(x2 − iǫ)
+

m2

8π2

[
ln
(
1
2
m
√
x2 − iǫ

)
+ γ − 1

2
+ 1

2
iπ
]
, as x2 → 0+.

(73)

In light of eq. (67), we see that the two limiting cases above are analytic continuations of each
other. Indeed, it is a simple matter to check that if x2 > 0 then

1
2
iπ + lim

ǫ→0
ln
√
x2 − iǫ = 1

2

[
iπ + lim

ǫ→0
ln(x2 − iǫ)

]
= 1

2

[
iπ + ln |x2| − iπΘ(−x2)

]

= ln
√

|x2|+ 1
2
iπ
[
1−Θ(−x2)

]
= ln

√
|x2|+ 1

2
iπΘ(x2) , (74)

where we have employed the identity, Θ(x2) + Θ(−x2) = 1. The same end result is obtained if
x2 < 0, since

lim
ǫ→0

ln
√
−x2 + iǫ = 1

2
lim
ǫ→0

ln(−x2 + iǫ) = 1
2

[
ln |x2|+ iπΘ(x2)

]
= ln

√
|x2|+ 1

2
iπΘ(x2) . (75)

Thus, we may combine both limits in eq. (73) into a single equation,

i∆F (x) ∼ − 1

4π2(x2 − iǫ)
+

m2

8π2

[
ln
(
1
2
m
√

|x2|
)
+ γ − 1

2
+ 1

2
iπΘ(x2)

]
, as x2 → 0. (76)

Finally, we can make use of the Sokhotski-Plemelj formula,7

1

z ± iǫ
= P

1

z
∓ iπδ(z) , (77)

where P is the Cauchy principal value prescription, which is employed when evaluating the integral
of the product of a generalized function and a smooth test function according to the following
rule,

P

∫ ∞

−∞

f(x)

x
dx ≡ lim

δ→0+

{∫ −δ

−∞

f(x)

x
dx+

∫ ∞

δ

f(x)

x
dx

}
. (78)

Hence, eqs. (76) and (77) yield,

i∆F (x) = − i

4π
δ(x2)− 1

4π2
P

1

x2
+

m2

8π2

[
ln

(
m
√

|x2|
2

)
+ γ − 1

2
+

iπ

2
Θ(x2) +O(m2x2)

]
,

(79)
where the terms of O(m2x2) vanish on the light cone.

The limit of eq. (79) as m → 0 is noteworthy,

lim
m→0

i∆F (x) = − i

4π
δ(x2)− 1

4π2
P

1

x2
. (80)

7See the class handout entitled The Sokhotski-Plemelj formula.
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In obtaining eq. (80), we have used dimensional analysis to conclude that all terms in eq. (79)
that vanish on the light cone must be proportional to a positive power of m2.

To check the result of eq. (80), it is instructive to perform an exact calculation of i∆F (x) in
the case of m = 0 by returning to eq. (61)

i∆F (x0;~x)m=0 =
1

4π2r

∫ ∞

0

sin(pr)e−ip|x
0
| dp . (81)

To evaluate this integral, I will make use of the integral representation of the step function,8

Θ(k) = lim
ǫ→0+

1

2πi

∫ ∞

−∞

eikx

x− iǫ
dx . (82)

Multiplying eq. (82) by i and then employing the inverse Fourier transform yields an expression
for the generalized function (x− iǫ)−1,

1

x− iǫ
= i

∫ ∞

−∞

Θ(k)e−ikx dk = i

∫ ∞

0

e−ikx dk . (83)

Employing eq. (83) in evaluating eq. (81),

i∆F (x0;~x)m=0 = − i

8π2r

∫ ∞

0

[
e−ip(|x

0
|−r) − e−ip(|x

0
|+r)
]
dp

= − 1

8π2r

[
1

|x0| − r − iǫ
− 1

|x0|+ r − iǫ

]
= − 1

4π2
(
x2
0 − r2 − iǫ

)

= − 1

4π2(x2 − iǫ)
, (84)

where we have identified x2 = x2
0 − r2. Thus we have recovered the m → 0 limit of eq. (79).

Equivalently, one can again employ the Sokhotski-Plemelj formula [cf. eq. (77)] to obtain

i∆F (x)m=0 = − 1

4π2

[
P

1

x2
+ iπδ(x2)

]
= − i

4π
δ(x2)− 1

4π2
P

1

x2
, (85)

thereby confirming the result of eq. (80).

(c) Using the Källen–Lehmann representation, comment on the leading singularity of the exact
two-point function near the light cone.

The Källen–Lehmann representation for the exact unrenormalized two-point Green function
of scalar field theory is given by,

G(2)
c (x) =

∫ ∞

0

dm2 ρ(m2) i∆F (x ; m
2) , (86)

where
ρ(m2) ≡ Zφ δ(m

2 −m2
R) + σ(m2) , (87)

8See the class handout entitled Integral representation of the Heavyside step function.

17



is the spectral function, mR is the renormalized mass and Zφ is the wave function renormalization
constant. The exact renormalized two-point Green function of scalar field theory is then given
by,

G
(2)
Rc(x) = Z−1

φ G(2)
c (x) = i∆F (x ; m

2
R) + Z−1

φ

∫ ∞

4m2
R

dm2 σ(m2) i∆F (x ; m
2), . (88)

Near the light cone, we shall employ the two most singular terms of eq. (79) to obtain,

G
(2)
Rc(x) ≃ − 1

4π2

[
iπδ(x2) + P

1

x2

](
1 + Z−1

φ

∫ ∞

0

dm2 σ(m2)

)
, as x2 → 0. (89)

In class, we proved that

1 =

∫ ∞

0

ρ(m2) dm2 = Zφ +

∫ ∞

0

σ(m2) dm2 , (90)

after making use of eq. (87). Inserting this result back into eq. (88) yields,

G
(2)
Rc(x) ≃ −

Z−1
φ

4π2

[
iπδ(x2) + P

1

x2

]
, as x2 → 0. (91)

Since 0 ≤ Zφ ≤ 1, we can conclude that the leading singularity on the light cone of the renor-
malized two-point Green function is at least as singular as the corresponding free field two-point
Green function. In the special case of Zφ = 0, the leading singularity would be stronger than that
of free field theory.

APPENDIX A: Alternative methods for evaluating the integral in eq. (61)

Our method for identifying the explicit form for the generalized function ∆F (x) was to insert
a convergence factor in the integrand of eq. (61), exp

[
−ǫ
√

p2 +m2
]
, and then take ǫ → 0+

at the end of the calculation. Indeed, this method is often employed to interpret the integral
representation of the delta function,

δ(x) =
1

2π

∫ ∞

−∞

eikx dk = lim
ǫ→0+

1

2π

∫ ∞

−∞

eikx−ǫk2 dk , (92)

after inserting the convergence factor e−ǫk2.
An alternative method is to rewrite the integral given in eq. (61) as the derivative of a con-

ditionally convergent integral, which then can be computed explicitly. We can also employ this
alternative method to identify the integral representation of the delta function as follows. Con-
sider the generalized function,

J (x) =
1

2π

∫ ∞

−∞

eikx dk =
1

2π

∫ 0

−∞

eikx dk +
1

2π

∫ ∞

0

eikx dk =
1

π

∫ ∞

0

cos(kx) dk , (93)

after performing a variable change, k → −k, in the second integral above. Note that the integral
of cos(kx) is not convergent due to the oscillatory behavior of the integrand as k → ∞ [as in the
case of eq. (61)]. Nevertheless, one can employ the well known conditionally convergent integral,

∫ ∞

0

sin(kx)

k
dk = 1

2
π sgn(x) , (94)
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where sgn(x) is the sign of the real number x.9 Noting that

sgn(x) = 2Θ(x)− 1 , (95)

it follows that ∫ ∞

0

sin(kx)

k
dk = π

[
Θ(x)− 1

2

]
. (96)

Using eq. (93), we can identify J (x) as the derivative of a conditionally convergent integral,

J (x) =
∂

∂x

1

π

∫ ∞

0

sin(kx)

k
dk =

d

dx
Θ(x) = δ(x) , (97)

in agreement with the well-known integral representation of the delta function.
Let us employ this alternative strategy in evaluating eq. (61). To perform the integral exhibited

in eq. (61), we observe the following two formulae, 3.876 nos. 1 and 2 on p. 486 of G&R,

∫ ∞

0

sin(|x0|
√
p2 +m2)√

p2 +m2
cos(pr) dp = 1

2
πJ0

(
m
√

x2
0 − r2

)
Θ(x2

0 − r2), (98)

∫ ∞

0

cos(|x0|
√
p2 +m2)√

p2 +m2
cos(pr) dp = −1

2
πY0

(
m
√

x2
0 − r2

)
Θ(x2

0 − r2)

+K0

(
m
√

r2 − x2
0

)
Θ(r2 − x2

0), (99)

which satisfy the conditions specified by G&R since m, r and |x0| are all positive. Combining the
two integrals above, it follows that

∫ ∞

0

exp(−i|x0|
√
p2 +m2)√

p2 +m2
cos(pr) dy = −1

2
iπ
[
J0

(
m
√

x2
0 − r2

)
− iY0

(
m
√

x2
0 − r2

)]
Θ(x2

0 − r2)

+K0

(
m
√

r2 − x2
0

)
Θ(r2 − x2

0) . (100)

It then follows that

1

r

∫ ∞

0

p exp(−i|x0|
√
p2 +m2)√

p2 +m2
sin(pr) dp = −1

r

∂

∂r

∫ ∞

0

exp(−i|x0|
√
p2 +m2)√

p2 +m2
cos(pr) dp

= 2
d

dx2

[
K0

(
m
√
−x2

)
Θ(−x2)− 1

2
πY0

(
m
√
x2
)
Θ(x2)

]
− iπ

d

dx2

[
J0

(
m
√
x2
)
Θ(x2)

]

= 2
d

dx2

[
K0

(
m
√
−x2

)
Θ(−x2)− 1

2
iπH

(2)
0

(
m
√
x2
)
Θ(x2)

]
, (101)

after introducing the Hankel function of the second kind, H
(2)
0 (z) ≡ Jz(z)− iY1(z) and identifying

the square of the position four-vector, x2
0 − r2 = xµxµ = x2.

9Some books define sgn(0) = 0, in which case, eq. (94) would be valid at x = 0. However, when sgn(x) is
regarded as a generalized function, the specification of the value at the origin has no significance (cf. footnote 6).
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Thus, we focus on the quantity,

F (x2) ≡ K0

(
m
√
−x2

)
Θ(−x2)− 1

2
iπH

(2)
0

(
m
√
x2
)
Θ(x2) . (102)

In order to compute dF/dx2, we must pay attention to the behavior of F (x2) in the vicinity of
x2 = 0. To facilitate this analysis, we shall employ the small argument expansions of the Bessel
functions, which can be deduced from results given on pp. 927–928 of G&R,

K0(z) = − ln
(z
2

)
− γ +O(z2) , (103)

1
2
iπH

(2)
0 (z) = 1

2
iπ + ln

(z
2

)
+ γ +O(z2) , (104)

where γ is Euler’s constant. It is therefore convenient to define,

K̃0(z) = K0(z) + ln
(z
2

)
, (105)

H̃
(2)
0 (z) = H

(2)
0 (z) +

2i

π
ln
(z
2

)
, (106)

each of which has a finite limit as z → 0. Hence, we can rewrite eq. (102) as,

F (x2) = K̃0

(
m
√
−x2

)
Θ(−x2)− 1

2
iπH̃

(2)
0

(
m
√
x2
)
Θ(x2)

− ln
(
1
2
m
√
−x2

)
Θ(−x2)− ln

(
1
2
m
√
x2
)
Θ(x2) . (107)

We can simplify the second line of above expression by employing the following relation,

f(x2)Θ(x2) + f(−x2)Θ(−x2) = f(|x2|) . (108)

Hence,
F (x2) = K̃0

(
m
√
−x2

)
Θ(−x2)− 1

2
iπH̃

(2)
0

(
m
√
x2
)
Θ(x2)− ln

(
1
2
m|x2|1/2

)
. (109)

We can now differentiate F (x2) with respect to x2. Noting that,

d

dz
K̃0(z) = −K̃1(z) ≡ −K1(z) +

1

z
, (110)

d

dz
H̃

(2)
0 (z) = −H̃

(2)
1 (z) ≡ −H

(2)
1 (z) +

2i

πz
, (111)

where we have defined K̃1(z) and H̃
(2)
1 (z) such that the leading singular pieces of K1(z) and

H
(2)
1 (z) as z → 0 are removed, it follows that,

d

dx2
F (x2) =

m

2

[
K̃1(m

√
−x2)√

−x2
Θ(−x2) +

iπH̃
(2)
1 (m

√
x2)

2
√
x2

Θ(x2)

]
− 1

2

d

dx2
ln |x2|

−
[
K̃0

(
m
√
−x2

)
+ 1

2
iπH̃

(2)
0

(
m
√
x2
)]
δ(x2) , (112)

after employing δ(x2) = dΘ(x2)/dx2 and noting that δ(x2) = δ(−x2). The second line of eq. (112)
is evaluated by employing f(x2)δ(x2) = f(0)δ(x2), where f(x2) is a smooth function. Hence,

−
[
K̃0

(
m
√
−x2

)
+ 1

2
iπH̃

(2)
0

(
m
√
x2
)]
δ(x2) = −

[
K̃0(0) +

1
2
iπH̃

(2)
0 (0)

]
δ(x2) = −1

2
iπδ(x2) , (113)

in light of eqs. (103) and (104).
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Finally, we make use of the following result that is derived in Appendix B,

d

dx2
ln |x2| = P

1

x2
, (114)

where the symbol P stands for the principal value prescription. Hence, after using eqs. (112)–(114)
the end result is,

d

dx2
F (x2) =

m

2

[
K̃1(m

√
−x2)√

−x2
Θ(−x2) +

iπH̃
(2)
1 (m

√
x2)

2
√
x2

Θ(x2)

]
− 1

2

[
P

1

x2
+ iπδ(x2)

]
. (115)

Consequently, eq. (101) yields,

1

r

∫ ∞

0

y exp(−i|x0|
√
p2 +m2 )√

p2 +m2
sin(py) dp = −P

1

x2
− iπ δ(x2) (116)

+m

[
K̃1(m

√
−x2)√

−x2
Θ(−x2) +

iπH̃
(2)
1 (m

√
x2)

2
√
x2

Θ(x2)

]
. (117)

Hence, it follows from eqs. (61) and (117) that

i∆F (x) = − i

4π
δ(x2) +

m

4π2
P

{
K1

(
m
√
−x2

)
√
−x2

Θ(−x2) +
iπH

(2)
1

(
m
√
x2
)

2
√
x2

Θ(x2)

}
, (118)

after re-expressing K̃1 and H̃
(2)
1 in terms of K1 and H

(2)
1 , respectively, and making use of the

identity, Θ(x2) + Θ(−x2) = 1. The principal value prescription affects only those terms in
eq. (118) inside the braces that behave as 1/x2 as x2 → 0.

Inserting the expansions given by eqs. (71) and (72) into eq. (118) and making use of eq. (108),
it follows that

i∆F (x) = − i

4π
δ(x2)− 1

4π2
P

1

x2
+

m2

8π2

[
ln

(
m
√

|x2|
2

)
+ γ − 1

2
+

iπ

2
Θ(x2) +O(m2x2)

]
, (119)

in agreement with eq. (79). Note that the principal value prescription is not needed for the
logarithmic term in eq. (79), since the integral of ln(1

2
m
√

|x2|) multiplied by a well behaved test
function, performed over an integration range that includes the point x2 = 0, is convergent.

In particular, after employing eq. (77), the leading singular behavior of i∆F (x) is

i∆F (x) = − i

4π
δ(x2)− 1

4π2
P

1

x2
+ . . . = lim

ǫ→0+

−1

4π2(x2 − iǫ)
+ . . . , (120)

where . . . represents subleading terms as x2 → 0, and the ǫ → 0 limit is taken only after integrating
the product of ∆F (x) and a well-behaved test function. Consequently, eq. (118) is equivalent to

i∆F (x) =
m

4π2

[
K1

(
m
√
−x2 + iǫ

)
√
−x2 + iǫ

Θ(−x2) +
iπH

(2)
1

(
m
√
x2 − iǫ

)

2
√
x2 − iǫ

Θ(x2)

]
, (121)

in agreement with eq. (70).
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Yet another alternative method for evaluating the integral given by eq. (61)

Denoting Ep ≡
√

p2 +m2, we can rewrite eq. (61) as,

∆F (x0;~x) =
−i

4π2r

∫ ∞

0

p sin(pr)

Ep

e−i|x0|Ep dp =
−1

8π2r

∫ ∞

0

p(eipr − e−ipr)

Ep

e−i|x0|Ep dp

=
−1

8π2r

∫ ∞

−∞

p

Ep

eipre−i|x0|Ep dp =
i

8π2r

∂

∂r

∫ ∞

−∞

dp

Ep

eipre−i|x0|Ep . (122)

Introducing the rapidity ζ ,

Ep = m cosh ζ , p = m sinh ζ , (123)

it follows that dp = Epdζ . Hence,

i∆F (x0;~x) = − 1

8π2r

∂

∂r

∫ ∞

−∞

dζ exp
[
−im

(
|x0| cosh ζ − r sinh ζ

)]
. (124)

We consider two cases.

Case 1: x2 ≡ x2
0 − r2 > 0 (or equivalently, |x0| > r)

In this case, it is convenient to define a new variable η such that the condition x2 ≡ x2
0 − r2

is satisfied,
|x0| =

√
x2 cosh η , r =

√
x2 sinh η . (125)

It then follows that |x0| cosh ζ − r sinh ζ =
√
x2 cosh(ζ − η).

Hence,

i∆F (x0;~x) = − 1

8π2r

∂

∂r

∫ ∞

−∞

dζ exp
[
−im

√
x2 cosh(ζ − η)

]

= − 1

8π2r

∂

∂r

∫ ∞

−∞

dζ exp
[
−im

√
x2 cosh ζ

]

=
1

2π2

d

dx2

∫ ∞

0

dζ
[
cos(m

√
x2 cosh ζ)− i sin(m

√
x2 cosh ζ)

]
, (126)

after making use of the symmetry of the integrand under ζ → −ζ .
We now make use of G&R, formulae 3.714 nos. 2 and 3:
∫ ∞

0

sin(z cosh x)dx = 1
2
πJ0(z) ,

∫ ∞

0

cos(z cosh x)dx = −1
2
πY0(z) , for Re z > 0 .

(127)
It then follows that

i∆F (x) = − i

4π

d

dx2
H

(2)
0 (m

√
x2) , for x2 > 0 , (128)

where H
(2)
0 (z) ≡ J0(z)− iY0(z).
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Case 2: x2 ≡ x2
0 − r2 < 0 (or equivalently, |x0| < r)

In this case, it is convenient to define a new variable η such that the condition x2 ≡ x2
0 − r2

is satisfied,
|x0| =

√
−x2 sinh η , r =

√
−x2 cosh η . (129)

It then follows that |x0| cosh ζ − r sinh ζ = −
√
−x2 sinh(ζ − η). Hence,

i∆F (x0;~x) = − 1

8π2r

∂

∂r

∫ ∞

−∞

dζ exp
[
im

√
−x2 sinh(ζ − η)

]

= − 1

8π2r

∂

∂r

∫ ∞

−∞

dζ exp
[
im

√
−x2 sinh ζ

]

=
1

2π2

d

dx2

∫ ∞

0

dζ cos(m
√
−x2 sinh ζ) . (130)

We now make use of G&R, formulae 3.714 no. 1:
∫ ∞

0

cos(z sinh x)dx = K0(z) , for Re z > 0 . (131)

It then follows that

i∆F (x) =
1

2π2

d

dx2
K0(m

√
−x2) , for x2 < 0. (132)

Combining the results of eqs. (128) and (132),

i∆F (x) =
1

2π2

d

dx2

[
K0(m

√
−x2) Θ(−x2)− 1

2
iπH

(2)
0 (m

√
x2) Θ(x2)

]
, (133)

which reproduces eq. (101). The computation of the derivative with respect to x2 then follows
the same steps previously employed in deriving the final result given in eq. (118).

APPENDIX B: Proof of d ln |x|/dx = P(1/x)

Consider ln |x| as a generalized function. Noting that

d

dx
ln |x| = 1

x
, for x 6= 0 , (134)

one can extend this result to x = 0 by treating d ln |x|/dx as a generalized function. For any
well-behaved test function f(x) that vanishes sufficiently fast as x → ±∞, it follows from an
integration by parts that

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = −

∫ ∞

−∞

ln |x|f ′(x) dx = − lim
ǫ→0+

∫

|x|≥ǫ

ln |x|f ′(x) dx . (135)

where f ′(x) ≡ df/dx, and the boundary terms vanish due to the behavior of f(x) at ±∞. Note
that the limiting process above is smooth, since the integral above exists for all values of ǫ ≥ 0.
To complete the calculation, we integrate by parts once more to obtain,

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = lim

ǫ→0+

[∫

|x|≥ǫ

f(x)

x
dx−

[
f(ǫ)− f(−ǫ)

]
ln ǫ

]
. (136)
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However,
[
f(ǫ)− f(−ǫ)

]
ln ǫ = O(ǫ ln ǫ) which vanishes as ǫ → 0. Thus, we end up with

∫ ∞

−∞

f(x)
d

dx
ln |x| dx = lim

ǫ→0+

∫

|x|≥ǫ

f(x)

x
dx . (137)

We recognize the right hand side of eq. (137) as the principal value prescription,

P

∫ ∞

−∞

f(x)

x
dx ≡ lim

ǫ→0+

{∫ −ǫ

−∞

f(x)

x
dx+

∫ ∞

ǫ

f(x)

x
dx

}
, (138)

Hence, we can identify the generalized function,10

d

dx
ln |x| = P

1

x
, (139)

which is meaningful at x = 0 via eq. (137).

10Another derivation of eq. (139) can be found in the class handout entitled Examples of Generalized Functions.
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