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1. Define the following functions:1

A0(m
2) ≡ −16π2i

∫

dnq

(2π)n
1

q2 −m2 + iε
, (1)

B0(p
2;m2

1, m
2
2) ≡ −16π2i

∫

dnq

(2π)n
1

(q2 −m2
1 + iε)[(q + p)2 −m2

2 + iε]
, (2)

Bµ(p;m2
1, m

2
2) ≡ −16π2i

∫

dnq

(2π)n
qµ

(q2 −m2
1 + iε)[(q + p)2 −m2

2 + iε]
, (3)

where ε is a positive infinitesimal quantity andm, m1 andm2 are real nonnegative parameters.

(a) Compute A0 and B0 explicitly using dimensional regularization. Expand your results
about n = 4 and drop all terms that vanish as n→ 4. Using the notation

∆ ≡ 1

ǫ
− γ + ln 4π , (4)

where n = 4 − 2ǫ and γ is Euler’s constant, express your result in each case as a the sum of
two terms: one term involving ∆ and a second term that is finite as n→ 4.

Using the result of the handout entitled, Useful formulae for computing one-loop integrals,
∫

dnq

(2π)n
1

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)
, (5)

where ǫ ≡ 2− 1
2
n, it follows that2

A0(m
2) = −(m2)1−ǫ(4πµ2)ǫΓ(ǫ)

ǫ− 1
, (6)

after using the relation (ǫ− 1)Γ(ǫ− 1) = Γ(ǫ). Expanding the about ǫ = 0,

(4π)ǫΓ(ǫ) =
1

ǫ
− γ + ln(4π) +O(ǫ) , (7)

in eq. (6), it follows that

A0(m
2) = m2

[

1

ǫ
− γ + ln(4π) + 1− ln

(

m2

µ2

)

+O(ǫ)

]

, (8)

where γ is Euler’s constant. Defining ∆ as in eq. (4), and taking the limit of ǫ → 0, we end
up with

A0(m
2) = m2

[

∆+ 1− ln

(

m2

µ2

)]

. (9)

1A0, B0, B
µ (and C0 of part (c) below) are examples of the Passarino-Veltman functions, first introduced

in G. Passarino and M. Veltman, Nucl. Phys. B 160, 151 (1979), albeit with a slightly different normalization
and a different metric convention.

2For convenience, I have altered the definition of A0, B0 and Bµ by multiplying eqs. (1)–(3) by (µ2)ǫ,
where µ2 is a positive squared-mass parameter. This will ensure that the arguments of all logarithms are
dimensionless.
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In order to evaluate B0(p
2;m2

1, m
2
2), we first employ Feynman’s trick to write

1

(q2 −m2
1 + iε)[(q + p)2 −m2

2 + iε]
=

∫ 1

0

dx
[

(1− x)(q2 −m2
1) + x[(q + p)2 −m2

2] + iε
]2

=

∫ 1

0

dx
[

q2 + 2xq ·p+ (p2 +m2
1 −m2

2)x−m2
1 + iε

]2 . (10)

Plugging this result into eq. (2), interchanging the order of integration and employing eq. (5),
it follows that

B0(p
2;m2

1, m
2
2) = (4πµ2)ǫ Γ(ǫ)

∫ 1

0

[

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

]−ǫ
dx

=

(

1

ǫ
− γ + ln(4π)

)[

1− ǫ

∫ 1

0

ln

(

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

µ2

)

dx+O(ǫ2)

]

= ∆−
∫ 1

0

ln

(

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

µ2

)

dx+O(ǫ) , (11)

after expanding in ǫ and using eq. (4).
Eq. (11) motivates the computation of the following integral,

I ≡
∫ 1

0

ln(Ax2 +Bx+ C − iε) dx , (12)

where A, B and C are real numbers and ε is a positive infinitesimal constant. Assuming
A 6= 0, we integrate by parts with u = ln(A2x+Bx+ C − iε) and dv = dx to obtain

I = ln(A+B + C − iε)−
∫ 1

0

(2Ax2 +Bx) dx

Ax2 +Bx+ C − iε

= ln(A+B + C − iε)−
∫ 1

0

2(Ax2 +Bx+ C − iε)− (Bx+ 2C − 2iε) dx

Ax2 +Bx+ C − iε

= ln(A+B + C − iε)− 2 +

∫ 1

0

(Bx+ 2C) dx

Ax2 +Bx+ C − iε
, (13)

where it is safe to drop the iε factor in the numerator. Defining B = r1A and C = r2A,

I = ln(A+B + C − iε)− 2 +

∫ 1

0

(r1x+ 2r2) dx

x2 + r1x+ r2 − iε sgnA
, (14)

We consider three cases.

Case 1: r21 < 4r2

In this case, the roots of polynomial equation x2+r1x+r2 = 0 are complex. Consequently,
the denominator of the integrand above never vanishes, and we are free to set ε = 0. After
factoring the denominator,

x2 + r1x+ r2 = (x− x+)(x− x−) , (15)
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where

x± ≡ 1
2

[

−r1 ± i
√

4r2 − r21
]

, (16)

we perform a partial fractioning,

r1x+ 2r2
(x− x+)(x− x−)

= −
(

x+
x− x+

+
x−

x− x−

)

, (17)

after noting that
x+ + x− = −r1 , x+x− = r2 . (18)

Hence, it follows that

I = ln(A +B + C − iε)− 2−
∫ 1

0

(

x+
x− x+

+
x−

x− x−

)

dx

= ln(A+B + C − iε)− 2− x+
[

ln(1− x+)− ln(−x+)
]

− x−
[

ln(1− x−)− ln(−x−)
]

= ln(A+B + C − iε)− 2− 2Re
{

x+
[

ln(1− x+)− ln(−x+)
]}

= ln(A+B + C − iε)− 2 + Re

{

(

r1 − i
√

4r2 − r21
)[

ln(1− x+)− ln(−x+)
]

}

, (19)

after using (x+)
∗ = x1 in the penultimate step above. The logarithms above are the principal

values of the corresponding complex logarithms defined on the cut complex plane, where the
branch cut runs along the real axis from −∞ to the origin.

Evaluating the real part of the expression above is straightforward.

Re

{

(

r1 − i
√

4r2 − r21
)[

ln(1− x+)− ln(−x+)
]

}

= r1
{

ln |1− x+| − ln |x+|
}

+
√

4r2 − r21
[

arg(1− x+)− arg(−x+)
]

= 1
2
r1 ln

(

r1 + r2 + 1

r2

)

+
√

4r2 − r21

[

arg

(

1 + 1
2
r1 − 1

2
i
√

4r2 − r21

)

− arg

(

1
2
r1 − 1

2
i
√

4r2 − r21

)]

, (20)

where the principal value of the argument lies in the range −π < arg z ≤ π for any complex
number z. Since the roots of polynomial equation x2 + r1x + r2 = 0 are complex, it follows
that x2 + r1x + r2 > 0 for all values of x. Setting x = 0 and x = 1, respectively, in the
inequality, one can conclude that r2 > 0 and r1 + r2 + 1 > 0.

In order to evaluate the argument functions in eq. (20), we make use of the following result
for the principal value of the argument function,

arg(x− iy) =

{

arctan(y/x) , for x > 0 and y > 0,

π + arctan(y/x) , for x < 0 and y > 0,
(21)
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where we have employed the principal value of the real arctangent function, which satisfies
| arctan(y/x)| ≤ 1

2
π. Referring to p. 119 of F.W.J. Olver, D.W. Lozier, R.F. Boisvert and

C.W. Clark, editors, NIST Handbook of Mathematical Functions (Cambridge University Press,
Cambridge, UK, 2010),

arctan(y/x) =

{

1
2
π − arctan(x/y) , for y/x > 0,

−1
2
π − arctan(x/y) , for y/x < 0.

(22)

Noting that arctan(x/y) = − arctan(−x/y), it follows that

arg(x− iy) = 1
2
π + arctan(−x/y) , for y > 0, (23)

which holds for both signs of x.
Hence,

arg

(

1 + 1
2
r1 − 1

2
i
√

4r2 − r21

)

− arg

(

1
2
r1 − 1

2
i
√

4r2 − r21

)

= arctan

(

2 + r1
√

4r2 − r21

)

− arctan

(

r1
√

4r2 − r21

)

. (24)

Combining the results of eqs. (19), (20) and (24),

I = ln(A +B + C − iε) + 1
2
r1 ln

(

r1 + r2 + 1

r2

)

− 2

+
√

4r2 − r21

[

arctan

(

2 + r1
√

4r2 − r21

)

− arctan

(

r1
√

4r2 − r21

)]

. (25)

Plugging in r1 = B/A and r2 = C/A, we obtain our final result,

I = ln(A+B + C − iε) +
B

2A
ln

(

A+B + C

C

)

− 2

+

√
4AC −B2

A

[

arctan

(

2A+B√
4AC − B2

)

− arctan

(

B√
4AC − B2

)]

,

for A 6= 0 and B2 − 4AC < 0. (26)

In particular,

Im I = −πΘ(−A−B − C) , for A 6= 0 and B2 − 4AC < 0. (27)

Case 2: r21 > 4r2

In this case, the roots of polynomial equation x2 + r1x+ r2 = 0 are real, and

x2 + r1x+ r2 = (x− x+)(x− x−) , (28)
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where

x± ≡ 1
2

[

−r1 ±
√

r21 − 4r2
]

. (29)

The real roots satisfy,

x+ + x− = −r1 , x+ − x− =
√

r21 − 4r2 , x+x− = r2 , (30)

If either (or both) x+ or x− lie in the integration region of 0 < x < 1, then the denominator
of the integrand of eq. (14) would vanish if we set ε = 0. Hence, we keep the iε term present
and note that

x2 + rx1 + r2 − iε sgnA = (x− x+ + iε sgnA)(x− x− − iε sgnA) . (31)

Hence, performing a partial fractioning of the integrand of eq. (14) yields

(r1x+ 2r2)

x2 + r1x+ r2 − iε sgnA
=

x+
x− x+ − iε sgnA

+
x−

x− x− + iε sgnA
, (32)

after omitting the term proportional to iε sgnA in the numerator, which can be safely dropped
in the limit of ε→ 0. Hence, it follows that

I = ln(A +B + C − iε)− 2−
∫ 1

0

(

x+
x− x+ − iε sgnA

+
x−

x− x− + iε sgnA

)

dx

= ln(A+B + C − iε)− 2− x+
[

ln(1− x+ − iε sgnA)− ln(−x+ − iε sgnA)
]

−x−
[

ln(1− x− + iε sgnA)− ln(−x− + iε sgnA)
]

. (33)

Note that

x± =
−B
2A

±
√
B2 − 4AC

2|A| . (34)

In the literature, it is more typical to define,

y± =
−B ±

√
B2 − 4AC

2A
, (35)

under the assumption that B2 − 4AC > 0. Note that

y+ + y− = −B
A
, y+y− =

C

A
, y+ − y− =

√
B2 − 4AC

A
. (36)

and it follows that y+ > y− if sgnA > 0, but y+ < y− if sgnA < 0. In this notation, eq. (33)
can be rewritten as,

I = ln(A+B + C − iε)− 2− y+
[

ln(1− y+ − iε)− ln(−y+ − iε)
]

−y−
[

ln(1− y− + iε)− ln(−y− + iε)
]

, for A 6= 0 and B2 − 4AC > 0. (37)
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Case 3: r21 = 4r2

In this limit, B2 − 4AC = 0 and eq. (13) yields,

I = ln

(

A+B +
B2

4A
− iε

)

− 2 +
B

A

∫ 1

0

(

x+ B
2A

)

dx
(

x+ B
2A

)2 − iε sgnA
. (38)

Employing the Sokhotski-Plemelj formula, with x0 ≡ B/(2A),

lim
ε→0+

(x+ x0)

(x+ x0)
2 − iε sgnA

= P
1

x+ x0
+ iπ(x+ x0)δ

(

(x+ x0)
2
)

= P
1

x+ x0
, (39)

where we have used the well-known property of δ-functions that f(x)δ(x) = f(0)δ(x). Hence,

I = ln

(

A +B +
B2

4A
− iε

)

− 2 +
B

A
P

∫ 1

0

dx

x+ x0

= ln

[

A

(

1 +
B

2A

)2

− iε

]

− 2 +
B

A
lim
δ→0+

{
∫

−x0−δ

0

dx

x+ x0
+

∫ 1

−x0+δ

dx

x+ x0

}

= ln

[

(A− iε)

(

1 +
B

2A

)2
]

− 2 +
B

A
lim
δ→0+

{

ln

∣

∣

∣

∣

δ

x0

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

1 + x0
δ

∣

∣

∣

∣

}

= ln(A− iε) + 2 ln

∣

∣

∣

∣

1 +
B

2A

∣

∣

∣

∣

− 2 +
B

A
ln

∣

∣

∣

∣

1 + x0
x0

∣

∣

∣

∣

= ln(A− iε) + 2 ln

∣

∣

∣

∣

1 +
B

2A

∣

∣

∣

∣

− 2 +
B

A

[

ln

∣

∣

∣

∣

1 +
B

2A

∣

∣

∣

∣

− ln

∣

∣

∣

∣

B

2A

∣

∣

∣

∣

]

= ln(A− iε)− 2 +

(

B + 2A

A

)

ln

∣

∣

∣

∣

1 +
B

2A

∣

∣

∣

∣

− B

A
ln

∣

∣

∣

∣

B

2A

∣

∣

∣

∣

. (40)

One further simplification yields our final result,

I = ln(A− iε)− 2 + 2 ln

∣

∣

∣

∣

1 +
B

2A

∣

∣

∣

∣

+
B

A
ln

∣

∣

∣

∣

1 +
2A

B

∣

∣

∣

∣

, for A 6= 0 and B2 − 4AC = 0. (41)

It is straightforward to check that in the limit of B2 = 4AC, both eqs. (26) and (37) yield
the result quoted in eq. (41). For example, in this limit, y+ = y− = −B/(2A). Hence, we can
take the limit of y+ = y− of eq. (37) to obtain,

I = ln

(

A+B +
B2

4A
− iε

)

− 2 +
B

A

[

Re ln

(

1 +
B

2A
+ iε

)

− Re ln

(

B

2A
+ iε

)]

, (42)

which is equivalent to eq. (40).
This completes the analysis of eq. (12) in the case of A 6= 0. The case of A 6= 0 requires a

separate analysis, which is provided below. In this case, we assume that B 6= 0 and compute,

I0 ≡
∫ 1

0

ln(Bx+ C − iε) dx . (43)
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Integrating by parts by taking u = ln(Bx+ C + iε) and dv = dx, it follows that

I0 = ln(B + C − iε)−
∫ 1

0

Bxdx

Bx+ C − iε

= ln(B + C − iε)−
∫ 1

0

Bx+ C − iε− (C − iε) dx

Bx+ C − iε

= ln(B + C − iε)− 1 + C

∫ 1

0

dx

Bx+ C − iε
, (44)

where it is safe to drop the iε factor in the numerator. Defining C = rB,

I0 = = ln(B + C − iε)− 1 + r
[

ln(1 + r − iε sgnB)− ln(r − iε sgnB)
]

= ln(B + C − iε)− 1 +
C

B

[

ln

(

B + C − iε

B

)

− ln

(

C − iε

B

)]

= ln(B + C − iε)− 1 +
C

B
ln

(

B + C

C
+ iε sgnB

)

, for B 6= 0. (45)

This form is not so useful in the case of B = −C. However, one can rewrite eq. (45) as follows,

I0 = L− 1 +

(

1 +
C

B

)

ln

(

B + C − iε

B

)

− C

B
ln

(

C − iε

B

)

, (46)

where

L ≡ ln(B + C − iε)− ln

(

B + C − iε

B

)

. (47)

If B > 0, then L = lnB. If B < 0 and B + C > 0,

L = ln(B + C)− iπ − ln(B + C) + ln(−B) = ln(−B)− iπ . (48)

If B < 0 and B + C < 0,

L = ln(−B − C)− iπ − ln(−B − C) + ln(−B) = ln(−B)− iπ . (49)

Thus, we conclude that in all three cases considered above,

L = ln(B − iε) . (50)

Hence, another alternative form for eq. (45) is given by,

I0 = ln(B − iε)− 1 +

(

1 +
C

B

)

ln

(

B + C − iε

B

)

− C

B
ln

(

C − iε

B

)

, for B 6= 0. (51)

We shall now apply the above results to B0(p
2;m2

1, m
2
2). Comparing eqs. (11) and (12), we

identify,

A =
p2

µ2
, B = − p2 +m2

1 −m2
2

µ2
, C =

m2
1

µ2
. (52)
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It follows that

r1 = −1 +
m2

2 −m2
1

p2
, r2 =

m2
1

p2
, r21 − 4r2 =

λ(p2, m2
1, m

2
2)

p4
, (53)

where λ(a, b, c) is the well-known kinematical triangle function,

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2ac− 2bc = (a+ b− c)2 − 4ab . (54)

Thus,

B0(p
2;m2

1, m
2
2) = ∆− F (p2;m2

1, m
2
2) , (55)

where

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

− 2

+
(−λ)1/2
p2

[

arctan

(

p2 −m2
1 +m2

2

(−λ)1/2
)

+ arctan

(

p2 +m2
1 −m2

2

(−λ)1/2
)]

,

for p2 6= 0 and λ ≡ λ(p2, m2
1, m

2
2) < 0 , (56)

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

− 2

−
(

p2 +m2
1 −m2

2 + λ1/2

2p2

)[

ln

(

p2 −m2
1 +m2

2 − λ1/2

2p2
− iε

)

− ln

(−p2 −m2
1 +m2

2 − λ1/2

2p2
− iε

)]

−
(

p2 +m2
1 −m2

2 − λ1/2

2p2

)[

ln

(

p2 −m2
1 +m2

2 + λ1/2

2p2
− iε

)

− ln

(−p2 −m2
1 +m2

2 + λ1/2

2p2
− iε

)]

for p2 6= 0 and λ ≡ λ(p2, m2
1, m

2
2) > 0 , (57)

F (p2;m2
1, m

2
2) = ln

(

p2

µ2

)

− 2 +

(

p2 −m2
1 +m2

2

p2

)

ln

∣

∣

∣

∣

p2 −m2
1 +m2

2

2p2

∣

∣

∣

∣

+

(

p2 +m2
1 −m2

2

p2

)

ln

∣

∣

∣

∣

p2 +m2
1 −m2

2

2p2

∣

∣

∣

∣

,

for p2 6= 0 and λ(p2, m2
1, m

2
2) = 0, (58)

F (0;m2
1, m

2
2) =

1

m2
1 −m2

2

[

m2
1 ln

(

m2
1

µ2

)

−m2
2 ln

(

m2
2

µ2

)]

− 1 , for m2
1 6= m2

2, (59)

F (0;m2, m2) = ln

(

m2

µ2

)

, (60)

under the assumption that m1, m2 and µ are real quantities.
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Note that an alternate expression for λ is given by,

λ(p2, m2
1, m

2
2) =

[

p2 − (m1 +m2)
2
][

p2 − (m1 −m2)
2
]

. (61)

It follows that,

λ(p2, m2
1, m

2
2) < 0 =⇒ (m1 −m2)

2 < p2 < (m1 +m2)
2 ,

λ(p2, m2
1, m

2
2) > 0 =⇒ p2 < (m1 −m2)

2 or p2 > (m1 +m2)
2 . (62)

In light of Cutkosky’s cutting rules, ImF (p2;m2
1, m

2
2) 6= 0 if and only if p2 > (m1 +m2)

2, in
which case the internal lines of the one-loop self-energy graph can go on-shell.

Thus, we can simplify the expression given by eq. (57) as follows. Using the definition of
the principal value of the complex logarithm,

ln(x− iε) = ln |x| − iπΘ(−x) , for x ∈ R, x 6= 0 and positive infinitesimal ε, (63)

it follows that Re ln x = ln |x|. Hence, after combining logarithms, eq. (57) yields,

ReF (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

− 2−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

+
λ1/2(p2, m2

1, m
2
2)

2p2
ln

(

p2 −m2
1 −m2

2 + λ1/2(p2, m2
1, m

2
2)

p2 −m2
1 −m2

2 − λ1/2(p2, m2
1, m

2
2)

)

, (64)

In the case of p2 > (m1 +m2)
2, one can check that

p2 −m2
1 +m2

2 ± λ1/2 > 0 and − p2 −m2
1 +m2

2 ± λ1/2 < 0.

Hence,

ImF (p2;m2
1, m

2
2) = −πλ

1/2(p2, m2
1, m

2
2)

p2
Θ
(

p2 − (m1 +m2)
2
)

. (65)

It then follows that an alternate expression for eq. (57) is

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

− 2−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

+
λ1/2(p2, m2

1, m
2
2)

2p2

[

ln

(

p2 −m2
1 −m2

2 + λ1/2(p2, m2
1, m

2
2)

p2 −m2
1 −m2

2 − λ1/2(p2, m2
1, m

2
2)

)

− 2iπΘ
(

p2 − (m1 +m2)
2
)

]

,

for p2 6= 0 and λ ≡ λ(p2, m2
1, m

2
2) > 0 . (66)

One can perform one further simplification by noting that

p2 −m2
1 −m2

2 + λ1/2(p2, m2
1, m

2
2)

p2 −m2
1 −m2

2 − λ1/2(p2, m2
1, m

2
2)

=

(

[

p2 − (m1 −m2)
2
]1/2

+
[

p2 − (m1 +m2)
2
]1/2

[

p2 − (m1 −m2)2
]1/2 −

[

p2 − (m1 +m2)2
]1/2

)2

,

(67)
which is useful in the case of p2 > (m1 +m2)

2. Hence,
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F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

− 2−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

+
λ1/2(p2, m2

1, m
2
2)

p2

[

ln

(

[

p2 − (m1 −m2)
2
]1/2

+
[

p2 − (m1 +m2)
2
]1/2

[

p2 − (m1 −m2)2
]1/2 −

[

p2 − (m1 +m2)2
]1/2

)

− iπ

]

,

for p2 > (m1 +m2)
2. (68)

Likewise,

p2 −m2
1 −m2

2 + λ1/2(p2, m2
1, m

2
2)

p2 −m2
1 −m2

2 − λ1/2(p2, m2
1, m

2
2)

=

(

[

(m1 +m2)
2 − p2

]1/2
+
[

(m1 −m2)
2 − p2

]1/2

[

(m1 +m2)2 − p2
]1/2 −

[

(m1 −m2)2 − p2
]1/2

)2

,

(69)
which is useful in the case of p2 < (m1 −m2)

2. Hence,

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

− 2−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

+
λ1/2(p2, m2

1, m
2
2)

p2
ln

(

[

(m1 +m2)
2 − p2

]1/2
+
[

(m1 −m2)
2 − p2

]1/2

[

(m1 +m2)2 − p2
]1/2 −

[

(m1 −m2)2 − p2
]1/2

)

,

for p2 < (m1 −m2)
2 and p2 6= 0. (70)

One can also obtain expressions that are valid for p2 = (m1±m2)
2 by taking the appropriate

limits in eqs. (68) and (70). Since λ(p2, m2
1, m

2
2) → 0 in both limiting cases, we find

F (p2;m2
1, m

2
2) =



















1

m1 +m2

[

m1 ln

(

m2
1

µ2

)

+m2 ln

(

m2
2

µ2

)]

− 2 , for p2 = (m1 +m2)
2 ,

1

m1 −m2

[

m1 ln

(

m2
1

µ2

)

−m2 ln

(

m2
2

µ2

)]

− 2 , for p2 = (m1 −m2)
2 .

(71)
It is straightforward to check that these expressions match the expected result of eq. (58) for
p2 = (m1 ±m2)

2, respectively.
It is instructive to verify the results of eqs. (68) and (70) in the limit of m1 = m2 = m,

F (p2;m2, m2) =







































ln

(

m2

µ2

)

− 2 +

√

1− 4m2

p2
ln





√

1− 4m2

p2
+ 1

√

1− 4m2

p2
− 1



 , for p2 < 0

ln

(

m2

µ2

)

− 2 +

√

1− 4m2

p2



ln





1 +
√

1− 4m2

p2

1−
√

1− 4m2

p2



− iπ



 , for p2 > 4m2,

(72)
as expected in light of eqs. (90) and (98) of the Solutions to Problem Set 2.
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The limit of p2 → 0 of eq. (70) exists, and can be evaluated by expanding out the argument
of the logarithm in powers of p2. We leave this as an exercise for the reader. The end result
of this computation is

F (0;m2
1, m

2
2) =

1

m2
1 −m2

2

[

m2
1 ln

(

m2
1

µ2

)

−m2
2 ln

(

m2
2

µ2

)]

− 1 , for m1 6= m2,

F (0;m2, m2) = ln

(

m2

µ2

)

, (73)

in agreement with eqs. (59) and (60).
Finally, we can simplify the expression given by eq. (56) by employing the following relation

given on p. 58 of G&R,3

arctanx+ arctan y = arctan

(

x+ y

1− xy

)

+ π sgn(x)Θ(xy − 1) , for x, y ∈ R. (74)

Using this identity, eq. (56) yields,

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

− 2

+

[

−λ(p2, m2
1, m

2
2)
]1/2

p2

[

arctan

(

[

−λ(p2, m2
1, m

2
2)
]1/2

m2
1 +m2

2 − p2

)

+ πΘ(p2 −m2
1 −m2

2)

]

,

for (m1 −m2)
2 < p2 < (m1 +m2)

2. (75)

One further simplification is possible by employing the following relation given on p. 59 of
G&R,

2 arctanx = arctan

(

2x

1− x2

)

+ π sgn(x)Θ(|x| − 1) , for x ∈ R. (76)

Using this identity, it follows that

2 arctan

(

√

p2 − (m1 −m2)2
√

(m1 +m2)2 − p2

)

= arctan

(

[

−λ(p2, m2
1, m

2
2)
]1/2

m2
1 +m2

2 − p2

)

+πΘ(p2−m2
1−m2

2) , (77)

after making use of eq. (61). Hence, we end up with

F (p2;m2
1, m

2
2) = ln

(

m2
2

µ2

)

−
(

p2 +m2
1 −m2

2

2p2

)

ln

(

m2
2

m2
1

)

− 2

+
2
[

−λ(p2, m2
1, m

2
2)
]1/2

p2
arctan

(

√

p2 − (m1 −m2)2
√

(m1 +m2)2 − p2

)

,

for (m1 −m2)
2 < p2 < (m1 +m2)

2. (78)

3We use the notation G&R to refer to I.S. Gradshteyn and I.M. Ryzhikm Table of Integrals, Series, and

Products, Eighth Edition, edited by Daniel Zwillinger and Victor Moll (Academic Press, Waltham, MA, 2015).
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It is straightforward to check that the limiting behavior of eq. (78) as p2 → (m1 ± m2)
2

reproduces the results of eq. (71). As an aside, one could choose to present an equivalent
expression for eq. (78) by replacing the arctangent function with an arcsine function by using
the identity,

arctan

(

√

p2 − (m1 −m2)2
√

(m1 +m2)2 − p2

)

= arcsin

[

(

p2 − (m1 −m2)
2

4m1m2

)1/2
]

, (79)

which is valid for (m1 −m2)
2 < p2 < (m1 +m2)

2 [cf. formula 2. on p. 57 of G&R].
It is instructive to verify the result of eq. (78) in the limit of m1 = m2 = m,

F (p2;m2, m2) = ln

(

m2
2

µ2

)

− 2 + 2

(

4m2

p2
− 1

)1/2

arctan





1
√

4m2

p2
− 1



 , for 0 < p2 < 4m2,

(80)
as expected in light of eq. (81) of the Solutions to Problem Set 2.

(b) Show that Bµ takes the following form

Bµ(p;m2
1, m

2
2) = pµB1(p

2, m2
1, m

2
2) . (81)

Find an expression for the scalar function B1 in terms of B0 and A0 evaluated at the appro-
priate arguments.

In order to evaluate Bµ(p2;m2
1, m

2
2), we again employ Feynman’s trick. Plugging the result

of eq. (10) into eq. (3), interchanging the order of integration and employing the result of the
handout entitled, Useful formulae for computing one-loop integrals,
∫

dnq

(2π)n
qµ

(q2 + 2q ·p−m2 + iε)r
= −i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)
pµ , (82)

it follows that

Bµ(p2;m2
1, m

2
2) = −pµ(4πµ2)ǫ Γ(ǫ)

∫ 1

0

[

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

]−ǫ
x dx

= −pµ
(

1

ǫ
− γ + ln(4π)

)[

1

2
− ǫ

∫ 1

0

ln

(

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

µ2

)

x dx

]

= −pµ
{

1
2
∆−

∫ 1

0

ln

(

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

µ2

)

x dx

}

,

= pµB1(p
2;m2

1, m
2
2) , (83)

where

B1(p
2;m2

1, m
2
2) = −1

2
∆+

∫ 1

0

ln

(

p2x2 − (p2 +m2
1 −m2

2)x+m2
1 − iε

µ2

)

x dx . (84)

after expanding in ǫ and dropping all terms of O(ǫ).
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In order to express B1 in terms of B0 and A0, we return to the definition of Bµ given in
eq. (3). By multiplying both sides of eq. (83) by pµ, it follows that

B1(p
2;m2

1, m
2
2) =

1

p2
p·B(p2;m2

1, m
2
2) = − 16π2i

p2

∫

dnq

(2π)n
p·q

(q2 −m2
1 + iε)[(q + p)2 −m2

2 + iε]
.

(85)

To simplify this result, we shall employ the following algebraic identity,

p·q = 1
2

[

(q + p)2 − q2 − p2
]

= 1
2

[

(q + p)2 −m2
2 − (q2 −m2

1)− p2 +m2
2 −m2

1

]

. (86)

Plugging this result into eq. (85) yields,

B1(p
2;m2

1, m
2
2) = − 8π2i

p2

∫

dnq

(2π)n
1

q2 −m2
1 + iε

+
8π2i

p2

∫

dnq

(2π)n
1

(q + p)2 −m2
2 + iε

+
8π2i

p2
(p2 +m2

1 −m2
2)

∫

dnq

(2π)n
1

(q2 −m2
1 + iε)[(q + p)2 −m2

2 + iε]
. (87)

In the second integral above, we employ a new integration variable, q′ ≡ q+p. The end result
is,

B1(p
2;m2

1, m
2
2) =

1

2p2
[

A0(m
2
1)−A0(m

2
2)− (p2 +m2

1 −m2
2)B0(p

2;m2
1, m

2
2)
]

. (88)

(c) In analyzing a one-loop triangle graph, the following loop integral arises,

C0(p
2
1, p

2
2, p

2;m2
1, m

2
2, m

2
3) (89)

≡ −16π2i

∫

dnq

(2π)n
1

(q2 −m2
1 + iε)[(q + p1)2 −m2

2 + iε][(q + p1 + p2)2 −m2
3 + iε]

,

where p+ p1 + p2 = 0, with all external four-momenta pointing into the triangle.

Find an explicit expression for C0(0, 0, 0;m
2
1, m

2
2, m

2
3) under the assumption that all masses

mi are distinct. Repeat your analysis in two special cases: (i)m1 = m2 6= m3 and (ii)m1 = m2 = m3.

We employ a version of Feynman’s trick that is given in the handout, Useful formulae for

computing one-loop integrals, to write

1

(q2 −m2
1 + iε)[(q + p1)2 −m2

2 + iε][(q + p1 + p2)2 −m2
3 + iε]

= 2

∫ 1

0

x dx

∫ 1

0

dy
1

[

xy(q2 −m2
1) + x(1− y)[(q + p1)2 −m2

2] + (1− x)[(q + p1 + p2)2 −m2
3] + iε

]3 .

(90)

The denominator of the integrand simplifies to,

D = q2+2q ·
[

p1(1−xy)+p2(1−x)
]

+x
[

m2
3−m2

2−p22−2p1 ·p2
]

−xy(p21+m2
1−m2

2)+(p1+p2)
2−m2

3+iε .
(91)
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Hence, it follows that

C0(p
2
1, p

2
2, p

2;m2
1, m

2
2, m

2
3) = −32π2i

∫ 1

0

x dx

∫ 1

0

dy

∫

dnq

(2π)n
1

D3
, (92)

where D is given explicitly by eq. (91). In particular,

C0(0, 0, 0;m
2
1, m

2
2, m

2
3) = −32π2i

∫ 1

0

x dx

∫ 1

0

dy

∫

dnq

(2π)n
1

[

q2 − x(m2
2 −m2

3)− xy(m2
1 −m2

2)−m2
3 + iε

]3

= −
∫ 1

0

x dx

∫ 1

0

dy

x(m2
2 −m2

3) + xy(m2
1 −m2

2) +m2
3

, (93)

after employing eq. (5) and setting ǫ = 0. The integration over y is straightforward,

C0(0, 0, 0;m
2
1, m

2
2, m

2
3) = − 1

m2
1 −m2

2

∫ 1

0

ln

(

xm2
1 + (1− x)m2

3

xm2
2 + (1− x)m2

3

)

. (94)

Employing eq. (46),

C0(0, 0, 0;m
2
1, m

2
2, m

2
3) = − 1

m2
1 −m2

2

{

ln

(

m2
1

m2
2

)

+
m2

3

m2
1 −m2

3

ln

(

m2
1

m2
3

)

− m2
3

m2
2 −m2

3

ln

(

m2
2

m2
3

)}

=

(m2
1 −m2

3)(m
2
2 −m2

3) ln

(

m2
1

m2
2

)

+m2
3(m

2
2 −m2

3) ln

(

m2
1

m2
3

)

−m2
3(m

2
1 −m2

3) ln

(

m2
2

m2
3

)

(m2
1 −m2

2)(m
2
2 −m2

3)(m
2
3 −m2

1)

=
m2

1(m
2
2 −m2

3) lnm
2
1 +m2

2(m
2
3 −m2

1) lnm
2
2 +m2

3(m
2
1 −m2

2) lnm
2
3

(m2
1 −m2

2)(m
2
2 −m2

3)(m
2
3 −m2

1)
. (95)

An equivalent form for the above result appears often in the physics literature,

C0(0, 0, 0;m
2
1, m

2
2, m

2
3) =

m2
1m

2
2 ln (m

2
1/m

2
2) +m2

2m
2
3 ln (m

2
2/m

2
3) +m2

3m
2
1 ln (m

2
3/m

2
1)

(m2
1 −m2

2)(m
2
2 −m2

3)(m
2
3 −m2

1)
. (96)

Note that C0(0, 0, 0;m
2
1, m

2
2, m

2
3) given above is invariant under an arbitrary permutation of its

arguments, as expected after setting p1 = p2 = p = 0 in the definition of C0 given in eq. (89).
If m ≡ m1 = m2 6= m3, we return to eq. (93),

C0(0, 0, 0;m
2, m2, m2

3) = −
∫ 1

0

x dx

x(m2 −m2
3) +m2

3

= − 1

m2 −m2
3

∫ 1

0

x(m2 −m2
3) +m2

3 −m2
3

x(m2 −m2
3) +m2

3

dx

= − 1

m2 −m2
3

[

1−m2
3

∫ 1

0

dx

x(m2 −m2
3) +m2

3

]

= − 1

m2 −m2
3

[

1− m2
3

m2 −m2
3

ln

(

m2

m2
3

)]

. (97)

Finally, if m ≡ m1 = m2 = m3, then eq. (93) yields,

C0(0, 0, 0;m
2, m2, m2) = − 1

2m2
. (98)
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2. In QED, the renormalization group functions are:

β(e) = µ
deR
dµ

,

δ(e) = µ
daR
dµ

,

mRγm(e) = µ
dmR

dµ
,

γi(e) =
1
2
µ
∂

∂µ
lnZi (i = 2, 3) .

(a) Compute β(e), δ(e), γm(e), and γi(e) in the one-loop approximation, using the MS-
renormalization scheme.

In class, we showed that the bare and renormalized QED couplings are related by,

e = µǫZ1Z
−1
2 Z

−1/2
3 eR ,

where in this problem we shall use the subscript R to denote renormalized parameters, whereas
quantities without subscripts will denote bare parameters. Using the Ward-Takahashi identity
of QED which yields Z1 = Z2, it follows that

e = Z
−1/2
3 µǫeR .

The bare parameters are independent of µ. Hence,

0 = µ
de

dµ
= µ

d

dµ

(

Z
−1/2
3 µǫeR

)

.

In the MS renormalization scheme,

Z3 = 1 +
∞
∑

k=1

ak(eR)

ǫk
. (99)

Using the chain rule of differentiation,

ǫeRZ
−1/2
3 + β(eR, ǫ)

(

eR
dZ

−1/2
3

deR
+ Z

−1/2
3

)

= 0 ,

where

β(eR, ǫ) ≡ µ
deR
dµ

. (100)

Noting that

dZ
−1/2
3

deR
= −1

2
Z

−3/2
3

dZ3

deR
,

it follows that
[

β(eR, ǫ) + ǫeR − 1
2
eRβ(eR, ǫ)Z

−1
3

d

deR

]

Z3 = 0 . (101)
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Inserting the expansion of Z3 given in eq. (99), it follows that a solution that is consistent
with the 1/ǫ expansion of Z3 is

β(eR, ǫ) = −ǫeR + β(eR) , (102)

where β(eR) is independent of ǫ. In particular,

β(eR) = lim
ǫ→0

β(eR, ǫ) . (103)

Eq. (101) can therefore be written as
[

β(eR)− 1
2
eRβ(eR)Z

−1
3

d

deR
+ 1

2
ǫe2RZ

−1
3

d

deR

]

Z3 = 0 .

Inserting eq. (99), and performing a formal expansion in 1/ǫ, we deduce that all coefficients of
1/ǫk should vanish. Of particular interest to us here is the coefficient corresponding to k = 0.
In particular, we may take Z−1

3 = 1 in the coefficient of the k = 0 equation, in which case,

β(eR) +
1
2
e2R
da1
deR

= 0 . (104)

In class, we obtained the following one-loop result for Z3 in the MS renormalization scheme,

Z3 = 1− e2R
12π2ǫ

. (105)

That is, we can identify a1 = −e2R/(12π2), and eq. (104) yields

β(eR) =
e3R
12π2

, (106)

in the one-loop approximation.
Next we compute γm. The starting point is

m = ZmmR .

Again, we note that the bare mass is independent of µ. Hence,

0 = µ
dm

dµ
= µ

d

dµ

(

ZmmR

)

= mRµ
dZm

dµ
+ Zmµ

dmR

dµ
.

By definition,

mRγm(eR) = µ
dmR

dµ
.

Thus, using the chain rule, we can write

µ
deR
dµ

dZm

deR
+ γm(eR)Zm = 0 .

Using eqs. (100) and (102),

[

β(eR)− ǫeR
]dZm

deR
+ γm(eR)Zm = 0 . (107)
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In the MS renormalization scheme,

Zm = 1 +

∞
∑

k=1

bk(eR)

ǫk
. (108)

Inserting this expansion into eq. (107), we can extract the equation corresponding to k = 0,

γm(eR)− eR
db1
deR

= 0 . (109)

In class, we computed Zm in the one-loop approximation in the MS scheme,

Zm = 1− 3e2R
16π2ǫ

.

That is we can identify b1 = −3e2R/(16π
2), in which case eq. (109) yields

γm(eR) = − 3e2R
8π2

.

Next, we present the one-loop computation of

γi(eR) ≡ 1
2
µ
d

dµ
lnZi =

1
2
Z−1

i µ
dZi

dµ
, for i = 2, 3 . (110)

In the MS renormalization scheme,

Z2 = 1 +
∞
∑

k=1

ck(eR)

ǫk
. (111)

Thus, using the chain rule,

γ2(eR) =
1
2
Z2µ

deR
dµ

dZ2

deR
.

Using eqs. (100) and (102),

γ2(eR) =
1
2
Z2

[

β(eR)− ǫeR
] dZ2

deR
. (112)

Inserting eq. (111) into eq. (112), we can extract the equation corresponding to k = 0 by
setting Z2 = 1,

γ2(eR) = −1
2
eR
dc1
deR

. (113)

A similar analysis yields

γ3(eR) = −1
2
eR
da1
deR

. (114)

In class, we computed Z2 in the one-loop approximation in the MS scheme,

Z2 = 1− e2R
16π2ǫ

.

17



That is, we can identify c1 = −e2R/(16π2), and eq. (109) yields

γ2(eR) =
e2R
16π2

.

Likewise, using a1 = −e2R/(12π2) [as noted below eq. (105)],

γ3(eR) =
e2R
12π2

. (115)

Finally, we compute δ. The starting point is

a = ZaaR = Z3aR ,

where we have employed the Ward identity Za = Z3 derived in class. Hence, following the
well known procedure,

0 = µ
da

dµ
= µ

d

dµ

(

Z3aR
)

= µaR
dZ3

dµ
+ Z3µ

daR
dµ

.

By definition,

δ(eR) = µ
daR
dµ

.

Thus, it follows that

µaR
dZ3

dµ
+ δ(eR)Z3 = 0 .

Solving for δ(eR),

δ(eR) = −µaR
d

dµ
lnZ3 = −2aRγ3(eR) ,

after using eq. (110) for γ3(eR). Using eq. (115), it follows that in the one-loop approximation
in the MS renormalization scheme,

δ(eR) = −aRe
2
R

6π2
.

This completes the one-loop calculation of the renormalization group functions of QED in the
MS renormalization scheme.

(b) The running coupling constant in QED can be written as:

α(Q) =
3π

ln(Λ2/Q2)
, (116)

in the one loop approximation. Using the boundary condition α(µ) ≡ e2R/4π, express Λ in
terms of µ and eR. Show that Λ is a renormalization group invariant, that is:

µ
dΛ

dµ
= 0 .

Evaluate Λ numerically. What is the physical significance of Λ?

18



In class, we showed that the running coupling constant of QED in the one-loop approxi-
mation was given by

α(Q) =
αR

1− 2αR

3π
ln

(

Q

µ

) ,

where αR ≡ α(µ). Comparing this with eq. (116), it follows that

2

3π
ln

(

Λ

Q

)

=
1

αR

− 2

3π
ln

(

Q

µ

)

.

Simplify this expression yields
2

3π
ln

(

Λ

µ

)

=
1

αR
.

Hence,

Λ = µ exp

(

3π

2αR

)

.

To show that λ is formally independent of µ, we evaluate,

µ
dΛ

dµ
= µ exp

(

3π

2αR

)[

1 + 3
2
πµ

dα−1
R

dµ

]

. (117)

However, note that

µ
dα−1

R

dµ
= 4πµ

d

dµ

(

1

e2R

)

= − 8πµ

e3R

deR
dµ

= − 8πβ(eR)

e3R
= − 2

3π
,

where we have used eqs. (101) and (103), and have employed the one-loop approximation for
the β-function given in eq. (106). Inserting this result back in eq. (117), we end up with

µ
dΛ

dµ
= 0 .

Since Λ is independent of µ, we conclude that it is a physically measurable observable of QED.
To see what its numerical value, recall that eq. (143) of the Solutions to Problem Set 2 implies
that α(me) = αOS ≃ 1/137. It follows that

Λ = me exp
(

3
2
π ·137

)

≃ 10277 GeV .

This is the same Λ that was obtained in eq. (147) of the Solutions to Problem Set 2, which is
called the Landau pole and corresponds to the energy scale at which the one-loop approxima-
tion to the QED running coupling blows up. Indeed, Λ is a physical quantity that indicates
the energy scale at which the description of QED as a weakly coupled theory breaks down.

ADDITIONAL REMARKS:

The definition of Λ above is based on the one-loop approximation. In fact, it is not difficult
to define a µ-independent Λ to all orders in perturbation theory. We begin with the formal
definition of the running coupling,

s
∂e(s)

∂s
= β

(

e(s)
)

, where e(s = 1) = eR .
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Integrating this equation and putting s = Q/µ,

ln

(

Q

µ

)

=

∫ e(Q)

eR

de

β(e)
. (118)

Let us define the indefinite integral

G(e) ≡
∫ e de′

β(e′)
.

Then, eq. (118) can be rewritten as

ln

(

Q

µ

)

= G
(

e(Q)
)

−G(eR) . (119)

We now define Λ via the equation

ln

(

Λ

µ

)

= −G(eR) .

Inserting this result back into eq. (119) yields

ln

(

Q

Λ

)

= G
(

e(Q)
)

. (120)

No perturbative approximation has been made here. Moreover, Λ defined via eq. (120) is
explicitly independent of µ. Finally, it is straightforward to check that in the one-loop ap-
proximation, we recover our previous results.

(c) Find the relation between the MS mass parameter, mR, and the physical electron mass
me (i.e., the pole mass) in the one-loop approximation.

In class, we derived

Σ(p) = −/p

{

Z2 − 1 +
αR

2π
(4π)ǫ Γ(ǫ)(1− ǫ)

∫ 1

0

dx (1− x)x−ǫ

[

m2
R − p2(1− x)

µ2

]−ǫ
}

+mR

{

ZmZ2 − 1 +
αR

2π
(4π)ǫ Γ(ǫ)(2− ǫ)

∫ 1

0

dx x−ǫ

[

m2
R − p2(1− x)

µ2

]−ǫ
}

. (121)

In the MS renormalization scheme,

Z2 = 1− αR

4π
(4π)ǫ Γ(ǫ) ,

Z2Zm = 1− αR

4π
(4π)ǫ Γ(ǫ) .
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Inserting these results back into eq. (121) yields,

Σ(p) = −/p
αR

4π
(4π)ǫ Γ(ǫ)(A− 1) +

mRαR

π
(4π)ǫ Γ(ǫ)(B − 1) , (122)

where A and B are the following loop integrals,

A ≡ 2(1− ǫ)

∫ 1

0

dx (1− x)x−ǫ

[

m2
R − p2(1− x)

µ2

]−ǫ

B ≡ (1− 1
2
ǫ)

∫ 1

0

dx x−ǫ

[

m2
R − p2(1− x)

µ2

]−ǫ

.

Expanding about ǫ = 0,

A = 1− ǫ

{

1 + 2

∫ 1

0

(1− x) ln x dx+ 2

∫ 1

0

(1− x) ln

[

m2
R − p2(1− x)

µ2

]

dx

}

+O(ǫ2) ,

B = 1− ǫ

{

1

2
+

∫ 1

0

ln x dx+

∫ 1

0

ln

[

m2
R − p2(1− x)

µ2

]

dx

}

+O(ǫ2) .

We record below the relevant integrals:
∫ 1

0

(1− x) ln x = −3

4
,

∫ 1

0

ln x dx = −1 ,

∫ 1

0

ln

[

m2
R − p2(1− x)

µ2

]

dx =
m2

R

p2
ln

(

m2
R

µ2

)

+

(

1− m2
R

p2

)

ln

(

m2
R − p2

µ2

)

− 1 .

∫ 1

0

(1− x) ln

[

m2
R − p2(1− x)

µ2

]

dx =
m2

R

2p4
ln

(

m2
R

µ2

)

+
1

2

(

1− m4
R

p4

)

ln

(

m2
R − p2

µ2

)

− 1

4
− m2

R

2p2
.

Inserting these results into the expressions for A and B and performing some simplification
yields,

A = 1 + ǫ

[

1 +
m2

R

p2
− ln

(

m2
R − p2

µ2

)

+
m4

R

p4
ln

(

1− p2

m2
R

)]

+O(ǫ2) ,

B = 1 + ǫ

[

3

2
− ln

(

m2
R − p2

µ2

)

+
m2

R

p2
ln

(

1− p2

m2
R

)]

+O(ǫ2) .

Using these explicit expressions for A and B in eq. (122),

Σ(p) = −/p
αR

4π

[

1 +
m2

R

p2
− ln

(

m2
R − p2

µ2

)

+
m4

R

p4
ln

(

1− p2

m2
R

)]

+
mRαR

π

[

3

2
− ln

(

m2
R − p2

µ2

)

+
m2

R

p2
ln

(

1− p2

m2
R

)]

,

after taking the ǫ→ 0 limit.
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The one-loop correction to the inverse propagator is

Γ(2)(p) = /p−mR − Σ(p)

= /p

{

1 +
αR

4π

[

1 +
m2

R

p2
− ln

(

m2
R − p2

µ2

)

+
m4

R

p4
ln

(

1− p2

m2
R

)]}

−mR

{

1 +
αR

π

[

3

2
− ln

(

m2
R − p2

µ2

)

+
m2

R

p2
ln

(

1− p2

m2
R

)]}

. (123)

In this expression mR ≡ mR(µ) is the renormalized mass, which differs from the physical pole
mass. The definition of the MS mass is obtained by setting µ = mR. That is, the MS mass is
defined as mR(mR). Thus, we set µ = mR in eq. (123) and obtain,

Γ(2)(p) = /p

{

1 +
αR

4π

[

1 +
m2

R

p2
−
(

1− m4
R

p4

)

ln

(

1− p2

m2
R

)]}

−mR

{

1 +
αR

π

[

3

2
−
(

1− m2
R

p2

)

ln

(

1− p2

m2
R

)]}

, (124)

where mR ≡ mR(mR).
The physical pole mass, denoted by me, corresponds to a zero of the inverse propagator.

That is, me is defined by the condition

Γ(2)(p)

∣

∣

∣

∣

/p=me

= 0 . (125)

One can expand the MS mass perturbatively in terms of the physical mass me,

mR(mR) = me

[

1 +
αR

π
κ+O(α2

R)
]

. (126)

Inserting this into eq. (124) and imposing the condition specified in eq. (125), we can solve
for κ. At one-loop accuracy,

Γ(2)(p) = /p

{

1 +
αR

4π

[

1 +
m2

e

p2
−
(

1− m4
e

p4

)

ln

(

1− p2

m2
e

)]}

−me

{

1 +
αR

π

[

κ+
3

2
−
(

1− m2
e

p2

)

ln

(

1− p2

m2
e

)]}

, (127)

Setting /p = m and p2 = /p/p = m2, we end up with

αR

2π
− αR

π

(

κ + 3
2

)

= 0 .

It follows that κ = −1. Inserting this result back into eq. (126), we conclude that the relation
between the MS mass and the physical mass me is given to one-loop accuracy by

mR(mR) = me

(

1− αR

π

)

.

The inverse relation can also be obtained to one-loop accuracy,

me = mR(mR)
(

1 +
αR

π

)

.
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3. In this problem, you will investigate the behavior of the renormalization group functions in
QED under a change of renormalization scheme. You should assume throughout the problem
that you are working in a class of renormalization schemes that are mass-independent. In
particular, if e1 and e2 are coupling constants defined in two different schemes, then I can
expand one in the other, e.g.,

e1 = e2 + Ae32 + . . . (128)

for some appropriate mass-independent coefficient A.

(a) Show that there is a one-to-one correspondence between the fixed points [i.e., the zeros
of β(e)] of both schemes, and the value of the first derivative of β(e) at the corresponding
fixed point is independent of scheme.

In this problem, we consider a class of mass-independent renormalization schemes. Then,
if e1 and e2 are coupling constants in two different renormalization schemes, then it must
be possible to relate the two couplings as indicated in eq. (128). Using the definition of the
β-function, it follows that the corresponding β-functions obtained in the two renormalization
schemes are,

β1(e1) = µ
de1
dµ

, (129)

β2(e2) = µ
de2
dµ

= µ
de1
dµ

de2
de1

= β1(e1)
de2
de1

. (130)

Hence, if there exists a zero of β1(e1), then there is a corresponding zero in β2(e2), since
de2/de1 does not blow up in light of eq. (128). In particular, if β1(e

∗

1) = 0, then β2(e
∗

2) = 0,
where e∗1 and e∗2 are perturbatively related by eq. (128).

If we take the derivative of the β-function with respect to the coupling and evaluate it at
the fixed point (where the β function vanishes), then

dβ2
de2

∣

∣

∣

∣

e2=e∗
2

=
d

de2

[

β1(e1)
de2
de1

]∣

∣

∣

∣

e2=e∗
2

=
dβ1(e1)

de2

de2
de1

∣

∣

∣

∣

e2=e∗
2

+ β1(e1)
d

de2

(

de2
de1

)∣

∣

∣

∣

e2=e∗
2

=
dβ1(e1)

de1

de1
de2

de2
de1

∣

∣

∣

∣

e2=e∗
2

+ β1(e1)
d

de2

(

de2
de1

)∣

∣

∣

∣

e2=e∗
2

=
dβ1(e1)

de1

∣

∣

∣

∣

e1=e∗
1

+ β1(e
∗

1)
d

de2

(

de2
de1

)∣

∣

∣

∣

e2=e∗
2

. (131)

where we have used that result obtained above that e1 = e∗1 when e2 = e∗2. Since β1(e
∗

1) = 0,
eq. (131) yields

dβ2
de2

∣

∣

∣

∣

e2=e∗
2

=
dβ1(e1)

de1

∣

∣

∣

∣

e1=e∗
1

, (132)

as was to be shown.

(b) Show that the values of γm and γi (i = 2, 3) at the corresponding fixed points [as
defined in part (a)] are independent of scheme.
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Changing renormalization schemes amounts to a finite renormalization. That is, the ratio
of renormalization constants defined in two different schemes must be finite and perturbatively
related. Schematically, one can write,

Zm1(e1)

Zm2(e2)
= 1 + Ame

2
2 + · · · , (133)

Zi1(e1)

Zi2(e2)
= 1 + Aie

2
2 + · · · , (134)

where Zm1 and Zm2 are the multiplicative mass renormalization constants in the two schemes
and Zi1 and Zi2 are the wave function renormalization constants in the two schemes (for
i = 2, 3 corresponding to the electron and photon wave function renormalization constants,
respectively).

By definition,

mRγm = µ
dmR

dµ
, γi =

1
2
µ
d

dµ
lnZi , for i = 2, 3. (135)

Hence,

γi1(e1) =
1
2
µ
d

dµ
lnZi1(e1) =

1
2
µ
d

dµ

[

lnZi2(e2) + ln(1 + Aie
2
2 + · · · )

]

= γi2(e2) +
1
2
Ai µ

d

dµ
(e22 + · · · ) = γi2(e2) + β2(e2)

[

Aie2 + · · ·
]

. (136)

At the fixed point, β2(e
∗

2) = 0, and it follows that

γi1(e
∗

1) = γi2(e
∗

2) , (137)

since e1 = e∗1 when e2 = e∗2 as noted in part (a).
A similar analysis applies in the case of γm. Using m = ZmmR, it follows that

0 = µ
dm

dµ
= µ

d

dµ
(ZmmR) = mRµ

dZm

dµ
+ Zmµ

dmR

dµ
= mRµ

dZm

dµ
+mRγmZm . (138)

Hence,

γm = − µ

Zm

dZm

dµ
= −µ d

dµ
lnZm , (139)

which has a similar form to the definition of γi given in eq. (135). Thus, we can simply repeat
the steps given in eqs. (136) and (137) and conclude that

γm1(e
∗

1) = γm2(e
∗

2) , (140)

(c) One can compute β(e) as a power series in e in perturbation theory. Show that the
coefficients of the first two terms are independent of scheme, but the coefficient of all succeeding
terms are scheme-dependent.

The perturbative expansion of the QED β function has the form,

β1(e1) = b0e
3
1 + b1e

5
1 +O(e71) . (141)
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Then, as noted in part (a),

β2(e2) = β1(e1)
de2
de1

. (142)

Using eq. (128),
de2
de1

=
1

de1/de2
=

1

1 + 3Ae22 + · · · = 1− 3Ae22 + · · · . (143)

Plugging this result back into eq. (142),

β2(e2) = (b0e
3
1 + b1e

5
1 + · · · )(1− 3Ae22 + · · · )

=
[

b0(e2 + Ae32 + · · · )3 + b1(e2 + Ae32 + · · · )5 + · · ·
]

(1− 3Ae22 + · · · )
=
[

b0e
3
2(1 + 3Ae22) + b1e

5
2

]

(1− 3Ae22) +O(e72)

= b0e
3
2 + b1e

5
2 +O(e72) . (144)

That is, the first two coefficients of the β-function are scheme-independent.

(d) Likewise, if one computes γm and γi (i = 2, 3) in perturbation theory, show that only the
leading terms are scheme-independent, whereas all higher order terms are scheme-dependent.

In eq. (136), we obtained

γi1(e1) = γi2(e2) + β2(e2)
[

Aie2 +O(e32)
]

. (145)

The perturbative expansion of the QED γi functions have the form,

γi2(e2) = γ0e
2
2 +O(e42) . (146)

Eqs. (145) and (146) then yield,

γi1(e1) = γ0e
2
2 +O(e42) +

[

b0e
3
2 +O(e52)

][

Aie2 +O(e32)
]

, (147)

after employing eq. (144). If we now use eq. (128) to express the right hand side of eq. (147)
in terms of e1, it follows that

γi1(e1) = γ0e
2
1 +O(e41) , (148)

where the O(e41) terms clearly differ from the O(e42) terms in eq. (146). A similar deriva-
tion leads to the same conclusion regarding γm. Thus, only the lowest order term in the
perturbative expansion of γm and γi (i = 2, 3) are scheme-independent.

4. Consider QED coupled to a neutral scalar field:

L = LQED + 1
2
∂µφ∂

µφ− 1
2
m2φ2 − λ

4!
φ4 − gψψφ . (149)

Define a separate β-function of each coupling constant: βe, βg and βλ.
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The model described by eq. (149) possesses three couplings: e, λ and g. The corresponding
renormalization constants can be defined as follows,

φ = Z
1/2
φ φR , (150)

λ = µ2ǫZλλR , (151)

ψ = Z
1/2
2 ψR , (152)

Aµ = Z
1/2
3 Aµ

R , (153)

e = µǫZ1Z
−1
2 Z

−1/2
3 eR , (154)

where renormalized quantities are designated with a subscript R, whereas bare quantities have
no corresponding subscript. In addition, it is convenient to introduce the vertex renormaliza-
tion constant Z4, which is defined such that

gψψφ = µǫZ4gRψRψRφR . (155)

However the left hand side of eq. (155) can also be rewritten as,

gψψφ = gZ2Z
1/2
φ ψRψRφR . (156)

Hence, it follows that
g = µǫZ4Z

−1
2 Z

−1/2
φ gR . (157)

(a) Is the QED Ward identity, Z1 = Z2, modified in this theory? At one-loop, will βe be
the same or different from what you obtained in problem 2?

The Ward identity, Z1 = Z2 is not modified. There are many ways to see this. For
example, consider the derivation of the Ward identity presented in the class handout entitled
Current Conservation and the QED Ward Identity. The addition of the new terms added to
the QED Lagrangian given in eq. (149) does not modify the gauge symmetry since the field
φ is neutral. In particular, the conserved Noether current, jµ(x) = −eψ̄γµψ is unchanged,
Hence, the derivation of Z1 = Z2 given in this class handout is not modified. Note that the
QED computations of Z1 and Z2 receive additional contributions from the exchange of the
scalar field. However, as shown in the Appendix to this problem, the scalar contributions to
Z1 and Z2 are equal.

Employing Z1 = Z2 in eq. (154) yields,

e = µǫZ
−1/2
3 eR . (158)

Hence, the derivation of eq. (106) is unchanged, since there are no contributions from the
neutral scalar to the self energy of the photon in the one-loop approximation that would
modify the computation of Z3.

(b) Compute βg and βλ, assuming that λ is of order g2. Work consistently to lowest
nontrivial order in perturbation theory.
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We now turn to the computation of βg and βλ, assuming that λ is of order g2. To compute
these quantities, we will need to compute Zφ, Zλ, Z2, Z4. In fact, we have already computed
Zφ in problem 1 of Problem Set 2. Thus, in the MS renormalization scheme, eq. (12) of the
Solutions to Problem Set 2 yields,

Zφ = 1− g2R
8π2ǫ

. (159)

Consider the computation of Zλ, which requires us to examine the Green function with
four external scalar fields. The relevant Feynman diagrams in the one-loop approximation
are:

+ crossed

×

Dashed lines represent scalars and the directed arrows represent fermions. In class, we have
already evaluated the four diagrams exhibited in the first line above (consisting of the tree-
level contribution plus the one-loop s, t and u-channel contributions, respectively, where
“crossed” indicates the u-channel diagram (not shown) in which two external scalar lines of
the t-channel graph are crossed. The diagram with the + at the vertex is the four-point
counterterm. In order to compute Zλ in the MS renormalization scheme, all we must do is
isolate the divergences of the one-loop diagrams.

Let us focus on the first box diagram above,

p1 p3

p2 p4

q

q + p1 + p2

q + p1 q − p3

where the four-momenta are labeled and flow in the direction of the arrows as indicated.
Employing the Feynman rules, the diagram above is given by

−(−igRµǫ)4
∫

dnq

(2π)n
Tr

{(

i(q/+M)

q2 −M2

)(

i(q/− /p3 +M)

(q − p3)2 −M2

)(

i(q/+ /p1 + /p2 +M)

(q + p1 + p2)2 −M2

)(

i(q/ + /p1 +M)

(q + p1)2 −M2

)}

,

(160)

27



where we have included an overall minus sign for the closed fermion loop. In eq. (160), M
denotes the fermion mass.4 In order to identify the divergent term of this loop integral, it is
sufficient to retain only the q/ terms in the numerator. Noting that

Tr q/q/q/q/ = 4q4, (161)

it suffices to examine,

−4g4Rµ
4ǫ

∫

dnq

(2π)n
q4

(q2 −M2)
[

(q − p3)2 −M2
][

(q + p1 + p2)2 −M2
][

(q + p1)2 −M2
] . (162)

Writing q4 = q2(q2 −M2) +M2q2, we can drop the M2q2 piece, which does not contribute to
the divergence, and likewise we can set µǫ = 1. We are then left with

−4g4R

∫

dnq

(2π)n
q2

[

(q − p3)2 −M2
][

(q + p1 + p2)2 −M2
][

(q + p1)2 −M2
] . (163)

Writing q2 = (q + p1 + p2)
2 −M2 +M2 − q ·(p1 + p2)− (p1 + p2)

2, we can drop the last three
terms, which do not contribute to the divergence. What remains is

−4g4R

∫

dnq

(2π)n
1

[

(q − p3)2 −M2
][

(q + p1)2 −M2
] . (164)

Finally, changing the integration variable, q → q − p3 yields,

−4g4R

∫

dnq

(2π)n
1

(q2 −M2)
[

(q + p1 + p3)2 −M2
] = − ig4R

4π2
B0

(

(p1 + p3)
2;M2,M2) , (165)

where the Passarino-Veltman function, B0 is defined in eq. (2). In light of eqs. (4) and (55),
it follows that the divergent part of the loop integral given in eq. (160) is

− ig4R
4π2ǫ

. (166)

It is straightforward to show that the second box diagram (in which the arrows of the fermion
lines are reversed) yields the same divergent result given in eq. (166).

The divergence contributed by the pure scalar graphs was computed in class, so we just
record that result here,

−iλR
(

1− 3λR
32π2ǫ

)

, (167)

where the term proportional to 1 corresponds to the tree diagram and the divergence originates
from the sum of the one-loop s, t and u channel diagrams, where each of the three diagrams
contributes the same divergence. Finally, we add the diagram that contains the counterterm,
whose Feynman rule was given in class by,

−iλRµ2ǫ(ZλZ
2
φ − 1) . (168)

4For notational simplicity, we omit the usual iε factors that appear in the denominators of the propagator
factors.
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Collecting all of the results obtained above, the −1 in eq. (168) cancels the tree-level result,
and we are left with,

iΓ(4) = −iλR
(

ZλZ
2
φ −

3λR
32π2ǫ

)

− ig4R
2π2ǫ

+ finite terms , (169)

where Zφ is given in eq. (159). Moreover, at tree-level, iΓ
(4)
0 = −iλR. Hence, inserting the

result for Zφ and working consistently within the one-loop approximation, it follows that,

iΓ(4) = −iλR
(

Zλ −
g2R
4π2ǫ

− 3λR
32π2ǫ

)

− ig4R
2π2ǫ

+ finite terms . (170)

Note that in obtaining this result, we used g2RZλ = g2R, since the terms omitted are higher
order in the perturbation theory. Since by assumption of the problem, λR is of order g2R, we
see that all terms in eq. (170) are of the same order in the coupling.

The MS renormalization procedure instructs us to choose Zλ such that the divergences
cancel in iΓ(4). Thus, we conclude that

Zλ = 1 +
1

ǫ

(

3λ2R
32π2

+
g2R
4π2

− g4R
2π2λR

)

. (171)

Next, consider the computation of Z2, which can be obtained by examining the fermion
self-energy graphs. The relevant Feynman diagrams in the one-loop approximation are:

×

The first diagram was computed in class. In the MS renormalization scheme, it yielded

i/p
e2R

16π2ǫ
− iM

e2R
4π2ǫ

, (172)

where M is the fermion mass. Thus, we focus on the scalar exchange diagram,

p p
q

q − p

which yields,

(−igRµǫ)2
∫

dnq

(2π)n

(

i(q/+M)

q2 −M2

)

(

i
[

(q − p)2 −m2
]

)

. (173)
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Employing the Passarino-Veltman functions defined in eqs. (2) and (3), it follows that

g2Rµ
2ǫ

∫

dnq

(2π)n
q/+M

(q2 −M2)
[

(q − p)2 −m2
] =

ig2Rµ
2ǫ

16π2

[

MB0(p
2;M,m)− /pB1(p

2;M,m)
]

=
ig2R
16π2ǫ

(

M + 1
2
/p
)

+ finite terms , (174)

in light of eqs. (4), (55) and (85).
Finally, we add the diagram that contains the counterterm, whose Feynman rule was given

in class by,
i/p(Z2 − 1)− iM(ZmZ2 − 1) . (175)

Collecting all of the results obtained above, the factors of −1 in eq. (175) cancel the tree-level
result, and we are left with,

iΓ(2)(p) = i/p

[

Z2 +
e2R

16π2ǫ
+

g2R
32π2ǫ

]

− iM

[

ZmZ2 +
e2R
4π2ǫ

− g2R
16π2ǫ

]

+ finite terms . (176)

The MS renormalization procedure instructs us to choose Z2 and Zm such that the diver-
gences cancel in iΓ(2). Moreover, at tree-level, iΓ(2)(p) is equal to the negative of the inverse
tree-level fermion propagator, i(/p−M). Thus, we conclude that

Z2 = 1− e2R
16π2ǫ

− g2R
32π2ǫ

. (177)

We will not need to make use of the expression for Zm, so we do not record its result here.
The final renormalization constant we must evaluate is Z4. The relevant Feynman diagrams

in the one-loop approximation are:

×

We first focus on the photon exchange graph,

p p′

p+ q p′ + q

q

k

which, in the Feynman gauge, is given by

(−igRµǫ)(−ieRµǫ)2
∫

dnq

(2π)n
γβ

(

i(/p′ + q/) +M

(p′ + q)2 −M2

)(

i(/p+ q/) +M

(p+ q)2 −M2

)

γα

(−igαβ
q2

)

. (178)
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The divergent contribution arises due to the term (γβq/q/γα)g
αβ = nq2 which appears in the

numerator of the integrand. Moreover, we do not change the divergent contribution by setting
n = 4, µǫ = 1 and replacing this factor of q2 with (p′ + q)2 −M2, since the extra terms only
contribute to the finite part of the integral. This allows us to cancel one of the denominators.
We end up with

−4gRe
2
R

∫

dnq

(2π)n
1

q2
[

(q + p)2 −M2
] = −igRe

2
R

4π2
B0(p

2, 0,M2) = −igRe
2
R

4π2ǫ
+ finite terms. (179)

Next, we focus on the scalar exchange graph,

p p′

p+ q p′ + q

q

k

which is given by

(−igRµǫ)3
∫

dnq

(2π)n

(

i(/p′ + q/) +M

(p′ + q)2 −M2

)(

i(/p+ q/) +M

(p+ q)2 −M2

)(

i

q2 −m2

)

. (180)

The divergent contribution arises due to q/q/ = q2 which appears in the numerator of the
integrand. Moreover, we do not change the divergent contribution by setting µǫ = 1 and
replacing this factor of q2 with (p′ + q)2 −M2, since the extra terms only contribute to the
finite part of the integral. This allows us to cancel one of the denominators. We end up with

g3R

∫

dnq

(2π)n
1

(q2 −m2)
[

(q + p)2 −M2
] =

ig3R
16π2

B0(p
2, m2,M2) =

ig3R
16π2ǫ

+ finite terms. (181)

Finally, we add the diagram that contains the counterterm. The Feynman rule for the
fermion-fermion-scalar vertex counterterm is easily obtained (using the same method employed
in class),

−iµǫgR(Z4 − 1) . (182)

Collecting all of the results obtained above, the −1 in eq. (182) cancels the tree-level result,
and we are left with,

iΓ(3)(p,−p′, k) = −igRZ4 −
igRe

2
R

4πǫ
+

ig3R
16π2ǫ

+ finite terms . (183)

The MS renormalization procedure instructs us to choose Z4 such that the divergences
cancel in iΓ(3). Moreover, at tree-level, iΓ

(3)
0 (p) = −igR. Hence, it follows that

Z4 = 1 +
g2R

16π2ǫ
− e2R

4π2ǫ
. (184)
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It is convenient to introduce one additional renormalization constant,

g = µǫZggR , (185)

In light of eq. (157), it follows that

Zg = Z4Z
−1
2 Z

−1/2
φ = 1 +

5g2R
32π2ǫ

− 3e2R
16πǫ

, (186)

after making use of eqs. (159), (177) and (184).
We are now ready to compute the β functions, βe, βg and βλ in the one loop approximation.

Before proceeding with the calculation, it is convenient to summarize the results obtained
above that provide the ingredients necessary for computing all the β-functions. The relations
between the bare and the renormalized couplings are

e = = µǫZ
−1/2
3 eR , (187)

g = µǫZ4Z
−1
2 Z

−1/2
φ gR = µǫZggR , (188)

λ = µ2ǫZλλR , (189)

where

Z3 = 1− e2R
12π2ǫ

, (190)

Z4 = 1 +
g2R

16π2ǫ
− e2R

4π2ǫ
, (191)

Z2 = 1− e2R
16π2ǫ

− g2R
32π2ǫ

, (192)

Zφ = 1− g2R
8π2ǫ

, (193)

Zg = Z4Z
−1
2 Z

−1/2
φ = 1 +

5g2R
32π2ǫ

− 3e2R
16πǫ

, (194)

Zλ = 1 +
1

ǫ

(

3λ2R
32π2

+
g2R
4π2

− g4R
2π2λR

)

. (195)

First, in light of part (a), the calculation of βe is unchanged from the calculation performed
in problem 2. Hence, we simply quote the result obtained in eq. (106),

β(eR) =
e3R
12π2

. (196)

Second, in light of eqs. (188) and (194), we see that βg is a function of gR and eR. Thus,
we define,

βg(gR, eR, ǫ) ≡ µ
dgR
dµ

. (197)

The bare coupling is independent of µ. Thus, eq. (188) yields,

0 = µ
dg

dµ
= µ

d

dµ

(

µǫZggR
)

= ǫgRZg +

(

µ
dgR
dµ

∂

∂gR
+ µ

deR
dµ

∂

∂eR

)

(ZggR) , (198)

after employing the chain rule.
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As in the solution to problem 2, we follow eqs. (102) and (103) by writing,

β(eR, ǫ) = µ
deR
dµ

= −ǫeR + β(eR) , (199)

where β(eR) is independent of ǫ. In particular,

β(eR) = lim
ǫ→0

β(eR, ǫ) . (200)

Hence, eq. (198) yields,

[

ǫgR + βg(gR, eR, ǫ)
]

Zg + gRβg(gR, eR, ǫ)
∂Zg

∂gR
+ gR

[

βe(eR)− ǫeR
]∂Zg

∂eR
= 0 . (201)

Hence, analogous to eqs. (199) and (200),

βg(gR, eR, ǫ) = −ǫgR + βg(gR, eR) , (202)

where
βg(gR, eR) = lim

ǫ→0
βg(gR, eR, ǫ) . (203)

Hence, eqs. (201) and (202) yield,

βg(gR, eR)Zg + gR
[

βg(gR, eR)− ǫgR
]∂Zg

∂gR
+ gR

[

βe(eR)− ǫeR
]∂Zg

∂eR
= 0 . (204)

In the MS scheme, the renormalization constants have the following generic form,

Z = 1 +
∑

n

an
ǫn
. (205)

Thus, eq. (204) is a formal expansion in inverse powers of ǫ. The ǫ0 term of eq. (204) reads,

βg(gR, eR)− ǫg2R
∂Zg

∂gR
− ǫeRgR

∂Zg

∂eR
= 0 . (206)

Plugging in eq. (194) yields,

βg(gR, eR) =
gR
16π2

(

5g2R − 6e2R
)

. (207)

Finally, in light of eqs. (189) and (195), we see that βλ is a function of gR and λR. Thus,
we define,

βλ(gR, λR, ǫ) ≡ µ
dλR
dµ

. (208)

Again, the bare coupling is independent of µ. Thus, eq. (189) yields,

0 = µ
dλ

dµ
= µ

d

dµ

(

µ2ǫZλλR
)

= 2ǫλRZλ +

(

µ
dλ

dµ

∂

∂λR
+ µ

dgR
dµ

∂

∂gR

)

(

ZλλR
)

, (209)
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after employing the chain rule. It follows that

[

2ǫλR + βλ(gR, λR, ǫ)
]

Zλ + λRβλ(gR, λR, ǫ)
∂Zλ

∂λR
+ λRβg(gR, eR, ǫ)

∂Zλ

∂gR
= 0 . (210)

Hence, analogous to eqs. (202) and (203),

βλ(gR, eR, ǫ) = −2ǫλR + βλ(λR, gR) , (211)

where
βλ(λR, gR) = lim

ǫ→0
βλ(gR, λR, ǫ) . (212)

Eqs. (202), (210) and (211) yield,

βλ(λR, gR)Zλ + λR
[

βλ(λR, gR)− 2ǫλR
]∂Zλ

∂λR
+ λR

[

βg(gR, eR)− ǫgR
]∂Zλ

∂gR
= 0 . (213)

Eq. (213) is a formal expansion in inverse powers of ǫ. The ǫ0 term of eq. (204) reads,

βλ(λR, gR)− 2ǫλ2R
∂Zλ

∂λR
− ǫλRgR

∂Zλ

∂gR
= 0 . (214)

Plugging in eq. (195) yields,

βλ(λR, gR) =
3λ2R
16π2

+
λRg

2
R

2π2
− g4R
π2

. (215)

(c) The equations for βe, βg and βλ form a set of coupled differential equations for the
three running coupling constants. Identify the fixed points of these equations, and discuss
their significance.

In part (b), we obtained the following β-functions,

β(eR) =
e3R
12π2

, (216)

βg(gR, eR) =
gR
16π2

(

5g2R − 6e2R
)

, (217)

βλ(λR, gR) =
3λ2R
16π2

+
λRg

2
R

2π2
− g4R
π2

. (218)

The fixed points correspond to the values of the couplings where the β-functions vanish. For
βe, eR = 0 corresponds to the well-known infrared fixed point of QED, discussed in class.
Next, if we set βg = 0, we obtain two fixed points: one at gR = 0 and one at gR = (6/5)1/2eR.

Suppose we measure the couplings at some scale µ0. If gR/eR > (6/5)1/2 at the scale µ0,
then gR/eR = (6/5)1/2 is an attractive infrared fixed point. Alternatively, if gR/eR < (6/5)1/2

at the scale µ0, then gR will be driven toward zero in the ultraviolet regime and toward the
fixed point gR/eR = (6/5)1/2 in the infrared regime.
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Finally, solving the equation βλ(λR, gR) = 0 yields two solutions, which we shall denote by
λ = λ±, Explicitly,

λ+ = 4
3
g2R , λ− = −4g2R . (219)

Since the problem asks us to assume that g2R = O(λR), we see that both fixed points are
relevant. If at some scale µ0, we have 0 < λ(µ0) <

4
3
g2R, then βλ < 0 and λ will be driven

asymptotically to λ− = −4g2R in the ultraviolet regime. This result would be a disaster, since
λ− < 0 and a negative quartic scalar coupling implies that the scalar potential is unbounded
from below (implying that no ground state exists). On the other hand, if λ(µ0) >

4
3
g2R, then

βλ > 0, and the coupling λ becomes large in the ultraviolet regime, eventually diverging (in
analogy with the Landau pole of QED). Correspondingly, in the infrared regime, λ would be
driven to its positive fixed point, λ+ = 4

3
g2R.

Appendix: Proof that the scalar contributions do not modify Z1 = Z2

To compute the scalar contribution to Z1, we must compute the divergent contribution to
the following Feynman graph,

p p′

p+ q p′ + q

q

k

which is given by

(ieRµ
ǫ)(−igRµǫ)2

∫

dnq

(2π)n

(

i(/p′ + q/) +M

(p′ + q)2 −M2

)

γµ

(

i(/p+ q/) +M

(p+ q)2 −M2

)(

i

q2 −m2

)

. (220)

The divergent contribution arises due to

q/γµq/ = (2qµ − γµq/)q/ = 2qµqνγ
ν − γµq

2 , (221)

which appears in the numerator of the integrand. Moreover, we do not change the divergent
contribution by setting µǫ = 1, since the extra terms only contribute to the finite part of the
integral. Hence, we examine,

−eRg2Rγν
∫

dnq

(2π)n
2qµqν − q2gµν

(q2 −m2)
[

(p+ q)2 −M2
][

(p′ + q)2 −M2
] . (222)

Using eqs. (90) and (91), the above integral can be rewritten using Feynman’s trick as,

−2eRg
2
Rγ

ν

×
∫ 1

0

x dx

∫ 1

0

dy
2qµqν − q2gµν

[

q2 − 2q ·
[

p1x(1− y) + p′(1− x)
]

+ x(p2 − p′ 2)− xy(p2 +m2 −M2) + p′ 2 −M2
]3 .

(223)
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Using the result of the handout entitled, Useful formulae for computing one-loop integrals,

∫

dnq

(2π)n
qµqν

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 3)

Γ(r)

×
[

(ǫ+ r − 3)pµpν − 1
2
gµν(p2 +m2)

]

, (224)

and it follows that
∫

dnq

(2π)n
q2

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 3)

Γ(r)

×
[

(2ǫ+ r − 5)p2 − (2− ǫ)m2
]

. (225)

Thus,
∫

dnq

(2π)n
qµqν − q2gµν

(q2 + 2q ·p−m2 + iε)3
= − i

32π2ǫ
gµν + finite terms, (226)

and eq. (223) reduces to
ieRg

2
R

32π2ǫ
γµ + finite terms . (227)

The vertex counterterm yields
ieRγµ(Z1 − 1) . (228)

The factor of−1 above is canceled by the tree-level contribution to the vertex, iΓ
(3)
0 (p) = ieRγµ.

Combining the above results with the QED contribution to the one-loop vertex obtained
in class, we end up with,

iΓ(3)
µ = ieRγµ

[

Z1 +
e2R
16π2

+
g2R

32π2ǫ

]

. (229)

The MS renormalization procedure instructs us to choose Z1 such that the divergences cancel
in iΓ

(3)
µ . Thus, we conclude that

Z1 = 1− e2R
16π2

− g2R
32π2ǫ

. (230)

Comparing with eq. (177), we have confirmed that Z1 = Z2 is not modified by the scalar
contributions to Z1 and Z2.
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