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1. One way of defining ΛQCD (which does not depend on QCD perturbation theory) is as
follows. The running coupling constant, g(Q), is the solution to the equation

dg

dt
= β(g) , (1)

with boundary condition g(0) = g, where t ≡ ln(Q/µ), and µ is an arbitrary parameter with
dimensions of mass introduced by the renormalization procedure. To solve eq. (1), introduce
the indefinite integral

y(z) ≡
∫ z dz′

β(z′)
. (2)

Then, the solution to eq. (1) is
t = y(g)− y(g) .

Note that y(g) is just the integration constant that is fixed by the boundary condition for the
differential equation. We now define ΛQCD through the following equation:

y(g) ≡ −1
2
ln

(
Λ2

QCD

µ2

)
. (3)

(a) Working to lowest nontrivial order in QCD perturbation theory, show that ΛQCD defined
in eq. (3) coincides with the definition given in class.

In class, we defined Λ ≡ ΛQCD by the following equation obtained by employing the one-
loop β-function,

Λ2 = µ2 exp

( −4π

b0αs(µ)

)
, (4)

where b0 = 11 − 2
3
nF for QCD with an SU(3) color group and nF flavors of quarks, and

αs(µ) ≡ g2s(µ)/(4π).
To verify that this definition coincides with ΛQCD defined in eq. (3) in the one-loop ap-

proximation, recall that the one-loop QCD β-function is given by

β(gs) = − b0g
3
s

16π2
. (5)

Plugging this result into eq. (2) yields,

y(gs) = −16π2

b0

∫ gs dz

z3
=

8π2

b0g2s
. (6)

Solving eq. (3) for ΛQCD, we therefore obtain

Λ2
QCD = µ2e−2y(gs) = µ2 exp

( −16π2

b0g2s(µ)

)
= µ2 exp

( −4π

b0αs(µ)

)
, (7)

where gs ≡ gs(µ). Thus, we have confirmed eq. (4).
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(b) Show that ΛQCD defined in eq. (3) is independent of the arbitrary mass parameter µ.

Starting with eq. (7),
ΛQCD = µe−y(gs) . (8)

Taking a derivative with respect to µ then yields,

dΛQCD

dµ
= e−y(gs)

[
1− µ

dy

dµ

]
. (9)

Using the chain rule,

dy

dµ
=

dy

dgs

dgs
dµ

=
dgs
dµ

d

dgs

∫ gs dz

β(z)
=

1

β(gs)

dgs
dµ

. (10)

Recalling the definition of the β-function,

β(gs) = µ
dgs
dµ

, (11)

and inserting this result into eq. (10), it follows that

dy

dµ
=

1

µ
. (12)

Plugging this result back into eq. (9) yields,

dΛQCD

dµ
= 0 , (13)

as was to be shown.
Note that this proof does not rely on perturbation theory, and thus is completely general.

This means that eqs. (2) and (3) provide a non-perturbative definition of ΛQCD which is
independent of the arbitrary mass scale µ that is introduced by the renormalization procedure.

2. Consider an extension of QCD (called supersymmetric QCD), where we add to QCD a
color octet neutral Majorana fermion called the gluino (g̃), and color triplet scalar particles,
called squarks (q̃), which possess the same electroweak quantum numbers as the corresponding
quarks. Take all particles of this model to be massless. The squarks and gluinos possess the
following interactions and corresponding Feynman rules:

gq̃q̃ −igs(p1 + p2)µ T
a

ggq̃q̃ ig2s gµν(T
a
T

b + T
b
T

a)

g̃q̃q −igs

√
1
2
(1± γ5)T

a

gg̃g̃ −gsf
abcγµ

where in the gq̃q̃ vertex, a q̃ enters the vertex with momentum p1 and leaves with momen-
tum p2. In the rule for the gg̃g̃ vertex, a is the adjoint color index of the gluon and b (c) is the
adjoint color index of the gluino that leaves (enters) the vertex. In the rule for the g̃q̃q vertex,
use the positive (negative) sign if the outgoing q̃ is the partner of a right (left) handed quark,
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and vice versa for an incoming q̃. In particular, for every quark flavor, there are two corre-
sponding squark partners (called q̃R and q̃L). The gq̃q̃ Feynman rule applies to both gq̃Lq̃L
and to gq̃Rq̃R. However, there is no gq̃Lq̃R interaction since the gluon couples diagonally to
pairs of scalars or fermions. In your calculation, take the gauge group to be SU(N) with struc-
ture constants fabc and denote the generators in the defining (fundamental) representation of
SU(N) by T

a. (Of course, for QCD, one should take N = 3.)

(a) Using dimensional regularization and the MS renormalization scheme, compute the
lowest order contribution to the QCD β-function in a non-abelian gauge theory based on
SU(N) color coupled to nf quark flavors, 2nf squark partners and a gluino. This requires a
number of steps:

(i) Start with the result for Zg = Z1FZ
−1
2 Z

−1/2
3 derived in class for ordinary QCD. Draw

Feynman diagrams corresponding to the new supersymmetric contributions to Z1F , Z2

and Z3.

(ii) Argue that the one-loop supersymmetric contributions to Z1FZ
−1
2 cancel exactly. (Recall

that in QED, Z1FZ
−1
2 = 1.) As a result, one need only consider the supersymmetric

contributions to Z3.

(iii) Using the result for Z3 in ordinary QCD obtained in class, the gluino contribution to
Z3 can be obtained by inspection. Keep in mind that the gluino transforms under the
adjoint representation of SU(N) color. Moreover, the gluino is a Majorana fermion which
possesses half the number of degrees of freedom of a Dirac fermion. This yields an extra
factor of 1/2.

(iv) Thus, the only new computation required is the squark loop contribution to Z3. Compute
this contribution, and then combining this with the result of (iii), obtain the supersym-
metric QCD one-loop β-function.

In class, the one-loop QCD β-function, which is defined via eq. (5) was found to be
b0 =

11
3
N − 2

3
nF , in an SU(N) gauge theory with nF flavors of quarks. This was obtained by

identifying the residue of the ǫ−1 pole of the renormalization constant Zg in the MS renormal-
ization scheme,

Zg = Z1FZ
−1
2 Z

−1/2
3 = 1− αs

8πǫ

[
11
3
CA − 4

3
TFnF

]
, (14)

where the group theory factors for SU(N) are CA = N and TF = 1
2
. In general,

T
a

RT
a

R ≡ CR1dR , Tr(T a

RT
b

R) =
1
2
δab , (15)

in representation R, where 1dR is the dR×dR identity operator and dR is the dimension of the
representation. CA is the quadratic Casimir operator in the adjoint representation [CA = N
for SU(N)], and TF = 1

2
in the fundamental representation.

In order to compute the one-loop β-function of supersymmetric QCD, we must consider
the new contributions to Z1F , Z2 and Z3, respectively. We shall depict the squarks (q̃L and q̃R,
collectively denoted by q̃) with dashed lines, the gluinos by solid lines with no arrows (since
the gluino is a neutral Majorana color octet fermion), and as usual, we will denote the quarks
by solid lines with arrows denoted the direction of flow of the fermion number, and the gluons
by curly lines.
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First, the new diagrams contributing to the one-loop computation of Z1F are shown below,

g g

q̃ q̃ g̃ g̃

g̃ q̃

q q q q

where in the first diagram above one must sum over q̃Lq̃L and q̃Rq̃R intermediate states, while
in the second diagram above, one must sum the contributions from the q̃L and q̃R loops.

One new diagram, shown below, contributes to the one-loop computation of Z2,

q q
g̃

q̃

where again one must sum the contributions from the q̃L and q̃R loops.
Finally, the new diagrams contributing to the one-loop computation of Z3 are shown below,

g g
g̃

g̃

g g
q̃

q̃

g g

q̃

where in the second diagram above one must sum over the q̃Lq̃L and q̃Rq̃R intermediate states,
while in the third diagram above one must sum the contributions from the q̃L and q̃R loops.

Remarkably, the supersymmetric contributions to Z1FZ
−1
2 cancel exactly. Here is a slick

argument to explain why this occurs. Suppose one adds to the theory a new color triplet
quark Q but does not add the corresponding scalar superpartners. Gauge invariance requires
that the QQg interaction is exactly the same as the q̄qg interaction, with the same Feynman
rule, −igsγ

µ. This implies that
Zg = Z ′

1FZ
′−1
2 Z

−1/2
3 , (16)

where Z ′

1F is the Q̄Qg vertex counterterms and Z ′

2 is the wave function renormalization con-
stant for the field Q. Indeed, the statement that

Z1FZ
−1
2 Z

−1/2
3 = Z ′

1FZ
′ −1
2 Z

−1/2
3 , (17)

is a Slavnov-Taylor identity that is satisfied due to the gauge symmetry (in the same way

that Zg = Z1Z
−3/2
3 where Z1 is the ggg vertex counterterm and Z3 is the wave function

renormalization constant for the gluon, as a consequence of the gauge symmetry).
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The observation above implies that one can calculate Zg using eq. (16) instead of eq. (14).
If we now reconsider the change in Zg as a consequence of adding supersymmetric particles,
we see that there are no supersymmetric contributions to Z ′

1F or Z ′

2, since by assumption
no scalar superpartner exists for Q. On the other hand, the supersymmetric contributions
to Z3 exhibited in the diagrams above are all still present. That is, the supersymmetric
contributions to Z3 are unchanged due to the presence of the field Q. Since the calculation
of Zg cannot depend on whether eq. (14) or eq. (16) is employed, it follows that there are no

supersymmetric contributions to the product ZgZ
1/2
3 . Given that there are supersymmetric

contributions separately to Z1F and Z2, the only possible conclusion is that these contributions
exactly cancel in the product Z1FZ

−1
2 , as asserted above.

It is instructive to verify this conclusion by an explicit computation. To compute the
supersymmetric contributions to Z2 (denoted by (δZ2)SUSY below), we analyze the graph,

p p
q

q − p

Applying the Feynman rules yields

1
2
(−igsµ

ǫ
T

a)(−igsµ
ǫ
T

a)

{∫
dnq

(2π)n

(
(1− γ5)iq/(1 + γ5)

q2

)(
i

(q − p)2

)

+

∫
dnq

(2π)n

(
(1 + γ5)iq/(1− γ5)

q2

)(
i

(q − p)2

)}
, (18)

after including contributions from both q̃L and q̃R (under the assumption that the squarks
and gluinos are massless). Although one might worry about the presence of γ5 in dimensional
regularization, this is an example where we can assume that γ5 anticommutes with γµ without
fear of inconsistencies. When the two integrals are added the γ5 disappears, and we are left
with,

8παsCFµ
2ǫγµ

∫
dnq

(2π)n
qµ

q2(q − p)2
=

iαsCFµ
2ǫ

2π
γµBµ(−p; 0, 0) = −iαsCFµ

2ǫ

2π
/pB1(p

2; 0, 0)

=
iαsCF

4πǫ
/p+ finite terms , (19)

after employing T
a
T

a = CF1N [where CF = (N2 − 1)/(2N) in the case of an SU(N) gauge
theory] and putting g2s = 4παs. Adding the counterterm,

i/p(Z2 − 1) , (20)

and noting that the factor of −1 cancels the tree-level result, it follows that

(δZ2)SUSY = −iαsCF

4πǫ
. (21)

Next we examine the Feynman graphs contributing to the vertex correction. The first
graph is exhibited below.
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k, a

p1 − q p2 − q

q

p1 p2

Applying the Feynman rules yields,

1
2
(−igsµ

ǫ
T

b)(−igsµ
ǫ
T

a)(−igsµ
ǫ
T

b)

×
{∫

dnq

(2π)n

(
(1− γ5)iq/(1 + γ5)

q2

)(
i

(q − p1)2

)(
i

(q − p2)2

)
(p1 + p2 − 2qµ)

+

∫
dnq

(2π)n

(
(1 + γ5)iq/(1− γ5)

q2

)(
i

(q − p1)2

)(
i

(q − p2)2

)
(p1 + p2 − 2qµ)

}
,

after including contributions from both q̃L and q̃R. When the two integrals are added the γ5
disappears, and we are left with,

−16παs(T
b
T

a
T

b)gsγ
ν

∫
dnq

(2π)n
qµqν

q2(q − p1)2(q − p2)2
+ finite terms

= −32παs(T
b
T

a
T

b)gsγ
ν

∫ 1

0

x dx

∫ 1

0

dy

∫
dnq

(2π)n

× qµqν[
q2 − 2q ·[p1x(1 − y) + p2(1− x)] + p21x(1 − y) + p22(1− x)

]3 + finite terms

= −iαs

2π
(T b

T
a
T

b)gsγν

∫ 1

0

x dx

∫ 1

0

dy + finite terms

= − iαs

4πǫ
(CF − 1

2
CA)gsT

aγµ + finite terms . (22)

In deriving eq. (22), we made use of the following result that is easily obtained from the class
handout entitled Useful formulae for computing one-loop integrals,

∫
dnq

(2π)n
qµqν

(q2 + 2q ·p−m2 + iε)3
=

i

64π2ǫ
gµν + finite terms . (23)

In addition, the group theoretical factor T b
T

a
T

b was simplified as follows,

T
b
T

a
T

b = T
b
{
T

b
T

a + ifabc
T

c
}
= CFT

a + 1
2
ifabc(T b

T
c − T

c
T

b)

= CFT
a − 1

2
fabcf bcd

T
d = (CF − 1

2
CA)T

a , (24)

where T
b
T

b = CF1N and fabcf dbc = CAδ
ad.
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The second graph that contributes to the vertex correction is exhibited below.

k, a

p1 − q p2 − q

q

p1 p2

Applying the Feynman rules yields,

1
2
(−igsµ

ǫ
T

b)(−igsµ
ǫ
T

c)(−gsµ
ǫfabc)

×
{∫

dnq

(2π)n

(
(1− γ5)i(/p2 − q/)γµ i(/p1 − q/)(1 + γ5)

(q − p1)2(q − p2)2

)(
i

q2

)

+

∫
dnq

(2π)n

(
(1 + γ5)i(/p2 − q/)γµ i(/p1 − q/)(1− γ5)

(q − p1)2(q − p2)2

)(
i

q2

)}
,

after including contributions from both q̃Lq̃L and q̃Rq̃R intermediate states. The divergent
piece of the integrals can be identified by keeping only the q/ terms in the numerators above.
When the two integrals are added the γ5 disappears, and we are left with,

−8πiαsgsf
abcT bT c

∫
dnq

(2π)n
q/γµq/

q2(q − p1)2(q − p2)2
+ finite terms

= 4παsCAgsT
aγν

∫
dnq

(2π)n
2qµqν − gµνq

2

q2(q − p1)2(q − p2)2
+ finite terms

= 8παsCAgsT
aγν

∫ 1

0

x dx

∫ 1

0

dy

∫
dnq

(2π)n

× 2qµqν − gµνq
2

[
q2 − 2q ·[p1x(1− y) + p2(1− x)] + p21x(1− y) + p22(1− x)

]3 + finite terms

−iαsCA

4πǫ
gsT

aγµ

∫ 1

0

x dx

∫ 1

0

dy

−iαsCA

8πǫ
gsT

aγµ + finite terms. (25)

after employing eq. (23). In addition, the group theoretical factor ifabc
T

b
T

c was simplified
as follows

ifabc
T

b
T

c = 1
2
ifabc(T b

T
c − T

c
T

b) = −1
2
fabcf bcd

T
d = −1

2
CAT

a . (26)
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Adding eqs. (22) and (25), we see that the term proportional to CA exactly cancels. Hence,
the result for the supersymmetric contribution to the one-loop vertex is,

−iαsCF

4πǫ
gsT

aγµ + finite terms. (27)

Finally, we add the counterterm,

−i(Z1F − 1)gsT
aγµ , (28)

and notice that the factor of −1 cancels the tree-level result. Hence, we can conclude that

(δZ1F )SUSY = −iαsCF

4πǫ
. (29)

In light of eqs. (21) and (29), it follows that (δZ1F )SUSY = (δZ2)SUSY, as advertised.
We now turn our attention to the supersymmetric corrections to the gluon self-energy.

Note that the graph shown below,

g g

q̃

yields a loop integral that is zero by the rules of dimensional regularization,1

∫
dq

(2π)n
1

q2
= 0 , (30)

Thus, we only need consider the gluino loop diagram and the squark loop diagram.
Consider first, the gluino loop diagram exhibited below.

g g
g̃

g̃

The gluino is a Majorana fermion. Hence the symmetry factor of this graph is 1
2
. Otherwise,

we may use the result obtained in class for QCD without supersymmetric particles,

Z3 = 1 +
αs

8πǫ

[(
13

3
− a

)
CA − 8

3
TFnF

]
, (31)

to conclude that a fermion in the fundamental representation of SU(N) contributes

−αsTF

3πǫ
, (32)

to the gluon wave function renormalization constant Z3.
1For more details on the origin of this rule, see Section III of the class handout entitled, Electron wave

function and mass renormalization in QED. In particular, note eq. (19) of this handout.
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We can use eq. (32) to determine the contribution of the gluino to Z3. The gluino is in
the adjoint representation of SU(N). Hence, its contribution to Z3 must be given by

−αsTA

6πǫ
, (33)

after including the symmetry factor of 1
2
mentioned above. The group theoretical factor TA is

defined by
Tr(T a

A
T

b

A
) = TAδ

ab . (34)

The matrix elements of the generator in the adjoint representation are given by,

(T a

A
)bc = −ifabc . (35)

Hence, eq. (34) yields,

Tr(T a

A
T

b

A
) = (T a

A
)cd(T

b

A
)dc = facdf bcd = CAδab , (36)

where we used the antisymmetry of the structure constants. Comparing with eq. (34), we
conclude that TA = CA. Hence, the gluino loop contribution to Z3 is

(δZ3)SUSY,g̃ = −αsCA

6πǫ
. (37)

Although it is unnecessary, I shall provide an explicit computation of eq. (37). Consider
the gluino contribution to the gluon self-energy,

p, µ, a p, ν, d
q, b

q − p, c

where the adjoint color indices (a, b, c, d) have been specified along with the four-momenta
and the Lorentz indices of the external gluons. Applying the Feynman rules yields,

−1
2
fabcf dcb(−gsµ

ǫ)2
∫

dnq

(2π)n
Tr

{(
iq/

q2

)
γµ

(
i(q/− /p)

(q − p)2

)
γν

}
, (38)

after including the minus sign for the fermionic gluino loop and the symmetry factor of 1
2
(since

the gluino is a neutral Majorana fermion). Evaluating the trace and employing Feynman’s
trick yields,

2fabcf dcbg2sµ
2ǫ

∫ 1

0

dx

∫
dnq

(2π)n
qµ(q − p)ν + qν(q − p)µ − gµνq ·(q − p)[

(1− x)q2 + x(q − p)2
]
2

= 2fabcf dcbg2sµ
2ǫ

∫ 1

0

dx

∫
dnq

(2π)n
qµ(q − p)ν + qν(q − p)µ − gµνq ·(q − p)

(q2 − 2q ·px+ xp2)2

= 2fabcf dcbg2sµ
2ǫ

∫ 1

0

dx

∫
dnq

(2π)n
2qµqν − q2gµν − qµpν − qνpµ + gµνq ·p

(q2 − 2q ·px+ xp2)2
. (39)
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We now make use of the following results that are easily derived from the formulae given the
class handout entitled Useful formulae for computing one-loop integrals,

∫
dnq

(2π)n
qµ

(q2 + 2q ·p−m2 + iε)2
= − i

16π2ǫ
pµ + finite terms , (40)

∫
dnq

(2π)n
qµqν

(q2 + 2q ·p−m2 + iε)2
=

i

16π2ǫ

[
pµpν +

1
2
gµν(p

2 +m2)
]
+ finite terms . (41)

In addition, the group theory factor, fabcf dcb, simplifies to,

fabcf dcb = −fabcf dbc = −CAδ
ad . (42)

Hence, eq. (39) yields,

−iαsCA

πǫ
(p2gµν − pµpν)δad

∫ 1

0

x(1− x)dx = −iαsCA

6πǫ
(p2gµν − pµpν)δad . (43)

As expected from gauge invariance, the end result is transverse.
We now add the counterterm (by generalizing the result for QED given in class),

−i(Z3 − 1)(p2gµν − pµpν)δ
ad . (44)

It follows that the gluino loop contribution to Z3 is

(δZ3)SUSY,g̃ = −αsCA

6πǫ
. (45)

thereby confirming the result of eq. (37).
Finally, we consider the squark-loop contribution to the gluon self-energy,

p, µ, a p, ν, d

q

q − p

Applying the Feynman rules yields,

Tr(T a
T

d)(−igsµ
ǫ)2
∫

dnq

(2π)n

(
i

q2

)(
i

(q − p)2

)
(2q − p)µ(2q − p)ν

= g2sµ
2ǫTF δ

ab

∫ 1

0

dx

∫
dnq

(2π)n
4qµqν + pµpν − 2qµpν − 2qνpµ[

(1− x)q2 + x(q − p)2
]
2

= g2sµ
2ǫTF δ

ad

∫ 1

0

dx

∫
dnq

(2π)n
4qµqν + pµpν − 2qµpν − 2qνpµ

(q2 − 2q ·px+ xp2)2

= 4ig2sµ
2ǫ(4π)ǫ−2TF δ

adΓ(ǫ)

∫ 1

0

dx
[
−p2x(1 − x)

]
−ǫ
{(

x2 − x+ 1
4

)
pµpν +

1

2(ǫ− 1)
gµνp

2x(1− x)

}

=
ig2sTF δ

ad

4π2ǫ

{
pµpν

∫ 1

0

(
x− 1

2

)2
dx− 1

2
gµνp

2

∫ 1

0

x(1− x)dx

}
+ finite terms

= −iαsTF δ
ad

12π2ǫ
(p2gµν − pµpν) + finite terms . (46)
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Once again, the end result is transverse as expected from gauge invariance. Summing over nF

flavors of both q̃L and q̃R yields

−iαsTFnF δ
ad

6π2ǫ
(p2gµν − pµpν) + finite terms . (47)

In light of the counterterm given in eq. (44), it follows that the squark loop contribution
to Z3 is

(δZ3)SUSY,q̃ = −αsTFnF

6πǫ
. (48)

Adding the results of eqs. (37) and (48) yields,

(δZ3)SUSY = − αs

6πǫ

(
CA + TFnF

)
. (49)

We are now ready to compute the β-function of supersymmetric QCD. Recall that,

Zg = Z1FZ
−1
2 Z

−1/2
3 . (50)

Moreover, there are no supersymmetric contributions to Z1FZ
−1
2 . Hence,

(δZg)SUSY = −1
2
(δZ3)SUSY =

αs

12πǫ

(
CA + TFnF

)
. (51)

Adding this contribution to eq. (14) yields,

Zg = Z1FZ
−1
2 Z

−1/2
3 = 1− αs

8πǫ

(
3CA − 2TFnF

)
, (52)

In class, we obtained

β(gs) = g2s
dZ

(1)
g

dgs
, (53)

where

Zg = 1 +
Z

(1)
g

ǫ
, (54)

in the one-loop approximation. Thus, we identify,

Z(1)
g = − g2s

32π2

(
3CA − 2TFnF

)
. (55)

Hence, we obtain

β(gs) = − g3s
16π2

(
3CA − 2TFnF

)
. (56)

That is, if we write

β(gs) = − b0g
3
s

16π2
, (57)

then it follows that,

b0 =

{
11
3
CA − 4

3
TFnF , for QCD ,

3CA − 2TFnF , for supersymmetric QCD .
(58)

For an SU(N) gauge group, CA = N and TF = 1
2
.

11



(b) Does the QCD running coupling constant run faster or slower at large momentum
scales in a supersymmetric theory as compared to the non-supersymmetric one?

If we put N = 3 and nF = 6 flavors in eq. (58), we obtain,

b0 =

{
7 , for QCD ,

3 , for supersymmetric QCD .
(59)

The one-loop running coupling is given by,

αs(Q
2) =

4π

b0 ln(Q2/Λ2)
, (60)

where Λ ≡ ΛQCD is the subject of problem 1 in this Problem Set. The Particle Data Group
provides the following world average,

αs(m
2
Z) = 0.1179± 0.001 . (61)

In QCD, we should really choose nF = 5 near the mass of the Z boson since the top quark is
significantly heavier than the Z and thus should be decoupled from the effective theory at mZ .
The numerical determination of Λ obtained in the one-loop approximation is not especially
reliable. Suffice it to say that roughly, Λ ∼ O(100 MeV).

In any case, at mass scales above the top quark, we can assume nF = 6 and compare
the running of αs(Q

2) with or without supersymmetry. Indeed, since b0 is smaller in super-
symmetric QCD as compared to non-supersymmetric QCD, then it follows that the value
of αs(Q

2), for Q2 ≫ mZ , would be larger in supersymmetric QCD, given the known value
of αs(m

2
Z). That is, the running coupling constant decreases faster with increasing Q2 in

non-supersymmetric QCD as compared to supersymmetric QCD.

(c) Compute the one-loopO(αs) relation between the MS running top-quark mass, mt(mt),
and the “pole mass” (denoted by Mt) in ordinary QCD. Ignore all electroweak contributions.

In order to determine the relation between the MS mass and the pole mass of the quark
in QCD, we must compute the one-loop quark self energy. That is, we evaluate the following
diagram,

p p+ q p

q

We evaluate this graph in the Feynman gauge (a = 1). Applying the Feynman rules yields,

−iΣ(p) = T
a
T

b(−igsµ
ǫ)2
∫

dnq

(2π)n
γν

(
i(/p+ q/+m)

(q + p)2 −m2

)
γµ

(−igµνδab

q2

)

= −CF g
2
sµ

2ǫ

∫
dnq

(2π)n
γµ(/p+ q/+m)γµ

q2
[
(q + p)2 −m2

] , (62)

after employing δabT a
T

b = CF1.
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Using n-dimensional Dirac matrix algebra,

γµ(/p+ q/+m)γµ = (2− n)(/p+ q/) + nm . (63)

Putting n = 4 − 2ǫ and employing the Passarino-Veltman functions defined in problem 1 of
Problem Set 3,

−iΣ(p) = g2sCFµ
2ǫ

∫
dnq

(2π)n
2(1− ǫ)(/p+ q/)− (4− 2ǫ)m

q2
[
(q + p)2 −m2

]

=
ig2sCF

16π2

{[
2(1− ǫ)/p− (4− 2ǫ)m

]
B0(p

2; 0, m2) + 2(1− ǫ)/pB1(p
2; 0, m2)

}
. (64)

We now make use of eqs. (10) and (84) of the Solutions to Problem Set 4,

B0(p
2; 0, m2) = ∆−

∫ 1

0

ln

(
xm2 − p2x(1− x)

µ2

)
dx+O(ǫ) , (65)

B1(p
2; 0, m2) = −1

2
∆+

∫ 1

0

x ln

(
xm2 − p2x(1− x)

µ2

)
dx+O(ǫ) , (66)

where

∆ ≡ 1

ǫ
− γ + ln(4π) . (67)

It follows that

−iΣ(p) =
ig2sCF

16π2
(/p− 4m)∆

−ig2sCF

16π2

{
/p− 2m+ 2

∫ 1

0

[
/p(1− x)− 2m

]
ln

(
xm2 − p2x(1− x)

µ2

)
dx

}
+O(ǫ) .

(68)

In the MS renormalization scheme, the term proportional to ∆ is exactly canceled by the
counterterms. Thus, the one-loop correction to the inverse propagator is given by iΓ(2)(p)
[cf. eq. (123) of the solutions to Problem Set 3], where

Γ(2)(p) = /p−m− Σ(p)

= /p−m− g2sCF

16π2

{
/p− 2m+ 2

∫ 1

0

[
[
/p(1− x)− 2m

]
ln

(
xm2 − p2x(1− x)

µ2

)
dx

}
,

(69)

where m ≡ m(µ). It is common practice to define the MS mass parameter by m(µ = m).
That is we simply set µ = m in eq. (69) to obtain,

Γ(2)(p) = /p−m− g2sCF

16π2

{
/p− 2m+ 2

∫ 1

0

[
/p(1− x)− 2m

]
ln

(
xm2 − p2x(1− x)

m2

)
dx

}
, (70)

where m ≡ m(m) is the MS mass parameter.
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The pole mass, denoted by M , is equal to the pole of the one-loop propagator, or equiv-
alently the zero of the inverse propagator. Hence, we can identify the pole mass by the
equation,

Γ(2)(p)
∣∣
/p=M

= 0 . (71)

Hence eq. (70) yields,

M −m =
g2sCF

16π2

{
M − 2m+ 2

∫ 1

0

[
M(1− x)− 2m

]
ln

(
xm2 −M2x(1− x)

m2

)
dx

}
. (72)

Since M = m[1 +O(g2s)], it is consistent within the one-loop approximation to set M = m on
the right hand side of eq. (72). Hence,

M −m = −g2sCFm

16π2

{
1 + 4

∫ 1

0

(1 + x) ln x dx

}
=

g2sCFm

4π2
. (73)

Setting g2s = 4παs, we end up with,

M = m

(
1 +

CFαs

π

)
. (74)

Noting that CF = (N2 − 1)/(2N) for an SU(N) gauge theory, we set N = 3 to obtain the
one-loop pole mass in terms of the MS mass parameter,

M = m

(
1 +

4αs

3π

)
. (75)

(d) Repeat part (c) for supersymmetric QCD. Which new Feynman graphs contribute?
How is the one-loop relation of part (c) modified? For simplicity, you may take the gluino to
be massless and the top-squarks to be degenerate in mass with the top-quark.

In supersymmetric QCD, two new graphs contribute,

q g̃ q

q̃

where we must sum over contributions from q̃ = q̃L and q̃R, respectively. In this calculation,
we shall take the gluino to be massless and the quark and squarks to be mass-degenerate.
Defining the four-momenta as in part (c) and applying the Feynman rules yields,

−iΣ(p)SUSY = 1
2
T

a
T

b(−igsµ
ǫ)2
∫

dnq

(2π)n

{
(1− γ5)

(
i(/p+ q/)δab

(q + p)2

)
(1 + γ5)

+(1 + γ5)

(
i(/p+ q/)δab

(q + p)2

)
(1− γ5)

}(
i

q2 −m2

)
, (76)

after adding the two contributions from q̃ = q̃L and q̃R. Once again we employ δabT a
T

b = CF1.
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It then follows that,

−iΣ(p)SUSY = 2g2sCFµ
2ǫ

∫
dnq

(2π)n
/p+ q/

(q2 −m2)(q + p)2
, (77)

after employing δabT a
T

b = CF1. It is convenient to change integration variables, q → p + q
and rewrite eq. (77) as,

−iΣ(p)SUSY = 2g2sCFµ
2ǫ

∫
dnq

(2π)n
q/

q2
[
(q − p)2 −m2

] = −ig2sCF

8π2
/pB1(p

2; 0, m2)

=
ig2sCF

16π2
/p∆− ig2sCF

8π2
/p

∫ 1

0

x ln

(
xm2 − p2x(1− x)

µ2

)
dx . (78)

As in part (c), we set µ = m, in which case we can identify m = m(m) with the MS mass
parameter. The term proportional to ∆ in eq. (78) is absorbed by the counterterms, and we
are left after renormalization with,

−iΣ(p)SUSY = −ig2sCF

8π2
/p

∫ 1

0

x ln

(
m2x− p2x(1 − x)

m2

)
dx. (79)

Adding this result to the one obtained in part (c) yields,

Γ(2)(p) = /p−m− g2sCF

16π2

{
/p− 2m+ 2

∫ 1

0

[
/p(1− x)− 2m

]
ln

(
xm2 − p2x(1 − x)

m2

)
dx

+2/p

∫ 1

0

x ln

(
m2x− p2x(1− x)

m2

)
dx

}
. (80)

Following the same steps employed in part (c), we can identify the pole mass M ,

M −m = −g2sCFm

16π2

{
1 + 4

∫ 1

0

(1 + x) ln x dx− 4

∫ 1

0

x ln x dx

}
=

3g2sCFm

16π2
. (81)

Setting g2s = 4παs, we end up with,

M = m

(
1 +

3CFαs

4π

)
. (82)

Finally, we set N = 3 to obtain the one-loop pole mass in terms of the MS mass parameter
in supersymmetric QCD,

M = m
(
1 +

αs

π

)
. (83)

REMARKS:

You will not find either eq. (82) or eq. (83) in the literature. The reason for this is that
theorists do not like to employ the MS renormalization scheme in supersymmetric models,
because in n 6= 4 spacetime dimensions, the equality of the number of bosonic and fermionic
degrees of freedom in supersymmetric theories is spoiled. Thus, the MS subtraction scheme
does not respect supersymmetry. However, there is a related scheme called dimensional reduc-
tion (DR) that preserves supersymmetry, and this is the preferred choice for supersymmetric
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theories. The analogue of MS renormalization is called DR renormalization. Operationally,
the only change to the computations presented in this problem occur in part (c).

One way to implement the DR renormalization procedure in part (c) is to treat the factor
of gµν that appears in the gluon propagator as a four-dimensional object.2 Consequently, one
must replace eq. (63) by

γµ(/p+ q/+m)γµ = −2(/p+ q/) + 4m, (84)

in which case eq. (64) is replaced by

−iΣ(p) = 2g2sCFµ
2ǫ

∫
dnq

(2π)n
/p+ q/− 2m

q2
[
(q + p)2 −m2

]

=
ig2sCF

8π2

{
(/p− 2m)B0(p

2; 0, m2) + /pB1(p
2; 0, m2)

}

=
ig2sCF

16π2
(/p− 4m)∆− ig2sCF

8π2

∫ 1

0

[
/p(1− x)− 2m

]
ln

(
xm2 − p2x(1− x)

µ2

)
dx+O(ǫ) .

(85)

Hence, eq. (72) is modified to

M −m =
g2sCF

8π2

∫ 1

0

[
M(1− x)− 2m

]
ln

(
xm2 −M2x(1− x)

m2

)
dx . (86)

Setting M = m on the right hand side of eq. (86) yields,

M −m = −g2sCFm

4π2

∫ 1

0

(1 + x) ln x dx =
5g2sCFm

16π2
. (87)

Setting g2s = 4παs, we end up with,

M = m

(
1 +

5CFαs

4π

)
, gluon-quark loop contribution in DR renormalization. (88)

The contribution of the squark–gluino loop [which is given by the last term within the braces
in eq. (81)],

M = m

(
1− CFαs

4π

)
, gluino-squark loop contribution in DR renormalization, (89)

is the same in both MS and DR renormalization. Adding the two contributions above yields
the one-loop pole mass in terms of the DR mass parameter in supersymmetric QCD,

M = m

(
1 +

CFαs

π

)
, (90)

which is the result that can be found in the literature [instead of the MS result obtained in
eq. (82)].

2The actual dimensional reduction procedure is more complicated in general, but in the present application
the modification suggested here suffices.
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3. Consider a theory of a single massless scalar real field:

L = ∂µφ ∂µφ− λ

4!
φ4 .

In class, we computed the effective potential (Veff) in the one-loop approximation. The renor-
malized Veff depends on the parameter µ (which is either the mass scale of dimensional regu-
larization or the off-shell subtraction point used in the definition of λ). The unrenormalized
Veff is independent of µ.

(a) Deduce the renormalization group equation (RGE) satisfied by the renormalized Veff .
Your equation should involve the beta-function β(λR) and the anomalous dimension γd(λR),
where λR is the renormalized coupling.

In class, we derived the following expression for the effective potential of a quantum field
theory of a real massive scalar field prior to renormalization, where the divergences have been
regulated using dimensional regularization,

Veff(φ) =
1
2
m2φ2

[
1− λ

32π2

(
1

ǫ
− γ + ln(4π) +

3

2

)]
− λ

4!
φ4

[
1− 3λ

32π2

(
1

ǫ
− γ + ln(4π) +

3

2

)]

+
1

64π2

[
(m2 + 1

2
λφ2)2 ln(m2 + 1

2
λφ2)−m4 lnm2

]
, (91)

where λ and m are bare parameters and φ is the unrenormalized (bare) scalar field. We
then showed that the divergences could be completely absorbed by replacing λ and m with
the corresponding renormalized parameters, λR and mR, respectively, and by replacing the
bare field φ with the corresponding renormalized field φR.

3 We carry out the renormalization
procedure by substituting,

φ = Z
1/2
φ φR , m2 = Zmm

2
R , λ = µ2ǫZλλR . (92)

Consequently, the effective potential apparently depends on µ. However, this is an illusion
since one observes from eq. (91) that Veff(φ) is explicitly independent of µ. That is,

d

dµ
Veff(φ) = 0 . (93)

When Veff(φ) is re-expressed in terms of the normalized parameters and fields, then we can
apply eq. (93) by invoking the chain rule,

µ
d

dµ
= µ

∂

∂µ
+ µ

dλR

dµ

∂

∂λR
+ µ

dmR

dµ

∂

∂mR
+ µ

dφR

dµ

∂

∂φR
. (94)

We define as usual,

β(λR) ≡ µ
dλR

dµ
, mRγm(λR) ≡ µ

dmR

dµ
. (95)

3Since Zφ = 1 +O(λ2), it follows that φR = φ in a one-loop analysis.
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Since the bare field φ knows nothing about µ, if follows that

0 = µ
dφ

dµ
= µ

d

dµ

(
Z

1/2
φ φR) = φRµ

dZ
1/2
φ

dµ
+ Z

1/2
φ µ

dφR

dµ
. (96)

Consequently,

µ
dφR

dµ
= −φRZ

−1/2
φ µ

dZ
1/2
φ

dµ
= −1

2
φRµ

d

dµ
lnZφ = −φRγd(λR) , (97)

where γd is the anomalous dimension. That is, we can rewrite the chain rule given in eq. (94)
as

µ
d

dµ
= µ

∂

∂µ
+ β(λR)

∂

∂λR
+mRγm(λR)

∂

∂mR
− γd(λR)φR

∂

∂φR
. (98)

That is, eq. (93) yields the renormalization group equation (RGE),

(
µ
∂

∂µ
+ β(λR)

∂

∂λR

+mRγm(λR)
∂

∂mR

− γd(λR)φR
∂

∂φR

)
Veff(φR) = 0 . (99)

In the case of the massless theory (mR = 0), the RGE satisfied by the effective potential
simplifies to, (

µ
∂

∂µ
+ β(λR)

∂

∂λR
− γd(λR)φR

∂

∂φR

)
Veff(φR) = 0 . (100)

(b) By dimensional analysis, the renormalized Veff can be written as:

Veff(φR) =
Y (λR, t)φ

4
R

4!
, (101)

where t = log(φR/µ) and φR is the renormalized scalar field. Assume that Veff is defined in
the physical scheme where,

d2Veff

dφ2
R

∣∣∣∣
φR=0

= 0,
d4Veff

dφ4
R

∣∣∣∣
φR=µ

= λR . (102)

Rewrite the RGE of part (a) as an equation for Y (λR, t). Solve the resulting equation for Y
as a function of a suitably defined running coupling constant λ(t).

Plugging eq. (101) into the RGE given in eq. (100) yields,

(
µ
∂

∂µ
+ β(λR)

∂

∂λR
− γd(λR)φR

∂

∂φR

)
Y (λR, t)φ

4
R = 0 . (103)

The above equation can be further simplified by noting that for a function of t ≡ ln(φ/µ), one
can always write,
(
µ
∂

∂µ
− γdφR

∂

∂φR

)
f
(
ln(φR/µ)

)
=

(
µ
∂t

∂µ

∂

∂t
− γdφR

∂t

∂φR

∂

∂t

)
f(t) = −(1 + γd)

∂f

∂t
. (104)

18



This result allows us to rewrite eq. (103) as
[
β

∂

∂λR
− (1 + γd)

∂

∂t
− 4γd

]
Y (λR, t) = 0 . (105)

It is therefore convenient to define a rescaled β and γd via,

β ≡ β

1 + γd
, γd ≡

γd
1 + γd

. (106)

Then, eq. (105) simplifies even further,
(
− ∂

∂t
+ β

∂

∂λR

− 4γd

)
Y (λR, t) = 0 . (107)

To solve eq. (107), it is convenient to introduce a running coupling that is the solution to
the following differential equation,

dλ(t)

dt
= β

(
λ(t)

)
, subject to λ(t = 0) = λR. (108)

Note that λ(t) is not quite the same as the running coupling defined in class since the right
hand side of eq. (108) involves β rather than β. Nevertheless, the form of the differential
equation given in eq. (107) is of the same form as the one we solved in class. The solution to
eq. (107) can be obtained directly using the following technique. Introduce the function

y(λR) =

∫ λR

λ0

dz

β(z)
, (109)

and note that

β
∂

∂λR

= β
∂y

∂λR

∂

∂y
=

∂

∂y
. (110)

Hence, eq. (107) can be rewritten in the following form,
(
− ∂

∂t
+

∂

∂y
− 4γd

)
Y (λR, t) = 0 . (111)

In light if the fact that (
− ∂

∂t
+

∂

∂y

)
f(t+ y) = 0 , (112)

for an arbitrary function f , it follows that the solution to eq. (111) is

Y (λR, t) = exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
f(t+ y) . (113)

To verify this assertion, note that the exponential function is independent of t and depends
on y implicitly through λR. Hence,

(
− ∂

∂t
+

∂

∂y

)
exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
= 4 exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
∂

∂y

∫ λR(y)

λ0

γd(z)

β(z)
dz

= 4 exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
β

∂

∂λR

∫ λR

λ0

γd(z)

β(z)
dz

= 4 γd(λR) exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
. (114)
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Thus, we have shown that the solution to eq. (107) is4

Y (λR, t) = exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
f

(
t +

∫ λR

λ0

dz

β(z)

)
, (115)

where f is an arbitrary function. The form of this solution simplifies considerably by intro-
ducing the running coupling defined in eq. (108), which is equivalent to,

t =

∫ λ(t)

λR

dz

β(z)
. (116)

It follows that,

t+

∫ λR

λ0

dz

β(z)
=

∫ λ(t)

λ0

dz

β(z)
. (117)

Hence,

Y (λR, t) = exp

{
4

∫ λR

λ0

γd(z)

β(z)
dz

}
f

(∫ λ(t)

λ0

dz

β(z)

)
. (118)

On the other hand, if we put λR → λ(t) and t → 0 in eq. (115), we obtain,

Y (λ(t), 0) = exp

{
4

∫ λ(t)

λ0

γd(z)

β(z)
dz

}
f

(∫ λ(t)

λ0

dz

β(z)

)
. (119)

Dividing eqs. (118) and (119) eliminates λ0, and we end up with

Y (λR, t) = exp

{
−4

∫ λ(t)

λR

γd(z)

β(z)
dz

}
Y (λ(t), 0) . (120)

Introducing a new variable, z = λ(t′), it follows that dt′ = dz/β(z). Noting that t′ = 0 when
z = λR and t′ = t when z = λ(t),

∫ λ(t)

λR

γd(z)

β(z)
dz =

∫ t

0

γd

(
λ(t′)

)
dt′ . (121)

Hence,

Y (λR, t) = exp

{
−4

∫ t

0

γd

(
λ(t′)

)
dt′
}
Y (λ(t), 0) . (122)

In order to fix the function Y (λ(t), 0), we impose the renormalization condition,

d4Veff

dφ4
R

∣∣∣∣
φR=µ

= λR . (123)

Plugging in eq. (101) with t = ln(φR/µ) yields

Y (λR, 0) = λR . (124)

4In the mathematics literature, the technique that yields eq. (115) is often called the method of charac-
teristics. See, e.g., Gustavo López, Partial Differential Equations of First Order and Their Applications to

Physics (World Scientific, Singapore,1999).
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We can now replace λR → λ(t) in eq. (124), which implies that Y (λ(t), 0) = λ(t). Hence,
eq. (122) yields,

Y (λR, t) = λ(t) exp

{
−4

∫ t

0

γd

(
λ(t′)

)}
. (125)

(c) Assuming that β is constant (independent of λR) and γd = 0, use the result of part (b)
to obtain a formula for the renormalized Veff . Compare this result to the one-loop effective
potential computed in class.

If γd = 0, then β = β, which is assumed to be a constant. In this approximation, eq. (116)
yields,

t =
1

β

∫ λ(t)

λR

dz =
λ(t)− λR

β
. (126)

Hence, λ(t) = λR + βt, and eq. (125) yields,

Y (λR, t) = λR + β ln

(
φR

µ

)
. (127)

That is,

Veff(φR) =
λR

4!
φ4
R +

βλRφ
4
R

4!
ln

(
φR

µ

)
. (128)

Let us compare this result with the Coleman-Weinberg potential obtained in class,

Veff(φR) =
λR

4!
φ4
R +

λ2
Rφ

4
R

256π2

[
ln

(
φ2
R

µ2

)
− 25

6

]
. (129)

The factor of 25/6 can always be reabsorbed into a redefinition of the renormalized coupling.
Thus, a comparison of eqs. (128) and (129) would yield,

β(λR) =
3λ2

R

16π2
, (130)

which we recognize as the one-loop β-function of the scalar field theory!

(d) Repeat part (c), but now use the one-loop approximations for β and γd. (HINT:
γd is still zero in this approximation. Why?) The resulting Veff is now the renormalization
group improved effective potential. Recall that Veff in the one-loop approximation had a local
maximum at φR = 0 and a local minimum for a nonzero value of φR. Is the extremum of the
renormalization group improved Veff at φR = 0 a minimum or a maximum? Is the discrete
φR → −φR symmetry spontaneously broken?

We shall now evaluate eq. (125) in the one-loop approximation with no additional assump-
tions. In class, we showed that Zφ = 1 + O(λ2

R). That is, in the one-loop approximation,
Zφ = 1 which implies that γd = 0. Hence, eq. (106) implies that β = β. In class we derived
eq. (130), which then yields the one-loop running coupling,
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λ(t) = λR

[
1− 3λRt

16π2

]
−1

. (131)

Writing t = 1
2
ln(φ2/µ2) and using eq. (125) yields the one-loop renormalization group im-

proved effective potential,

Veff(φR) =

1

4!
λRφ

4
R

1− 3λR

32π2
ln

(
φ2
R

µ2

) . (132)

Note that if we expand out the denominator in a perturbation series, we recover the one-loop
Coleman-Weinberg potential (up to the non-logarithmic 25/6, which is not picked up by the
renormalization group improvement). Indeed, in this way, we recover the leading logs to all
orders in perturbation theory!

Let us now check for the extrema of the renormalization group improved effective potential.
We compute the first derivative of Veff(φR) and obtain,

dVeff

dφR

=

1

6
λRφ

3
R

1− 3λR

32π2
ln

(
φ2
R

µ2

) +

1

128π2
λ2
Rφ

3
R

[
1− 3λR

32π2
ln

(
φ2
R

µ2

)]2 . (133)

One extrema of the effective potential is at φR = 0. But in contrast to the one-loop Coleman-
Weinberg potential, the φR = 0 extremum is a local minimum! To verify this assertion, one
can check that for very small but non-zero values of φ2

R, the coefficient of φ4
R in eq. (132) is

positive (whereas it is negative for the one-loop Coleman-Weinberg potential).
We can also look for extrema of the effective potential for φR 6= 0. Setting dVeff/dφR = 0

then yields,

1− 3λR

32π2
ln

(
φ2
R

µ2

)
+

3λR

64π2
= 0 . (134)

which implies that the extremum occurs at a field value of

φ2
R = µ2 exp

[
32π2

3λ2
R

− 1

2

]
. (135)

One can check that this is a minimum. However, it is not a reliable extremum, since it occurs
at a very large value of φR in the perturbative limit of λR ≪ 1. That is, this extremum lies
outside of the range of validity of the renormalization group improved computation.

In the case of the original one-loop Coleman-Weinberg effective potential, the maximum
at φR = 0 and the minimum at φR 6= 0 were both unreliable as these field values were outside
the validity of the one-loop computation. In contrast, the renormalization group improved
effective potential has a minimum at φR = 0 which is reliable (although the minimum at
φR 6= 0 is not). Hence, we conclude that a local minimum of the effective potential exists at
φR = 0 and the discrete symmetry, φR → −φR is not spontaneously broken.

REFERENCE:

A very nice reference to the material presented in this problem can be found in M. Sher,
“Electroweak Higgs Potentials and Vacuum Stability,” Phys. Rept. 179, 273–418 (1989).
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4. Consider scalar electrodynamics where the bare tree-level scalar mass parameter is zero,

L = (Dµφ)(D
µφ)∗ − λ(φφ∗)2 − 1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 , (136)

where Dµ ≡ ∂µ + ieAµ.

(a) Compute the one-loop effective potential in the Landau gauge (ξ = 0) in two different
schemes: the MS scheme and the physical scheme analogous to the one defined in eq. (102).
Assume that the renormalized couplings have the property that λR is of O(e4R), and keep only
terms of the same order in Veff .

It is convenient to write,

φ =
φ1 + iφ2√

2
, (137)

where φ1 and φ2 are real fields. Then, eq. (136) becomes,

L = 1
2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2) + eAµ(φ1∂µφ2 − φ2∂µφ1) +

1
2
e2AµA

µ(φ2
1 + φ2

2)

−1
4
λ(φ2

1 + φ2
2)

2 − 1
4
FµνF

µν − 1

2ξ
(∂µA

µ)2 . (138)

In class, we derived the following formula for the effective potential in the Landau gauge
(corresponding to ξ = 0),5

V (1)(Φ) = −1
2
i Str

∫
dnq

(2π)n
ln

(
q2 −M2

i (Φ) + iε

q2 −M2
i (0) + iε

)
, (139)

where the supertrace instructs us to perform a sum over all fields in the theory that couple
to the scalar weighted by the number of degrees of freedom of the field. In addition, bosonic
contributions appear in the sum with a plus sign whereas fermionic contributions appear in
the sum with a minus sign. That is,

Str
{
· · ·
}
=
∑

i

(−1)2Ji(2Ji + 1)Ci

{
· · ·
}
, (140)

where Ji is the spin of the field i and Ci counts any additional internal degrees of freedom
(e.g., electric charge and color).

However, eq. (139) is not quite right for the vector boson contribution, since as noted in
class,the computation actually yields n− 1 = 3 − 2ǫ degrees of freedom for the vector boson
contribution in the Landau gauge. Thus, we must remember to include this correction when
applying eq. (140).

Applying eq. (139) for the Lagrangian given in eq. (138), we can use the results obtained
in class to identifying the relevant field-dependent squared masses. In particular, in order
to compute the field-dependent squared masses, it is sufficient to shift only one of the scalar
fields [due to the O(2) symmetry of the scalar sector], φ1 → φ1+Φ. After the shift, the terms
of the Lagrangian that are quadratic in the scalar fields yield two scalar squared masses,

−1
4
λ
[
(φ1 + Φ)2 + φ2

2

]
2 = −1

4
λ(φ2

1 + φ2
2 + 2φ1Φ+ Φ2)2 = −1

2
λΦ2(3φ2

1 + φ2
2) + · · · (141)

5I have reinserted the iε factors that were omitted in the class lecture.
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The coefficients of −1
2
φ2
1 and −1

2
φ2
2 are the field-dependent scalar squared masses, i.e. 3λΦ2

and λΦ2. Likewise, the term of the Lagrangian that is quadratic in the vector boson fields
yield the vector boson squared mass,

1
2
e2AµA

µ
[
(φ1 + Φ)2 + φ2

2

]
= 1

2
e2Φ2AµA

µ + · · · (142)

The coefficient of 1
2
AµA

µ is the field-dependent vector boson squared mass, i.e. e2Φ2.
Hence, eq. (139) yields,

V (1)(Φ) = −1
2
i

∫
dnq

(2π)n

{
ln

(
q2 − λΦ2 + iε

q2 + iε

)
+ ln

(
q2 − 3λΦ2 + iε

q2 + iε

)

+(3− 2ǫ) ln

(
q2 − e2Φ2 + iε

q2 + iε

)}
. (143)

We can now reinterpret this equation as the effective potential of a single complex field φ by
setting Φ2 = φ2

1 + φ2
2 = 2φ∗φ in eq. (143),6

V (1)(φ) = −1
2
i

∫
dnq

(2π)n

{
ln

(
q2 − 2λφ∗φ+ iε

q2 + iε

)
+ ln

(
q2 − 6λφ∗φ+ iε

q2 + iε

)

+(3− 2ǫ) ln

(
q2 − 2e2φ∗φ+ iε

q2 + iε

)}
. (144)

In class, we derived the following formula,

∫
dnq

(2π)n
ln

(
q2 −M2 + iε

q2 −m2 + iε

)
= −i(4π)ǫ−2Γ(ǫ− 2)

[
(M2)2−ǫ − (m2)2−ǫ

]
. (145)

It follows that the effective potential including the tree-level and one-loop contributions is
given by,

Veff(φ) = λ(φ∗φ)2 − 5λ2

8π2
(φ∗φ)2

[
1

ǫ
− γ + ln(4π) +

3

2

]
− 3e4

16π2
(φ∗φ)2

[
1

ǫ
− γ + ln(4π) +

5

6

]

+
λ2

16π2

{
(φ∗φ)2 ln(2λφ∗φ) + 9(φ∗φ)2 ln(6λφ∗φ)

}
+

3e4

16π2
(φ∗φ)2 ln(2e2φ∗φ) . (146)

Note that the 5/6 appearing in eq. (146) arises since in the ǫ → 0 limit,

lim
ǫ→0

(−1
2
i) (−2ǫ)

∫
dnq

(2π)n
ln

(
q2 − 2e2φ∗φ+ iε

q2 + iε

)
=

e4

(8π)2
(φ∗φ)2 , (147)

after using eq. (145). Thus,

− 3e4

16π2
(φ∗φ)2

(
3

2
− 2

3

)
= − 3e4

16π2
(φ∗φ)2

(
5

6

)
. (148)

6In this calculation, we performed the shift φ1 → φ1+Φ by making use of the O(2) symmetry of the scalar
sector. But, the same O(2) symmetry implies that had we shifted φ1 → φ1 + Φ1 and φ2 → φ2 + Φ2, the end
result would have been eq. (143) with Φ2 = Φ2

1 +Φ2
2.
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The problem indicates that λ ∼ O(e4). Thus, for the purposes of a consistent treatment of
perturbative effects, we henceforth drop all terms of O(λ2). Thus, our final expression is,

Veff(φ) = λ(φ∗φ)2 − 3e4

16π2
(φ∗φ)2

[
1

ǫ
− γ + ln(4π)

]
+

3e4

16π2
(φ∗φ)2

[
ln(2e2φ∗φ)− 5

6

]
. (149)

Eq. (149) is an expression in terms of the bare field and parameters. We now introduce
the renormalized scalar field and renormalized couplings,

φ = Z
1/2
φ φR , (150)

λ = Z
(1)
λ µ2ǫλR + Z

(2)
λ µ2ǫe4R , (151)

e = Zeµ
ǫeR . (152)

The renormalization of λ includes an O(e4R) correction due to the one-loop diagram,

which must be included in eq. (151) since by assumption λR and e4R are taken to be parameters
of the same order. In the approximation where we keep only terms of O(λR) and O(e4R), we

may put Zφ = Z
(1)
λ = Ze = 1. Hence,

Veff(φ) = λRµ
2ǫ(φ∗

RφR)
2 + e4Rµ

2ǫ(φ∗

RφR)
2

[
Z

(2)
λ − 3

16π2

(
1

ǫ
− γ + ln(4π)

)]

+
3e4Rµ

4ǫ

16π2
(φ∗

RφR)
2
[
ln(2e2φ∗

RφR)− 5
6

]
.

= λR(φ
∗

RφR)
2 + e4R(φ

∗

RφR)
2

[
Z

(2)
λ − 3

16π2

(
1

ǫ
− γ + ln(4π)

)]

+
3e4R
16π2

(φ∗

RφR)
2

[
ln

(
2e2φ∗

RφR

µ2

)
− 5

6

]
, (153)

after dropping terms of O(ǫ). If we choose the MS renormalization scheme, then we should
identify,

Z
(2)
λ =

3

16π2

(
1

ǫ
− γ + ln(4π)

)
. (154)

Hence, the renormalized effective potential is in the MS scheme is given by

Veff(φ)MS = λR(φ
∗

RφR)
2 +

3e4R
16π2

(φ∗

RφR)
2

[
ln

(
2e2φ∗

RφR

µ2

)
− 5

6

]
. (155)
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To evaluate the effective potential in the physical scheme, it is more convenient to employ
the real fields φ1 and φ2 introduced in eq. (137). Since φ∗φ = 1

2
(φ2

1 + φ2
2), we shall introduce

the notation ϕ2 ≡ φ2
1 + φ2

2 = 2φ∗φ, where ϕ is a real field. In this notation, eq. (153) reads,

Veff(ϕ) =
1
4
λRϕ

4
R + 1

4
e4Rϕ

4
R

[
Z

(2)
λ − 3

16π2

(
1

ǫ
− γ + ln(4π)

)]
+

3e4R
64π2

ϕ4
R

[
ln

(
e2ϕ2

R

µ2

)
− 5

6

]
.

(156)
The appropriate subtraction conditions analogous to those of eq. (102) are,7

d2Veff

dϕ2
R

∣∣∣∣
ϕR=0

= 0,
d4Veff

dϕ4
R

∣∣∣∣
ϕR=µ

= 6λR . (157)

Note that the condition (d2Veff/dϕ
2)ϕ=0 = 0 is automatically satisfied by eq. (156). Imposing

the second condition above yields,

6e4R

[
Z

(2)
λ − 3

16π2

(
1

ǫ
− γ + ln(4π)

)]
+

9e4R
8π2

[
ln(e2R) +

10
3

]
= 0 . (158)

Solving for Z
(2)
λ yields,

Z
(2)
λ =

3

16π2

(
1

ǫ
− γ + ln(4π)− ln(e2R)− 10

3

)
. (159)

Plugging this result back into eq. (156) yields,

Veff(ϕ) =
1
4
λRϕ

4
R +

3e4R
64π2

ϕ4
R

[
ln

(
ϕ2
R

µ2

)
− 25

6

]
. (160)

Rewriting this in term if the complex field by putting ϕ2 = 2φ∗φ, we obtain the effective
potential in the physical scheme,

Veff(φ)physical = λR(φ
∗

RφR)
2 +

3e4R
16π2

(φ∗

RφR)
2

[
ln

(
2φ∗

RφR

µ2

)
− 25

6

]
. (161)

(b) Show that the U(1) gauge symmetry is spontaneously broken and compute the mass
of the resulting Higgs boson (mH) in terms of the mass of the vector boson (mV ). Show that
in the one-loop approximation considered here, the Higgs boson mass is scheme independent
by showing that you get the same result in both schemes of part (a).

In the MS scheme, we shall employ eq. (155). It is again convenient to write this potential
in terms of the real fields, φ1 and φ2. For notational convenience, we henceforth drop the
subscript R on the renormalized fields and couplings. Then,

Veff(φ1, φ2) =
1
4
λ(φ2

1 + φ2
2)

2 +
3e4

64π2
(φ2

1 + φ2
2)

2

[
ln

(
e2(φ2

1 + φ2
2)

µ2

)
− 5

6

]
. (162)

7The factor of 6 in eq. (157) is motivated by the observation that if Veff is replaced by the tree-level scalar
potential (denoted by V0) then (d4V0/dϕ

4

R)‖ϕ=0 = 6λ. However, in eq. (157) one must choose the subtraction
scheme by evaluating d4Veff/dϕ

4

R at ϕ = µ 6= 0, in order to avoid infrared divergences (which arise due to the
fact that the bare scalar mass has been set to zero).
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The first derivative of the effective potential with respect to φi (i = 1, 2) is

∂Veff

∂φi
= λ(φ2

1 + φ2
2)φi +

3e4(φ2
1 + φ2

2)φi

16π2

[
ln

(
e2(φ2

1 + φ2
2)

µ2

)
− 1

3

]
. (163)

The extrema of the potential are obtained by setting ∂Veff/∂φi = 0 for i = 1, 2. Clearly,
φ1 = φ2 = 0 corresponds to one of the extrema. However, it is easy to check that this
corresponds to a local maximum of the effective potential. Assuming φ2

1 + φ2
2 6= 0, one finds

additional extrema correspond to the solution to the equation,

λ+
3e4

16π2

[
ln

(
e2(φ2

1 + φ2
2)

µ2

)
− 1

3

]
= 0 . (164)

That is,

φ2
1 + φ2

2 =
µ2

e2
exp

(
1

3
− 16π2λ

3e4

)
. (165)

Since λ/e4 ∼ O(1), this is a consistent solution in the context of perturbation theory. More-
over, one can check that eq. (165) corresponds to a local minimum of the effective potential.
Thus, the U(1) gauge symmetry is spontaneously broken. We can use the U(1) symmetry,
which is isomorphic to the SO(2) symmetry,

(
φ1

φ2

)
−→

(
cos θ − sin θ
sin θ cos θ

)(
φ1

φ2

)
, (166)

to rotate the vacuum expectation value into, say, φ2. Denoting the scalar field vacuum expec-
tation value by v, it follows that

〈Ω | φ2
1 + φ2

2 |Ω〉 = v2 . (167)

Thus,8

e2v2 = µ2 exp

(
1

3
− 16π2λ

3e4

)
. (168)

Let us now compute the masses of the vector boson and the Higgs boson in this model. It
is evident from eq. (142) that the photon acquires a mass,

mγ = ev . (169)

To determine the Higgs mass, we first define shifted scalar fields,

φ̃1 = φ1 − v , φ̃2 = φ2 . (170)

8Although eq. (167) appears to depend on the arbitrary parameter µ, the results of the previous problem
teach us that Veff is in fact independent of µ. A change in µ would result in a compensating change in the
coupling constants. Since v is related to a physical parameter (namely the mass of the gauge boson), it follows
that we are free to choose µ at our convenience. Indeed, if we were to choose µ2 = e2v2, then eq. (168)
would yield λ = e4/(16π2). In this case, we have traded the original parameters λ and e for v and e. This
is yet another example of dimensional transmutation, in which a dimensionful parameter has been generated
starting from a theory with no dimensionful parameters.
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Then, in terms of the shifted fields,

Veff(φ̃1, φ̃2) =
1
4
λ(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)2

+
3e4

64π2
(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)2

[
ln

(
e2(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)

µ2

)
− 5

6

]
. (171)

Next, we compute the derivatives,

∂Veff

∂φ1
= λ(φ̃2

1 + φ̃2
1 + 2vφ̃1 + v2)φ̃1

+
3e4(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)φ̃1

16π2

[
ln

(
e2(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)

µ2

)
− 1

3

]
,

∂Veff

∂φ2
= λ(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)(φ̃2 + v)

+
3e4(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)(φ̃2 + v)

16π2

[
ln

(
e2(φ̃2

1 + φ̃2
2 + 2vφ̃1 + v2)

µ2

)
− 1

3

]
, (172)

Of course, setting these derivatives to zero yields the minimum corresponding to φ̃1 = φ̃2 = 0
in light of eq. (164).

We now compute the second derivatives and evaluate them at φ̃1 = φ̃2 = 0.

∂2Veff

∂φ2
1

∣∣∣∣
φ̃1=φ̃2=0

= 3v2
{
λ+

3e4

16π2

[
ln

(
e2v2

µ2

)
− 1

3

]
+

e4

8π2

}
,

∂2Veff

∂φ1∂φ2

∣∣∣∣
φ̃1=φ̃2=0

= 0 ,

∂2Veff

∂φ2
2

∣∣∣∣
φ̃1=φ̃2=0

= v2
{
λ+

3e4

16π2

[
ln

(
e2v2

µ2

)
− 1

3

]}
. (173)

However, the potential minimum condition [cf. eq. (164)] is,

λ+
3e4

16π2

[
ln

(
e2v2

µ2

)
− 1

3

]
= 0 . (174)

Hence, the scalar squared-mass matrix is given by

M2 =

(
m2

H 0
0 0

)
, (175)

where

m2
H =

3e2v2

8π2
. (176)

That is, φ̃2 is identified with the massless Goldstone boson, which is absorbed by the gauge
boson via the Higgs mechanism to produce a massive photon, whereas φ̃1 is the Higgs boson
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with mass mH . Combining eqs. (169) and (176), we conclude that

m2
H

m2
γ

=
3e2

8π2
. (177)

Indeed, the mass of the Higgs boson is independent of the arbitrary mass parameter µ.
We would also like to prove that the mass of the Higgs boson is independent of the scheme

used to obtain the effective potential. Note that we can rewrite the MS effective potential
given in eq. (162) as follows,

Veff(φ1, φ2) =
1
4
λ(φ2

1 + φ2
2)

2 +
3e4

64π2
(φ2

1 + φ2
2)

2

[
ln

(
e2(φ2

1 + φ2
2)

µ2

)
− 5

6

]

= 1
4
λ′(φ2

1 + φ2
2)

2 +
3e4

64π2
(φ2

1 + φ2
2)

2

[
ln

(
φ2
1 + φ2

2

µ2

)
− 25

6

]
, (178)

where

λ′ = λ+
3e4

16π2

[
ln(e2) +

10

3

]
. (179)

In light of eq. (160), the MS scheme and the physical scheme are simply related by a redefinition
of the coupling λ. But the Higgs boson mass obtained in eq. (176) is independent of λ. Thus,
if one repeats the derivation of the Higgs mass starting from eq. (160), one must also obtain
eq. (176). Indeed, the mass of the Higgs boson is scheme independent.

Note that the same conclusion can be achieved by rewriting eq. (178) as

Veff(φ1, φ2) =
1
4
λ(φ2

1 + φ2
2)

2 +
3e4

64π2
(φ2

1 + φ2
2)

2

[
ln

(
φ2
1 + φ2

2

µ′ 2

)
− 25

6

]
, (180)

where

ln

(
µ2

µ′ 2

)
= ln(e2) +

10

3
. (181)

That is, the physical scheme actually is equivalent to the MS scheme with a different choice
of the parameter µ.

Thus, by eliminating µ from the expression of Veff , one can obtain a result that is indepen-
dent of the choice of renormalization schemes. For example, we can use eq. (168) to eliminate
µ2 from the MS effective potential. It then follows that eq. (162) can be rewritten as

Veff(φ1, φ2) =
3e4

64π2
(φ2

1 + φ2
2)

2

[
ln

(
φ2
1 + φ2

2

v2

)
− 1

2

]
. (182)

Note that λ does not appear at all in eq. (182). This is consistent with the remarks of
footnote 8, which indicates that it is possible to express the effective potential in terms of two
physical parameters, e and v, or equivalently in terms of mγ and mH .

Likewise, one can derive eq. (182) starting from eq. (161) and using the effective potential
in the physical scheme to solve for v. Thus, eq. (182) is independent of the choice of scheme.
Of course, one can now compute the Higgs mass directly from eq. (182) and recover the result
of eq. (177).
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(c) Consider the dependence of the one-loop effective potential on the gauge parameter ξ.
If one employs the gauge fixing term exhibited in eq. (136), the calculation of the effective
potential using the tadpole method is unwieldy due to the mixing of the photon field and
the derivative of the scalar field in the shifted Lagrangian. This problem is ameliorated by
employing the alternative gauge fixing term,

LGF = − 1

2ξ
(∂µA

µ − ξeφ1φ2)
2 . (183)

Employing this new gauge fixing term, repeat the computations of part (a). Show that in the
one-loop approximation considered here, the Higgs boson mass is independent of ξ.

Although the result obtained in eq. (143) of part (a) is correct, we glossed over a subtlety
in the computation. Recall that in applying eq. (139) to the Lagrangian given in eq. (138),
we were instructed to shift the field, φ1 → φ1 + Φ (for a constant Φ), and then to identify
the Φ-dependent masses by examining the resulting terms that were quadratic in the fields.
However, we neglected to note a quadratic term that mixes Aµ and ∂µφ2, due to the term

eAµ
[
(φ1 + Φ)∂µφ2 − φ2∂µφ1

]
(184)

after noting that ∂µΦ = 0, since Φ is constant. Why then were we able to ignore this issue in
part (a)?

One solution to this conundrum is to introduce an alternative gauge fixing term, for ex-
ample the one proposed in eq. (183), called the Rξ gauge fixing term by Boris Kastening.9

Expanding out the squared expression yields,

LGF = − 1

2ξ
(∂µA

µ)2 + eφ1φ2∂µA
µ − 1

2
ξe2φ2

1φ
2
2 . (185)

When we perform the shift, φ1 → φ1 + Φ, on the gauge fixing term and add the result to
eq. (184), we end up with,

− 1

2ξ
(∂µA

µ)2 − 2eAµφ2∂µφ1 − 1
2
ξe2(φ1 + Φ)2φ2

2 + e∂µ
[
Aµ(φ1 + Φ)φ2

]
. (186)

The last term above is a total divergence, which does not contribute to the action and thus
can be dropped. Hence, we have succeeded in eliminating the mixing of Aµ with ∂µφ2 in the
shifted Lagrangian. Note that we have generated two new terms that are quadratic in the
fields φ1 and φ2, respectively. However, the coefficient of these terms are proportional to ξ.
Thus, in the Landau gauge where ξ = 0 no new quadratic terms in the fields appear in the
shifted Lagrangian and thus the computations presented in part (a) are indeed valid.

We would now like to repeat the analysis of part (a) in the case of a general Rξ gauge. Two
changes are immediately apparent. First, in light of eqs. (141) and (186), the squared-mass
term of φ2 and the cubic φ1φ

2
2 interaction have been modified,

L ∋ −(λ+ ξe2)
[
1
2
Φ2φ2

2 + Φφ1φ
2
2

]
. (187)

9The gauge fixing Lagrangian given in eq. (183) was first introduced in P.S.S. Caldas, H. Fleming and
R. Lopez Garcia in Nuovo Cim. A 42, 360 (1977) and then later rediscovered and advocated in B. Kastening,
Phys. Rev. D 51, 265 (1995). Eq. (183) is similar to the Rξ gauge fixing term that is employed in tree-level
spontaneously broken gauge theories.
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In particular, the Feynman rule for the φ1φ
2
2 vertex in the shifted theory is exhibited below,

φ1

φ2

φ2

−2i(λ+ ξe2)Φ

Second, the photon propagator has also been modified (and is the same as in the usual Rξ

gauge), as exhibited below.

k −i

k2 − e2Φ2 + iε

[
gµν +

(ξ − 1)kµkν
k2 − ξe2Φ2

]

Before proceeding with the analysis, there is an additional feature that we must incorpo-
rate. Namely, in the case of ξ 6= 0, Faddeev-Popov ghost fields exist and cannot be neglected
in the computation of Veff . Thus, we need to derive the Faddeev-Popov Lagrangian that arises
due to the choice of the Rξ gauge-fixing term.

The Faddeev-Popov determinant is given by

detB(x, y)

∣∣∣∣
F=0

≡ det

(
δF (x)

δΛ(y)

)∣∣∣∣
F=0

, (188)

where Λ is the gauge transformation parameter and

F (x) = ∂µA
µ(x)− ξeφ1(x)φ2(x)− f , (189)

is determined by the gauge fixing term in the Lagrangian. Moreover, the functional chain rule
yields,

B(x, y) ≡ δF (x)

δΛ(y)
=

∫
d4z

(
δF (x)

δAµ(z)

δAµ(z)

δΛ(y)
+

δF (x)

δφ1(z)

δφ1(z)

δΛ(y)
+

δF (x)

δφ2(z)

δφ2(z)

δΛ(y)

)
. (190)

To evaluate the function derivatives above, we note that under an infinitesimal U(1) gauge
transformation,

Aµ −→ Aµ + ∂µΛ , φ(x) −→
(
1− ieΛ(x)

)
φ(x) , (191)

where

φ(x) =
φ1(x) + iφ2(x)√

2
, (192)

Eq. (191) implies that

δAµ = ∂µΛ , δφ1 = eΛφ2 , δφ2 = −eΛφ1 . (193)

Hence, eqs. (190) and (193) yields,

B(x, y) =
δF (x)

δΛ(y)
=

∫
d4z
[
�xδ

4(x−z)δ4(y−z)+ξe2
(
φ1(x)φ1(z)−φ2(x)φ2(z)

)
δ4(x−z)δ4(y−z)

]

=
[
�x + ξe2

(
φ2
1(x)− φ2

2(x)
)]
δ4(x− y) , (194)

where � ≡ ∂µ∂
µ.
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The Faddeev-Popov determinant has a path integral representation,

detB = N
∫

Dη∗Dη exp

{
−i

∫
d4x d4y η∗(y)B(x, y)η(x)

}
≡ N

∫
Dη∗Dη exp

{
i

∫
d4xLFP

}

(195)
where η and η∗ are the Faddeev-Popov ghost fields, and LFP is the Faddeev-Popov Lagrangian,
which is then added to the Lagrangian of the spontaneously broken abelian Higgs model. Using
eq. (194) and integrating by parts, we end up with

LFP = ∂µη
∗∂µη − ξe2(φ2

1 − φ2
2)η

∗η . (196)

Finally, we perform the shift, φ1 → φ1+Φ. The second term of eq. (196) yields a Φ-dependent
mass term for the Faddeev-Popov ghosts and interaction terms involving the scalars,

−ξe2Φ2η∗η − ξe2(2Φφ1 + φ2
1 − φ2

2)η
∗η . (197)

Thus, the relevant Feynman rules of the shifted theory involving the Faddeev-Popov ghost
fields that we need for our computation below are:

k i

k2 − ξe2Φ2 + iε

−2iξe2Φ

We now perform the computation of the effective potential using the method of tadpoles.
First, there are new contributions to the Φ-dependent mass of φ2 and the φ1φ

2
2 cubic interaction

that are proportional to ξ, as noted in eq. (187). Hence, the computation performed in class
of the φ2 tadpole,

φ1 φ2

is modified as follows,

iΓ
(1)
Φ (0)G = −i

dV (1)(Φ)G
dΦ

=
1

2

∫
dnq

(2π)n
i

q2 − (λ+ ξe2)Φ2 + iε

[
−2i(λ+ ξe2)Φ

]
(198)

where the symmetry factor of 1
2
for the φ2 tadpole has been included (φ2 would be the Gold-

stone boson if Φ were the true vacuum expectation value, hence the subscript G above). It
follows that

V (1)(Φ)G = −1
2
i

∫
dnq

(2π)n
ln

(
q2 − (λ+ ξe2)Φ2 + iε

q2 + iε

)
, (199)

which replaces the first term in eq. (143).
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The computation performed in class of the φ1 tadpole,

φ1 φ1

is not modified. For completeness, we summarize that computation below.

iΓ
(1)
Φ (0)H = −i

dV (1)(Φ)H
dΦ

=
1

2

∫
dnq

(2π)n
i

q2 − 3λΦ2 + iε

[
−6iλΦ

]
(200)

where the symmetry factor of 1
2
for the φ1 tadpole has been included (φ1 would be the Higgs

boson if Φ were the true vacuum expectation value, hence the subscript H above). It follows
that

V (1)(Φ)H = −1
2
i

∫
dnq

(2π)n
ln

(
q2 − 3λΦ2 + iε

q2 + iε

)
, (201)

Next, consider the vector boson tadpole,

φ1 Aµ

The Landau gauge computation of the vector boson tadpole performed in class was propor-
tional to

gµν
(
gµν −

qµqν
q2

)
= n− 1 = 3− 2ǫ . (202)

In a general Rξ gauge, we must replace eq. (202) with,

gµν
(
gµν +

(ξ − 1)qµqν
q2 − ξe2Φ2

)
= n− 1 +

ξ(q2 − e2Φ2)

q2 − ξe2Φ2
. (203)

Thus, the contribution of the vector boson tadpole is given by,

iΓ
(1)
Φ (0)V = −i

dV (1)(Φ)V
dΦ

=
1

2

∫
dnq

(2π)n

−i
(
gµν +

(ξ−1)qµqν
q2−ξe2Φ2

)

q2 − e2Φ2

[
2igµνe

2Φ
]

= (3− 2ǫ)

∫
dnq

(2π)n
e2Φ

q2 − e2Φ2 + iε
+

∫
dnq

(2π)n
ξe2Φ

q2 − ξe2Φ2 + iε
, (204)

after including the symmetry factor of 1
2
and putting n = 4− 2ǫ. It follows that

V (1)(Φ)V = −1
2
i

{
(3− 2ǫ)

∫
dnq

(2π)n
ln

(
q2 − e2Φ2 + iε

q2 + iε

)
+

∫
dnq

(2π)n
ln

(
q2 − ξe2Φ2 + iε

q2 + iε

)}
.

(205)
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Finally, we must include the contribution of the Faddeev-Popov ghosts. That is, we need
to evaluate the following diagram:

φ1

Due to the complexity of the ghost fields η and η∗, the symmetry factor associated with
the diagram above is 1 (rather than 1

2
as in the cases of the φ1, φ2 and vector boson tadpoles

treated above). Hence,

iΓ
(1)
Φ (0)FP = −i

dV (1)(Φ)FP
dΦ

= −
∫

dnq

(2π)n
i

q2 − ξe2Φ2 + iε

[
−2iξe2Φ

]
(206)

which includes a minus sign due to the loop of Faddeev-Popov ghosts. Thus, we obtain,

V (1)(Φ)FP = i

∫
dnq

(2π)n
ln

(
q2 − ξe2Φ2 + iε

q2 + iε

)
. (207)

Collecting our results, the one-loop effective potential in the Rξ gauge is given by,

V (1)(Φ) = −1
2
i

∫
dnq

(2π)n

{
ln

(
q2 − (λ+ ξe2)Φ2 + iε

q2 + iε

)
+ ln

(
q2 − 3λΦ2 + iε

q2 + iε

)

+(3− 2ǫ) ln

(
q2 − e2Φ2 + iε

q2 + iε

)
− ln

(
q2 − ξe2Φ2 + iε

q2 + iε

)}
. (208)

Indeed, eq. (208) correctly reduces to the result of the Landau gauge computation [cf. eq. (143)]
after setting ξ = 0.

As discussed in part (a), under the assumption of λ ∼ O(e4), we must set λ = 0 in the
expression for V (1)(Φ) to maintain consistency of the perturbation series expansion, since the
remaining terms will be of the same order as the tree-level potential. Thus, we end up with,

V (1)(Φ) = −1
2
(3− 2ǫ)i

∫
dnq

(2π)n
ln

(
q2 − e2Φ2 + iε

q2 + iε

)
. (209)

Remarkably, the ξ dependence has canceled out! Thus, at this order of perturbation theory
[under the assumption that λ ∼ O(e4)], the effective potential is actually gauge invariant.
This means that the Higgs mass obtained in part (b) is also gauge invariant.

Unfortunately, when higher order terms that have been neglected above are taken into
account, one finds that the effective potential is no longer gauge invariant and does depend
on ξ. This is not surprising in light of the ξ dependence of eq. (208) when λ 6= 0. Indeed, the
gauge non-invariance could have been anticipated since the effective potential was shown in
class to be related to a sum of n-point Green functions evaluated at zero external momenta.
In general, Green functions of gauge theories, when evaluated at external momenta that are
not on-shell, are not gauge invariant as they do not represent any physical quantity.

Nevertheless, one can prove that the Higgs mass obtained from the effective potential is
gauge invariant to any (consistent) order of perturbation theory. A proof of this fact can
be found in R. Fukada and T. Kugo, Phys. Rev. D 13, 3469 (1976). Similar issues are also
addressed in I.J.R. Aitchison and C.M. Fraser, Annals of Physics 156, 1 (1984). Of course,
this had to be true since the Higgs mass is a physical observable.
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