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Outline

● Sn permutation group
○ 2 identical particles with 2 different states
○ 3 identical particles with 3 different states

● Standard Young tableaux rules
● Decomposition of Irrep of 

○ SU(2)
■ Composition of 2 Electrons
■ Composition of 3 Electrons
■ Selection Rules and CG coefficients

○ SU(3)
■ Composition of 3 quarks
■ Composition of 1 quark and antiquark

○ SU(N)



Example: 2 identical particles in 2 different states (a,b)

Totally symmetric state: 
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Totally antisymmetric state: 

1 2

1

2

Box: state
Number: particle

a b

a

b

2 1

a b

2

1

a

b

Idempotent

(-1)



Standard Young Tableaux Rules revisited

● The number in the row doesn’t decrease when goes from left to right
● The number in the column has to increase downwards

● If there are N particles, it’s impossible to have the number of the row that is 
greater than N



Example: 3 identical particles in 3 different states (a,b,c)
Totally symmetric state: 

Totally antisymmetric state: 
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What about those occupy the same states?



Example: 2 electrons with ½ spin states

Totally symmetric state: 
1 1

Box: particle
Number: spin state
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Pauli Principle Decomposition of reducible representation of SU(2)
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# of Standard Young Tableaux 
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Irreducible representation of su(2)

Fundamental/defining 
representation
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Decomposition of reducible representation of su(2)
⊗ = ⊕
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Example: 3 electrons with ½ spin states
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Example: 3 electrons with ½ spin states
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Decomposition of reducible representation of su(2)
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Selection Rules 
Clebsch-Gordan series



Irreducible representation of su(3)

Fundamental/defining 
representation
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Irreducible representation of su(3)

Fundamental/defining 
representation
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Example: Protons— Direct product of 3 quarks

⊗ =
3      x      3      x      3 10            +            8       +        8       +        1=
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Example: Meson — Direct product of quark and antiquark

⊗ = ⊕
dim 3       x       3 8            +            1=

Meson
octet



General Case: Decompose the direct product of irrep of SU(N)

⊗ = ⊕
dim N       x       N N(N+1)/2     +     N(N-1)/2=

⊗ =⊗ ⊕ ⊕⊕

dim N     x     N    x     N N(N+1)(N+2)/6  +  2N(N-1)(N+1)/3 +  N(N-1)(N-2)/6=



Summary of Standard Young tableaux Rules

● Young Tableaux can construct primitive idempotent
● Decomposition of reducible representations into irreducible ones

● The number in the row doesn’t decrease
● The number in the column has to increase
● # of Standard Young tableaux = dim of irreps

○ For different states (no degeneracy): Sn
○ For irreducible representation for SU(N)

n   n+1 n+2  n+3 n+4

n-1   n    n+1 n+2

n-2
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