Applications of Young tableaux

Dongyi Liu
June 14th, 2023

Outline

- Sn permutation group
- 2 identical particles with 2 different states
- 3 identical particles with 3 different states
- Standard Young tableaux rules
- Decomposition of Irrep of
- SU(2)
- Composition of 2 Electrons
- Composition of 3 Electrons
- Selection Rules and CG coefficients
- $\operatorname{SU}(3)$
- Composition of 3 quarks
- Composition of 1 quark and antiquark
- $\operatorname{SU}(\mathrm{N})$

Example: 2 identical particles in 2 different states (a,b)

Box: state Number: particle

Identical particles $\quad \phi_{1}(a) \phi_{2}(b)$
Totally symmetric state: $\quad \psi_{s}=\phi_{1}(a) \phi_{2}(b)+\phi_{2}(a) \phi_{1}(b)$
$\hat{\mathbf{P}}_{i j}:$ swap particle 1 with particle 2

$$
\begin{aligned}
& \psi_{s}=\phi_{1}(a) \phi_{2}(b)+\phi_{2}(a) \phi_{1}(b) \\
& =\phi_{1}(a) \phi_{2}(b)\left[\mathbf{I}+\hat{\mathbf{P}}_{12}\right] \\
& \text { Idempotent } s=\sum_{g \in S_{n}} g
\end{aligned}
$$

Totally antisymmetric state: $\psi_{A}=\phi_{1}(a) \phi_{2}(b)-\phi_{2}(a) \phi_{1}(b)$

$$
=\phi_{1}(a) \phi_{2}(b)\left[\mathbf{I}-\hat{\mathbf{P}}_{12}\right]
$$

$$
a=\sum_{g \in S_{n}}(-1)^{g} g
$$

Standard Young Tableaux Rules revisited

- The number in the row doesn't decrease when goes from left to right
- The number in the column has to increase downwards

- If there are N particles, it's impossible to have the number of the row that is greater than N

Example: 3 identical particles in 3 different states (a, b, c)

Totally symmetric state:

$$
\begin{array}{rl}
\psi_{s} & =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)+\phi_{2}(a) \phi_{1}(b) \phi_{3}(c)+\phi_{1}(a) \phi_{3}(b) \phi_{2}(c)+\phi_{3}(a) \phi_{2}(b) \phi_{1}(c)+\phi_{3}(a) \phi_{1}(b) \phi_{2}(c)+\phi_{2}(a) \phi_{3}(b) \phi_{1}(c) \\
& =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)\left[\mathbf{I}+\hat{\mathbf{P}}_{12}+\hat{\mathbf{P}}_{13}+\hat{\mathbf{P}}_{23}+\hat{\mathbf{P}}_{13} \hat{\mathbf{P}}_{12}+\hat{\mathbf{P}}_{12} \hat{\mathbf{P}}_{13}\right] \quad s=\sum_{g \in S_{n}} g \\
\hline 1 & 2 \\
\hline
\end{array}
$$

Totally antisymmetric state:

$$
\begin{aligned}
\psi_{A} & =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)-\phi_{2}(a) \phi_{1}(b) \phi_{3}(c)-\phi_{3}(a) \phi_{2}(b) \phi_{1}(c)-\phi_{1}(a) \phi_{3}(b) \phi_{2}(c)+\phi_{3}(a) \\
& =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)\left[\mathbf{I}-\hat{\mathbf{P}}_{\mathbf{1 2}}-\hat{\mathbf{P}}_{\mathbf{1 3}}-\hat{\mathbf{P}}_{\mathbf{2 3}}+\hat{\mathbf{P}}_{\mathbf{1 3}} \hat{\mathbf{P}}_{\mathbf{1 2}}+\hat{\mathbf{P}}_{\mathbf{1 2}} \hat{\mathbf{P}}_{\mathbf{1 3}}\right] \quad a=\sum_{g \in S_{n}}(-1)^{g} g
\end{aligned}
$$

Mixed symmetry states:

$$
\begin{aligned}
\psi_{\lambda_{1}} & =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)+\phi_{2}(a) \phi_{1}(b) \phi_{3}(c)-\phi_{3}(a) \phi_{2}(b) \phi_{1}(c)-\phi_{2}(a) \phi_{3}(b) \phi_{1}(c) \\
& =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)\left[\mathbf{I}+\hat{\mathbf{P}}_{12}-\hat{\mathbf{P}}_{13}-\hat{\mathbf{P}}_{\mathbf{1 2}} \hat{\mathbf{P}}_{\mathbf{1 3}}\right] \quad e_{\lambda_{1}}=s_{\lambda_{1}} a_{\lambda_{1}}=\left(\mathbf{I}+\hat{\mathbf{P}}_{12}\right)\left(\mathbf{I}-\hat{\mathbf{P}}_{13}\right) \\
\psi_{\lambda_{2}} & =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)+\phi_{3}(a) \phi_{2}(b) \phi_{1}(c)-\phi_{2}(a) \phi_{1}(b) \phi_{3}(c)-\phi_{3}(a) \phi_{1}(b) \phi_{2}(c) \\
& =\phi_{1}(a) \phi_{2}(b) \phi_{3}(c)\left[\mathbf{I}+\hat{\mathbf{P}}_{\mathbf{1 3}}-\hat{\mathbf{P}}_{12}-\hat{\mathbf{P}}_{13} \hat{\mathbf{P}}_{\mathbf{1 2}}\right] \quad e_{\lambda_{2}}=s_{\lambda_{2}} a_{\lambda_{2}}=\left(\mathbf{I}+\hat{\mathbf{P}}_{13}\right)\left(\mathbf{I}-\hat{\mathbf{P}}_{12}\right)
\end{aligned}
$$

$\lambda_{2}=$| 1 | 3 |
| :---: | :---: |
| 2 | |
| | |

$$
\begin{aligned}
s_{\lambda_{2}} & =\mathbf{I}+\hat{\mathbf{P}}_{13} \\
a_{\lambda_{2}} & =\mathbf{I}-\hat{\mathbf{P}}_{\mathbf{1 2}}
\end{aligned}
$$

\# of Standard Young Tableaux $=\operatorname{dim}$ of irreps $n_{\lambda}=\frac{n!}{\Pi g_{i}}=\frac{3!}{3}=2$

3	1
1	

What about those occupy the same states?

Box: particle Number: spin state

Example: 2 electrons with $1 / 2$ spin states

Totally symmetric state: $\phi_{a}(\uparrow) \phi_{b}(\uparrow)$

$$
\begin{aligned}
\psi_{s}= & \phi_{a}(\uparrow) \phi_{b}(\downarrow)+\phi_{a}(\downarrow) \phi_{b}(\uparrow) \\
& \phi_{a}(\downarrow) \phi_{b}(\downarrow)
\end{aligned}
$$

Totally antisymmetric state:

Irreducible representation of su(2)

Fundamental/defining representation
$\left.J=\frac{1}{2}\right\rangle$
dim=2

Decomposition of reducible representation of su(2)

$\operatorname{dim} \quad 3 \times 2$
Example: 3 electrons with $1 / 2$ spin states

Example: 3 electrons with $1 / 2$ spin states

Decomposition of reducible representation of su(2)

$$
3 x \quad 3
$$

$$
=5+3+1
$$

dim

dim

$$
\begin{aligned}
\left|J=\frac{n}{2}\right\rangle \otimes\left|J=\frac{m}{2}\right\rangle & \left|J=\frac{n+m}{2}\right\rangle \oplus\left|J=\frac{n+m}{2}-1\right\rangle \oplus \ldots \oplus\left|J=\frac{|n-m|}{2}\right\rangle=\sum_{i=|n-m|}^{n+m}\left|J=\frac{i}{2}\right\rangle \\
(\mathrm{n}+1) \times \quad(\mathrm{m}+1) \quad= & (\mathrm{n}+\mathrm{m}+1)+(\mathrm{n}+\mathrm{m}-2)+\ldots+\quad(|\mathrm{n}-\mathrm{m}|+1)
\end{aligned}
$$

Clebsch-Gordan series

$$
\left(2 j_{1}+1\right) \otimes\left(2 j_{2}+1\right)=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \oplus(2 j+1)
$$

Selection Rules

$$
\begin{aligned}
& \text { Clebsch-Gordan series } \begin{aligned}
&\left(2 j_{1}+1\right) \otimes\left(2 j_{2}+1\right)= \\
& \qquad \sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \oplus(2 j+1) \\
&\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} C G|j m\rangle \\
&\left|m_{1} m_{2}\right\rangle=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}|j m\rangle\left\langle\left\langle j m \mid m_{1} m_{2}\right\rangle\right. \\
&\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}
\end{aligned}
\end{aligned}
$$

Irreducible representation of su(3)

$$
n_{\lambda}=\frac{\Pi n_{i}}{\Pi g_{i}}=\frac{(n+2)!}{2 n!}=\frac{(n+2)(n+1)}{2}
$$

b

Irreducible representation of su(3)

Example: Protons— Direct product of 3 quarks

Example: Meson — Direct product of quark and antiquark

General Case: Decompose the direct product of irrep of $\operatorname{SU}(\mathrm{N})$

dim

$$
N \quad x \quad N \quad N=N(N+1)(N+2) / 6+2 N(N-1)(N+1) / 3+N(N-1)(N-2) / 6
$$

Summary of Standard Young tableaux Rules

- The number in the row doesn't decrease
- The number in the column has to increase
- \# of Standard Young tableaux = dim of irreps
- For different states (no degeneracy): Sn $\quad n_{\lambda}=\frac{n!}{\Pi g_{i}}$
- For irreducible representation for $\mathrm{SU}(\mathrm{N})_{n_{\lambda}}=\frac{N}{G}=\frac{\Pi n_{i}}{\Pi g_{i}}$

- Young Tableaux can construct primitive idempotent
- Decomposition of reducible representations into irreducible ones

References

[1]Muller, Bromley, D. ., \& Greiner, W. (2012). Quantum Mechanics: Symmetries. Springer.
[2]Sakurai, \& Tuan, S. F. (1985). Modern quantum mechanics. Benjamin/Cummings.
[3]Jones. (2020). Groups, Representations and Physics. CRC Press.
[4]Schensted. (1976). A course on the application of group theory to quantum mechanics. NEO Press.
[5]Hamermesh. (1962). Group theory and its application to physical problems. Addison-Wesley Pub. Co.
[6]Hall. (n.d.). Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Second Edition, Vol. 222). Springer International Publishing. https://doi.org/10.1007/978-3-319-13467-3

