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Why bother? (Motivation)

I prefer passing this course to the alternative.

Jest aside, the discussion of physics in the context of geometry has
paved the way to great generalization of principles, allowing us to
unify various descriptions of physics.

Clifford algebras provide an excellent generalization of rotations,
spin, and even more general conformal mappings/transformations
(think of the Möbius transformations from the problem sets).



What are Clifford algebras?

Presentation over!



What are Clifford algebras?

Algebras over vector spaces equipped with symmetric bilinear
products (e.g. Q(v ,w) = v · w)

Consider R2 = span{e1, e2} = {x1e1 + x2e2 |x1, x2 ∈ R}, equipped
with Q(r1, r2) = r1 · r2
Goal: Match the definition of “length” |r|2 = Q(r, r)

rr = (x1e1 + x2e2)2 = x21e
2
1 + x22e

2
2 + x1x2(e1e2 + e2e1)

The matching provides the rule {ei , ej} = 2δij , or more explicitly:

e21 = e22 = 1
e1e2 =-e2e1



Bivectors and Grassmann Algebras I

Let us play with our new product:
r1r2 = (x1e1+x2e2)(y1e1+y2e2) = (x1y1+x2y2)+(x1y2−x2y1)e12

It decomposes into an symmetric and anti-symmetric part: a scalar
and a bivector

A visual depiction of a bivector.



Bivectors and Grassmann Algebras II

Anti-symmetric portion motivates the Grassmann/exterior product:
r1 ∧ r2 = (x1y2 − x2y1)e12

The product of two vectors can be defined as an inner and exterior
product:

r1 · r2 = 1
2(r1r2 + r2r1)

r1 ∧ r2 =
1
2(r1r2-r2r1)

We may define the wedge product more generally:

n
∧
i=1

ri ≡ r1 ∧ · · · ∧ rn =
1

n!

∑
σ∈Sn

(−1)σrσ(1)rσ(2) · · · rσ(n)

Clifford product defines 3 distinct spaces: Cℓ(R2) ∼= R⊕R2⊕Λ2R2



Even More Decompositions

e1 e2 e12
e1 1 e12 −e2
e2 −e12 1 e1
e12 −e2 e1 −1

However, note the additional even-odd (Z2) gradation:

Cℓ(R2) ≡ Cℓ2 ∼= Cℓ+2 ⊕ Cℓ−2 ∼= (R⊕
2
ΛR2)⊕ (R2)

Trivial group is a (only other) subgroup of Z2:even subspace forms
a subalgebra. Let’s explore the even subalgebra of Cℓ2:

Cℓ+2 = {x + ye12|x , y ∈ R}

Note that ⟨1, e12⟩e12 = ⟨e12,−1⟩ is a rotation of the {1, e12}
subspace by π/2. This is identical to the action of the imaginary
unit i ∈ C.



Complexities That Make The Head Spin I
In fact, Cℓ+2 algebraically isomorphic to C.

Complex conjugation is an involution (self-inverse operation) that
allows us to define the inverse of an element: z−1 = z/(zz̄). We
may define involutions on the Clifford Algebra, acting on u ∈ Cℓ2:

grade involution û = ⟨u⟩0 − ⟨u⟩1 + ⟨u⟩2
reversion ũ = ⟨u⟩0 + ⟨u⟩1 − ⟨u⟩2

Clifford-conjugation u = ⟨u⟩0 − ⟨u⟩1 − ⟨u⟩2

Grade involutions change the sign of odd graded elements,
reversions reverse the order of all the multiplied basis vectors, and
Clifford-conjugations compose both of the above.

In the isomorphism above, complex conjugation is achieved by
restricting reversion or Clifford-conjugation to Cℓ+2 .



Complexities That Make The Head Spin II
Consider the action of Cℓ+2 on r ∈ Cℓ−2 = {x1e1 + x2e2| x1, x2 ∈ R}:

r(a+ b e12) = (
√
a2 + b2) exp(−e12 arctan b/a) r =

(
√
a2 + b2) r exp(e12 arctan b/a)

For even graded elements of unit norm, the action on the space of
vectors is that of a rotation.
With the isomorphism Cℓ+2 ∼= C, we obtain a representation of
rotations of the plane (SO(2)) in the form of unit complex
numbers: SO(2) ∼= U(1).



Complexities That Make The Head Spin III

Setting a2 + b2 = 1, and tan θ = b/a, we note that the rotation
can also be expressed as a similarity transform:

r(cos θ + sin θ e12) = s−1 r s, s = exp (e12θ/2)

There are two vectors corresponding to the same rotation: s and
−s. This is a double covering of the rotations of R2, providing a
description of the spin group of 2 dimensions:

Spin(2) = {s ∈ Cℓ+2 | ss̄ = 1}, Spin(2)/{±1} ∼= SO(2) (1)



The Schrödinger-Pauli Equation; A Review

For an electron in an EM field, the Schrödinger equation reads:

i∂tψ =
1

2m
(−i∇− eA⃗)2ψ − eϕψ

This generates a differential operator associated with the
generalized momentum π⃗ = −i∇− eA⃗, where [πi , πj ] = iϵijkeBk .

This motivates the definition of the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

employed to make the spin of the electron manifest

i∂tψ =
1

2m
(π⃗ · π⃗ − e(σ⃗ · B⃗))ψ − eϕψ



Taking a Step“Up” I
Noting the identity (σ⃗ · B⃗)2 = B2I (or doing the homework), we
regard {σi} an orthonormal basis for R3, inviting an exploration of
the Pauli-Schrödinger equation in the language of Cℓ(R3) ≡ Cℓ3.

Recall that r1r2 = r1 · r2 + r1 ∧ r2 in Cℓ2. This generalizes across
all finite dimensions (and bilinear signatures). A terse summary of
Pauli’s achievement is found in his recognition of the underlying
Clifford structure:

π2 = π⃗ · π⃗ + π⃗ ∧ π⃗ = π2 − eB

A deeper explanation entails the exploration of Cℓ3, along with the
real algebra generated by the Pauli matrices, Mat(2,C).



Taking a Step“Up” II
Cℓ3 constitutes of scalars (a0), vectors (a

i
1ei ), bivectors (a

ij
2eiej),

and volume elements (a3 e1e2e3 = a3e123). Since we simply
require {ei , ej} = 2δij , with a necessity for 3 basis vectors, the
Pauli matrices may be identified with these elements.

As an aside, we may explore the even subalgebra of Cℓ3,
Cℓ+3 ∼= R⊕ Λ2R3. Note that Λ2R3 is spanned by {e12, e23, e31},
where each element squares to −1, while eikekj = −ekjeik = eij .
Replacing them with {i , j , k}, we note that we have obtained the
structure of the quaternions, H.

While this is no rigorous proof, it is fairly clear that Cℓ+3 ∼= H. In
fact, Cℓ−3 ∼= R⊕ Λ3R3 = {a+ e123b| a, b ∈ R} ∼= C, where
e2123 = −1. With a few additional arguments, one can demonstrate
that Cℓ3 ∼= C⊗H.



Taking a Step“Up” III

Given ei ≃ σi , investigate the effect of involutions on an arbitrary
element of span{I , σ1, σ2, σ3} ∼= Mat(2,C):

grade involution û = ⟨u⟩0 − ⟨u⟩1 + ⟨u⟩2 − ⟨u⟩3
reversion ũ = ⟨u⟩0 + ⟨u⟩1 − ⟨u⟩2 − ⟨u⟩3

Clifford-conjugation u = ⟨u⟩0 − ⟨u⟩1 − ⟨u⟩2 + ⟨u⟩3

If u =

(
a b
c d

)
,

û =

(
d∗ −c∗

−b∗ a∗

)
, ũ =

(
a∗ c∗

b∗ d∗

)
, ū =

(
d −b
−c a

)
,

with ũ → u†, and for a non-singular u, ū → u−1 det u and
û → (u−1 det u)†.



Spinning in 3D I

Generalize our picture of rotations to higher dimensions - we need
an axis and an angle in 3D, unlike the case of 2D.
Let us rotate the vector r about the axis a/|a| by some angle
α = |a|.

Recall that 2a · r = ar + ra. This implies that
−ara−1 = r − 2(r · a)a−1= r − 2(r · a)a/a2

Rotating around a by reflecting.



Spinning in 3D II

ae123 = a1e23 + a2e31 + a3e12 gives us the bivector dual to a,
which forms the plane of rotation. Here, we may replace the
bivectors with eij ≃ σij = iϵijkσk .

From our exercises with Pauli matrices, we recognize that:

exp (ae123) ≃ exp (iαâ · σ⃗) = I cosα+ i â · σ⃗ sinα ≃
cosα+ e123

a
|a| sinα

This provides our formalism for rotations in 3D:

ara−1 = srs−1, s = exp (
1

2
ae123) (2)



Spinning in 3D III

Note that s−1 is obtained either by changing the signs of all
vectors, while leaving the trivector (pseudoscalar) unchanged, or
vice-versa. In either case, the sign of all bivectors must flip. The
first case corresponds to a reversion, while the second,
Clifford-conjugation. As such, we require that for s ∈ Cℓ3 to be a
rotation, we require ss̃ = ss̄ = 1. Identifying ±s as the same
rotation, we find:

Spin(3) = {s ∈ Cℓ3| ss̃ = 1, ss̄ = 1}

In our Hermitian basis for Mat(2,C), this becomes:
s†s = I , det s = 1, providing the isomorphism:

SU(2) ∼= {u ∈ Mat(2,C)| u†u = I , det u = 1} ∼= Spin(3) (3)



Spinors, Ideals, and Spinor Operators I
Since a Pauli spinor is well represented as an element of C2, we
may promote it to a subspace of Mat(2,C):

ψ =

(
ψ1

ψ2

)
∈ C2 →

(
ψ1 0
ψ2 0

)
∈ Mat(2,C)f ⊂ Mat(2,C),

where f =

(
1 0
0 0

)
is a primitive idempotent in Mat(2,C).

The space of spinors is then the left ideal of generated by f , since
for s ∈ S ≡ Mat(2,C)f , and u ∈ Cℓ3, us ∈ S , once a notion of
scaling is provided.

This is provided by elements of F = f Cℓ3f = {
(

c 0
0 0

)
| c ∈ C},

the field of scalars. The scaling of ψ ∈ S by λ ∈ F is provided by
ψλ, and a scalar product s̃s ≃ ψ†ψ may be constructed.



Spinors, Ideals, and Spinor Operators II

To consider an active operator formulation of spinors, we consider
Ψ ∈ Cℓ+3 , given by Ψ = ψ + ψ̂ for ψ ∈ S ≃ u ∈ Cℓ3f .

We are used to considering spinor expectations:
si = ψσiψ

† = 2⟨uei ũ⟩0. In the framework of Ψ ∈ Cℓ+3 , we obtain
s = Ψe3Ψ̃, allowing us to rewrite the Pauli-Schrödinger equation:

i∂tψ =
π2

2m
Ψ− e

2m
B⃗Ψe3 − eϕΨ

This formulation makes the quantization direction of the spin, e3,
manifest, associated with our choice of idempotent!



A New Spin on Spacetime I
To construct spinors for spacetime, we note that our underlying
vector space is now somewhat different: R1,3 or R3,1, instead of
Rn.

Focusing on R1,3, we obtain the familiar Dirac matrices, eµ ≃ γµ
that obey {γµ, γν} = 2ηµν I , providing the identification
Cℓ1,3 ≃ Mat(2,H). We may also explicitly present the
corresponding double-covers of O(1, 3), SO(1, 3), and SO+(1, 3),
Pin(1, 3),Spin(1, 3). These are obtained by choosing elements
ss̃ = ±1 in the spaces Cℓ1,3 and Cℓ+1,3, while Spin+(1, 3) is the
subset of Spin(1, 3) with ss̃ = 1.

Considering R3,1, we note that e2i = −e20 = 1. This, along with the
anti-commutation, generates the Clifford algebra
Cℓ3,1 ≃ Mat(4,R). Similarly, SO+(3, 1) has a double-covering of
Spin+(3, 1) = {s ∈ Cℓ+3 | ss̃ = 1}.



A New Spin on Spacetime II

We may now exploit the same machinery that we used on the
Pauli-Schrödinger equation on the Dirac equation:

(γµ(i∂
µ − eAµ)−m)ψ = 0

Considering the spinor operators found in Cℓ+1,3, we may rewrite the
Dirac equation to make the time-like quantization direction
apparent:

(∂Ψγ21 − eAΨ−mΨe0) = 0



Thank you

Thank you for your patience during this presentation. It has been a
fun1 course.

1There’s no way this material is easier than Jackson, Howie.
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